JPH0529624B2 - - Google Patents

Info

Publication number
JPH0529624B2
JPH0529624B2 JP63250391A JP25039188A JPH0529624B2 JP H0529624 B2 JPH0529624 B2 JP H0529624B2 JP 63250391 A JP63250391 A JP 63250391A JP 25039188 A JP25039188 A JP 25039188A JP H0529624 B2 JPH0529624 B2 JP H0529624B2
Authority
JP
Japan
Prior art keywords
weight
parts
raw material
material powder
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63250391A
Other languages
Japanese (ja)
Other versions
JPH0297461A (en
Inventor
Takeo Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIMURA TOGYO KK
Original Assignee
NISHIMURA TOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIMURA TOGYO KK filed Critical NISHIMURA TOGYO KK
Priority to JP63250391A priority Critical patent/JPH0297461A/en
Publication of JPH0297461A publication Critical patent/JPH0297461A/en
Publication of JPH0529624B2 publication Critical patent/JPH0529624B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、チタン酸バリウム系半導体セラミツ
クス成形体の製造方法に関する。 従来技術 いわゆる原子価制御の原理によつてY2O3等の
希土類金属酸化物を添加して半導体化したチタン
酸バリウム(BaTiO3)系セラミツクスはPTC
(Positive Temperature Coefficient)セラミツ
クスとも称され、その特性を活かして、電気回路
の過熱防止、電子回路の温度補償、ポテンシヨメ
ーターの無接点リレー、定温発熱体素子、モータ
ー起動素子、カラーTVの自動消磁素子、温度検
出、その他の機器に広く利用されることが知られ
ている。 特に、最近、これ等の実用化技術の進歩は目ざ
ましく、様々な形状で利用されるようになつてき
た。軽薄短小、小型複雑化への要望は益々強くな
つてくるが、チタン酸バリウム系セラミツクス
(以下、PTCセラミツクスと称する)の素子の従
来の製造技術では下記の通り限界があつた。 即ち、比較的形状の大きなものについては、プ
レス成形で成形され、物によつては古来から継承
される伝統的な鋳込成形等が実施される。また、
フイルムシートを用いたドグダーブレード法では
薄い基板の成形が可能である。更に、パイプやハ
ニカムといつた形状のものは、押出成形が適用さ
れる。しかし、このような方法では、次のような
ものの成形は不可能であつた。 a 複雑な形状あるいは加工工程を必要とするも
の。 b 製品各部の最大肉厚が5mm以下のもの。 c 製品各部の最小肉厚が1mm以下のもの。 d 製品各部にφ0.6mm以下の貫通穴を有するも
の。 e 製品重量が1g以下のもの。 f 高密度な製品が要求されるもの。 g 高度な寸法精度が製品に要求されるもの。 h 数量、ロツトの大きいもの。 i 粉末の平均粒径が0.5μm以下のもの。 j 粉末価格の高いもの。 発明の解決しようとする課題 本発明は、このようなPCTセラミツクスの成
形において、前記a〜jのように、小型で複雑な
物品をも精度良く、容易に製造できる方法を提供
することを課題とする。 課題を解決するための手段 本発明は、PCTセラミツクスを射出成形で成
形可能とすることによつて、上記課題を解決し
た。 即ち、本発明では、チタン酸バリウム系半導体
の原料粉末100重量部に、ワツクス類10〜30重量
部、熱可塑性樹脂2〜25重量部、及び粉末表面処
理剤2〜5重量部を添加混合した配合物を射出成
形し、焼成することを特徴とする。 射出成形では、PTCセラミツクス原料粉末に
添加するバインダーの選定が最大の要点となる。
PTCセラミツクス原料粉末に流動性を与え、成
形を可能にするのがバインダー類の役割である
が、その後の焼成工程ではこれが妨げとなる。従
つて、バインダーに要求される特性としては、少
量の添加で良好な流動性が得られるもの、PTC
セラミツクス原料粉末との親和性が良いこと、焼
成時の脱バインダー性が良いことなどが選択の要
点となる。逆に、PTCセラミツクス原料粉末側
からすれば、バインダー量を減らすためには、例
えば平均粒子径(1μm前後)、粒度分布(ブロー
ド)、比面積(1m2/g)、粒子形状(球状)のよ
うな粉体が理想となる。バインダーとして添加す
る有機材料はそれぞれ次の役割を有している。 ・ PTCセラミツクス原料粉末に加熱流動性を
そして成形体に保形性を与える結合剤 ・ 離型性とPTCセラミツクス原料粉末の粒子
の間の滑りを良好にする滑剤 ・ レオロジー性の付与と可塑性、柔軟性を与え
る可塑剤 ・ PTCセラミツクス原料粉末の表面活性化さ
せ結合剤との親和性を高める粉末表面処理剤 の以上である。 PTCセラミツクス原料粉末100重量部に対する
有機材料の添加量は次のようなものが好ましい。 熱可塑性樹脂(有機結合剤)2〜25重量部 アクリル樹脂 (0〜10重量部) ポリエチレン (0〜5重量部) ポリスチレン (0〜5重量部) エチレン酢酸ビニル共重合体
(0〜5重量部) ワツクス類(滑剤) 10〜30重量部 可塑剤(ジブチルフタレート)
0〜5重量部 粉末表面処理剤 2〜5重量部 本発明において、ワツクス類の添加量が、
PTCセラミツクス原料粉末に対して10重量%よ
り少なくなると、ワツクス類より熱分解性の悪い
熱可塑性樹脂を多く必要とし、成形体の脱脂が困
難となる。また、ワツクス類が30重量%を越える
と、ワツクス類よりバインダー力の良好な熱可塑
性樹脂の使用量が少なくなるため、成形体の強度
が低下するので好ましくない。 ワツクスとしては、合成ワツクス系のもので、
融点が60〜200℃の範囲のものを用いるのが好ま
しい。融点が60℃未満では成形加工中ワツクスの
一部が蒸発し、組成変化を起こす可能性があり、
また200℃を越えると成形加工が困難となる。一
般に使用されるワツクス類としては、パラフイン
ワツクス、マイクロクリスタルワツクス、変形ワ
ツクス等が挙げられる。 また、熱可塑性樹脂としては、アクリル樹脂、
ポリスチレン、ポリエチレン、エチレン酢酸ビニ
ール共重合体、ポリプロピレン、ポリブチルメタ
クリレート、ポリエチレンオキサイド等が使用さ
れる。これらは一種のみ使用されてもよいが、数
種を併用するのが好ましい。熱可塑性樹脂は、
PTCセラミツクス原料粉末に対して2〜25重量
%の範囲で添加するが、25重量%を越えると樹脂
量が多くなり、成形体の密度が低下するため好ま
しくなく、また、2重量%未満となると、成形体
の強度が十分に保てない。 粉末表面処理剤としては、アミノ酸類などが使
用されるが、この添加量は、PTCセラミツクス
原料粉末に対して2重量%に満たないと結合剤と
の親和性が劣り、また5重量%を越えると焼結体
密度が低下するため好ましくなくなる。 なお、可塑剤は、必要に応じて使用されるが、
一般にプラスチツクの加工に使用されているがい
ずれも使用できるが、ジチエルフタレート、ジブ
チルフタレート、ジオクチルフタレート等の化合
物の中から選択して使用するのが好ましい。可塑
剤の添加量が、PTCセラミツクス原料粉末に対
して5重量%を越えると成形体の強度が低下する
ので好ましくない。 次に、実施例に従つて、本発明を更に詳しく説
明する。実施例において部又は%とあるのは特に
断らない限り重量部又は重量%を示す。 実施例 1 PTCセラミツクス原料粉末100部に対し、ワツ
クス29部、アクリル樹脂7.7部、ポリスチレン3.1
部、ポリエチレン3.1部、エチレン酢酸ビニール
共重合体1.5部、ジブチルフタレート4.6部、粉末
表面処理剤(アミノ酸)4.6部を加え、これを加
圧ニーダにて100〜200℃の温度で2〜5時間混練
する。そして、この混練物を粉砕し、射出成形用
コンパウンドを作成する。次に、これを射出成形
機に投入し、成形温度100〜200℃、成形圧力500
〜1000Kgf/cm2の条件にて、φ0.2mmの貫通穴を有
する外径φ2.4mm、長さ13mmの成形体に成形し、こ
の成形体を450℃×2時間で脱脂し、1320℃で1
時間焼成してPTCセラミツクスとした。製品は、
精度ある品質のよいうセラミツクス成形体となつ
た。 実施例 2 実施例1と同様の方法で、射出成形してPTC
セラミツクス成形体を製造し、その密度を成形で
得られPTCセラミツクス成形体の密度を測定し
た。これを通常のプレス成形で得たPTCセラミ
ツクス成形体の密度と比較して次表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a barium titanate-based semiconductor ceramic molded body. PRIOR TECHNOLOGY Barium titanate (BaTiO 3 ) ceramics made into semiconductors by adding rare earth metal oxides such as Y 2 O 3 based on the principle of valence control are called PTC.
(Positive Temperature Coefficient) Also known as ceramics, its properties can be used to prevent overheating in electrical circuits, compensate temperature in electronic circuits, non-contact relays for potentiometers, constant temperature heating elements, motor starting elements, and automatic demagnetization for color TVs. It is known that it is widely used in elements, temperature detection, and other devices. In particular, recent advances in these practical technologies have been remarkable, and they have come to be used in a variety of shapes. The demand for lighter, thinner, shorter, smaller, more compact and more complex devices is becoming stronger and stronger, but the conventional manufacturing technology for elements made of barium titanate ceramics (hereinafter referred to as PTC ceramics) has the following limitations. That is, objects with relatively large shapes are formed by press molding, and some objects are formed by traditional cast molding inherited from ancient times. Also,
The dogder blade method using a film sheet allows the formation of thin substrates. Furthermore, extrusion molding is applied to shapes such as pipes and honeycombs. However, with this method, it has been impossible to mold the following items. a) Items that require complex shapes or processing steps. b The maximum wall thickness of each part of the product is 5 mm or less. c The minimum wall thickness of each part of the product is 1 mm or less. d Products with through holes of φ0.6 mm or less in each part. e.Product weight is 1g or less. f Items that require high-density products. g Products that require a high degree of dimensional accuracy. h Items with large quantities or lots. i Powder with an average particle size of 0.5 μm or less. j Highly priced powder. Problems to be Solved by the Invention An object of the present invention is to provide a method for easily manufacturing small and complex articles, such as a to j above, with high precision in the molding of PCT ceramics. do. Means for Solving the Problems The present invention has solved the above problems by making PCT ceramics moldable by injection molding. That is, in the present invention, 10 to 30 parts by weight of waxes, 2 to 25 parts by weight of thermoplastic resin, and 2 to 5 parts by weight of a powder surface treatment agent were added and mixed to 100 parts by weight of barium titanate-based semiconductor raw material powder. The formulation is characterized by injection molding and firing. In injection molding, the most important point is the selection of the binder to be added to the PTC ceramic raw material powder.
The role of binders is to provide fluidity to the PTC ceramic raw material powder and enable it to be molded, but this hinders the subsequent firing process. Therefore, the properties required of a binder are that it can provide good fluidity with a small amount of addition, and that PTC
The key points in selection are that it has good affinity with the ceramic raw material powder and that it has good binder removal properties during firing. Conversely, from the perspective of PTC ceramic raw material powder, in order to reduce the amount of binder, for example, the average particle diameter (around 1 μm), particle size distribution (broad), specific area (1 m 2 /g), and particle shape (spherical) should be adjusted. A powder like this would be ideal. Each organic material added as a binder has the following role. - A binder that gives the PTC ceramic raw material powder heat fluidity and shape retention to the molded body. - A lubricant that improves mold releasability and slippage between particles of the PTC ceramic raw material powder. - Provides rheology, plasticity, and flexibility. These are plasticizers that give properties and powder surface treatment agents that activate the surface of PTC ceramic raw material powder and increase its affinity with binders. The amount of organic material added to 100 parts by weight of PTC ceramic raw material powder is preferably as follows. Thermoplastic resin (organic binder) 2-25 parts by weight Acrylic resin (0-10 parts by weight) Polyethylene (0-5 parts by weight) Polystyrene (0-5 parts by weight) Ethylene-vinyl acetate copolymer
(0 to 5 parts by weight) Waxes (lubricant) 10 to 30 parts by weight Plasticizer (dibutyl phthalate)
0 to 5 parts by weight Powder surface treatment agent 2 to 5 parts by weight In the present invention, the amount of waxes added is
When the amount is less than 10% by weight based on the PTC ceramic raw material powder, a large amount of thermoplastic resin, which is less thermally decomposable than waxes, is required, making it difficult to degrease the molded body. Furthermore, if the wax content exceeds 30% by weight, the amount of the thermoplastic resin, which has better binder power than the wax, is used in a smaller amount, which is undesirable because the strength of the molded product decreases. The wax is a synthetic wax type,
It is preferable to use one having a melting point in the range of 60 to 200°C. If the melting point is less than 60℃, part of the wax may evaporate during the molding process, causing a compositional change.
Furthermore, if the temperature exceeds 200°C, molding becomes difficult. Commonly used waxes include paraffin wax, microcrystalline wax, modified wax, and the like. In addition, examples of thermoplastic resin include acrylic resin,
Polystyrene, polyethylene, ethylene vinyl acetate copolymer, polypropylene, polybutyl methacrylate, polyethylene oxide, etc. are used. Although only one type of these may be used, it is preferable to use several types in combination. Thermoplastic resin is
It is added in a range of 2 to 25% by weight based on the PTC ceramic raw material powder, but if it exceeds 25% by weight, the amount of resin will increase and the density of the molded product will decrease, which is undesirable, and if it is less than 2% by weight, , the strength of the molded product cannot be maintained sufficiently. Amino acids and the like are used as powder surface treatment agents, but if the amount added is less than 2% by weight based on the PTC ceramic raw material powder, the affinity with the binder will be poor, and if it exceeds 5% by weight. This is not preferable because the density of the sintered body decreases. In addition, a plasticizer is used as necessary, but
Generally used in the processing of plastics, any of them can be used, but it is preferable to select and use compounds such as dithylphthalate, dibutyl phthalate, and dioctyl phthalate. If the amount of plasticizer added exceeds 5% by weight based on the PTC ceramic raw material powder, the strength of the molded product will decrease, which is not preferable. Next, the present invention will be explained in more detail with reference to Examples. In the examples, parts or % indicate parts by weight or % by weight unless otherwise specified. Example 1 29 parts of wax, 7.7 parts of acrylic resin, and 3.1 parts of polystyrene to 100 parts of PTC ceramic raw material powder
3.1 parts of polyethylene, 1.5 parts of ethylene-vinyl acetate copolymer, 4.6 parts of dibutyl phthalate, and 4.6 parts of a powder surface treatment agent (amino acid), and the mixture was heated in a pressure kneader at a temperature of 100 to 200°C for 2 to 5 hours. Knead. This kneaded material is then pulverized to create an injection molding compound. Next, this is put into an injection molding machine, the molding temperature is 100-200℃, and the molding pressure is 500℃.
Under conditions of ~1000Kgf/ cm2 , it was molded into a molded body with an outer diameter of 2.4mm and a length of 13mm with a through hole of 0.2mm.The molded body was degreased at 450℃ for 2 hours, and then heated at 1320℃. 1
PTC ceramics were made by firing for hours. Products,
The result is a ceramic molded body with high precision and quality. Example 2 PTC was made by injection molding in the same manner as in Example 1.
A ceramic molded body was manufactured, and its density was measured by molding, and the density of the PTC ceramic molded body was measured. This is compared with the density of a PTC ceramic molded body obtained by normal press molding and is shown in the following table.

【表】 本発明の方法では、従来になく製品密度の高
い、安定したPTCセラミツクス成形体が得られ
ることが分かる。 発明の効果 本発明では、射出成形によつて、PCTセラミ
ツクス成形体の製造が可能となり、PCTセラミ
ツクスの特性を有する小型で複雑な製品をも、非
常に高密度で精度よく安定して製造できる。
[Table] It can be seen that the method of the present invention allows a stable PTC ceramic molded body with a higher product density than ever before to be obtained. Effects of the Invention In the present invention, a PCT ceramic molded body can be manufactured by injection molding, and even small and complex products having the characteristics of PCT ceramics can be stably manufactured with extremely high density and precision.

Claims (1)

【特許請求の範囲】[Claims] 1 チタン酸バリウム系半導体の原料粉末100重
量部に、融点60〜200℃のワツクス類10〜30重量
部、アクリル樹脂、ポリスチレン、ポリエチレ
ン、エチレン酢酸ビニール共重合体、ポリプロピ
レン、ポリブチルメタクリレート、ポリエチレン
オキサイドからなる群から選ばれる少なくとも一
種の熱可塑性樹脂2〜25重量部、アミノ酸類から
なる粉末表面処理剤2〜5重量部を添加混合した
配合物を射出成形し、焼成することを特徴とする
チタン酸バリウム系半導体セラミツクス成形体の
製造方法。
1. 100 parts by weight of barium titanate semiconductor raw material powder, 10 to 30 parts by weight of waxes with a melting point of 60 to 200°C, acrylic resin, polystyrene, polyethylene, ethylene vinyl acetate copolymer, polypropylene, polybutyl methacrylate, polyethylene oxide. titanium, which is characterized by injection molding and firing a mixture of 2 to 25 parts by weight of at least one thermoplastic resin selected from the group consisting of 2 to 25 parts by weight of a powder surface treatment agent made of amino acids; A method for producing a barium oxide semiconductor ceramic molded body.
JP63250391A 1988-10-03 1988-10-03 Production of molded body of barium titanate semiconductor ceramics Granted JPH0297461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63250391A JPH0297461A (en) 1988-10-03 1988-10-03 Production of molded body of barium titanate semiconductor ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63250391A JPH0297461A (en) 1988-10-03 1988-10-03 Production of molded body of barium titanate semiconductor ceramics

Publications (2)

Publication Number Publication Date
JPH0297461A JPH0297461A (en) 1990-04-10
JPH0529624B2 true JPH0529624B2 (en) 1993-05-06

Family

ID=17207217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250391A Granted JPH0297461A (en) 1988-10-03 1988-10-03 Production of molded body of barium titanate semiconductor ceramics

Country Status (1)

Country Link
JP (1) JPH0297461A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090148657A1 (en) * 2007-12-05 2009-06-11 Jan Ihle Injection Molded PTC-Ceramics
US7973639B2 (en) 2007-12-05 2011-07-05 Epcos Ag PTC-resistor
US9034210B2 (en) * 2007-12-05 2015-05-19 Epcos Ag Feedstock and method for preparing the feedstock
DE102008036836A1 (en) 2008-08-07 2010-02-11 Epcos Ag Shaped body, heating device and method for producing a shaped body
DE102008036835A1 (en) 2008-08-07 2010-02-18 Epcos Ag Heating device and method for producing the heating device
DE102014203264A1 (en) * 2014-02-24 2015-08-27 Siemens Aktiengesellschaft Thermoelectric high power generator and method for its production

Also Published As

Publication number Publication date
JPH0297461A (en) 1990-04-10

Similar Documents

Publication Publication Date Title
JPH02302357A (en) Ceramic injection molding material and injection molding using the same material
WO2020200424A1 (en) Sinterable feedstock for use in 3d printing devices
JPH0529624B2 (en)
US5415830A (en) Binder for producing articles from particulate materials
US5746960A (en) Method of manufacturing powder injection molded part
JPH04140105A (en) Manufacture of aluminum nitride ceramic formed body
JPH06158109A (en) Method for dewaxing and sintering molded body of metal or ceramic powder
WO1994020242A1 (en) Process for manufacturing powder injection molded parts
EP2217545B1 (en) Method for preparing a feedstock
JPH036302A (en) Manufacture of sintered product composed of binder for forming powder and metal powder or ceramic powder
JPS59121150A (en) Injection molding material
JPS6071573A (en) Composition for ceramic injection molding
JP3427100B2 (en) Method for producing colored ceramic sintered body
JPH0641601B2 (en) Molding composition
JP2743297B2 (en) Method for producing dry press-formed body for ceramic electronic component
JPH0820803A (en) Production of sintered compact
JP2012062221A (en) Method for producing sintered compact
JPS61122152A (en) Ceramic composition for injection molding
JPH0430723B2 (en)
JP2001348602A (en) Composition as powder material for sintering and method for producing the sintered product
JPS61261250A (en) Ceramic manufacturing composition
JPH0444621B2 (en)
JPH0233664B2 (en)
JPH11278915A (en) Composition for injection molding of ceramic
JPS62197166A (en) Production of crushing and mixing media