JPH0433738B2 - - Google Patents

Info

Publication number
JPH0433738B2
JPH0433738B2 JP27393386A JP27393386A JPH0433738B2 JP H0433738 B2 JPH0433738 B2 JP H0433738B2 JP 27393386 A JP27393386 A JP 27393386A JP 27393386 A JP27393386 A JP 27393386A JP H0433738 B2 JPH0433738 B2 JP H0433738B2
Authority
JP
Japan
Prior art keywords
raw material
glass raw
carrier gas
flow rate
atmospheric pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27393386A
Other languages
Japanese (ja)
Other versions
JPS63129033A (en
Inventor
Akio Shiomi
Shigeki Endo
Tatsuo Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP27393386A priority Critical patent/JPS63129033A/en
Publication of JPS63129033A publication Critical patent/JPS63129033A/en
Publication of JPH0433738B2 publication Critical patent/JPH0433738B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/85Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
    • C03B2207/86Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid by bubbling a gas through the liquid
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/85Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
    • C03B2207/88Controlling the pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は光フアイバ用母材のガラス原料を所望
の供給量で再現性よく反応容器へ供給しうるガラ
ス原料供給方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for supplying a glass raw material for an optical fiber base material to a reaction vessel in a desired supply amount with good reproducibility.

〈従来の技術〉 光フアイバ用母材の代表的製造方法としては、
内付け法、外付け法及びVAD法(気相軸付け法)
が知られている。従来のこれらの方法において
は、四塩化ケイ素及び四塩化ゲルマニウム、オキ
シ塩化リン、三臭化ホウ素等のドーピング物質を
各原料容器内に充填し、流量制御されたキヤリア
ガス、例えばアルゴンガスを各原料容器内のガラ
ス原料中にバブリングして所望の各原料のガスを
発生させ、該原料蒸気の飽和度を調整した後、こ
れらを反応領域に輸送供給していた。第4図には
従来のガラス原料供給方法を概念的に示してあ
る。同図において、1はキヤリアガス流量制御
器、2はガラス原料容器、3はガラス原料、4は
反応容器であり、ガラス原料容器2内のガラス原
料3はキヤリアガス流量制御器1により制御され
たキヤリアガスのバブリングにより蒸気化され、
反応容器4に供給される。
<Prior art> Typical manufacturing methods for optical fiber base materials include:
Internal attachment method, external attachment method, and VAD method (vapor phase axis attachment method)
It has been known. In these conventional methods, doping substances such as silicon tetrachloride, germanium tetrachloride, phosphorus oxychloride, and boron tribromide are filled into each raw material container, and a carrier gas, such as argon gas, is supplied to each raw material container at a controlled flow rate. The desired gases of each raw material were generated by bubbling them into the glass raw materials in the reactor, and after adjusting the degree of saturation of the raw material vapors, these were transported and supplied to the reaction zone. FIG. 4 conceptually shows a conventional glass raw material supply method. In the figure, 1 is a carrier gas flow rate controller, 2 is a frit container, 3 is a frit, and 4 is a reaction vessel. vaporized by bubbling,
It is supplied to the reaction vessel 4.

このようなガラス原料供給方法における流量m
は次式で表されていた。
The flow rate m in such a glass raw material supply method
was expressed by the following formula.

m=C×M×P(T)/760−P(T)……(1) (1)式中、mはガラス原料流量、Cは飽和度係
数、Mはキヤリアガス流量、Tは容器の温度、
P(T)は温度Tにおけるガラス原料蒸気圧である。
m=C×M×P (T) /760−P (T) ...(1) In formula (1), m is the glass raw material flow rate, C is the saturation coefficient, M is the carrier gas flow rate, and T is the temperature of the container. ,
P (T) is the frit vapor pressure at temperature T.

この蒸気化したガラス原料流量mを一定にする
には(1)式の右辺に示される各値を一定に保てばよ
い。そして、飽和度係数Cを一定にする技術とし
ては、例えば特公昭61−1378号公報に開示されて
いる。この技術によると、同一の液状ガラス原料
を充填した容器を前・後段に区分してバブリング
用キヤリアガス導管により直列に接続し、且つ前
段にある容器の温度を後段にある容器の温度によ
り高温に保持することにより、飽和度係数Cを再
現性よくほぼ1に保つことができる。また、容器
の温度Tは温度制御装置、キヤリアガス流量Mは
例えばマスフローコントローラーによつて再現性
よく一定に保つことができる。
In order to keep the vaporized frit flow rate m constant, it is sufficient to keep each value shown on the right side of equation (1) constant. A technique for keeping the saturation coefficient C constant is disclosed, for example, in Japanese Patent Publication No. 1378/1983. According to this technology, containers filled with the same liquid glass raw material are divided into front and rear stages and connected in series through a bubbling carrier gas conduit, and the temperature of the container at the front stage is maintained at a higher temperature by the temperature of the container at the rear stage. By doing so, the saturation coefficient C can be maintained at approximately 1 with good reproducibility. Further, the temperature T of the container can be kept constant with good reproducibility by a temperature control device, and the carrier gas flow rate M can be kept constant by, for example, a mass flow controller.

〈発明が解決しようとする問題点〉 しかしながら、従来のガラス原料供給方法によ
ると、たとえ、上述したような方法により飽和度
係数C、キヤリアガス流量M及び容器の温度Tを
一定に保つても、やはりガラス原料の流量mは微
妙に変化してしまい、再現性よく、一定値に保つ
ことができなかつた。
<Problems to be solved by the invention> However, according to the conventional glass raw material supply method, even if the saturation coefficient C, the carrier gas flow rate M, and the temperature T of the container are kept constant by the method described above, the problem still remains. The flow rate m of the glass raw material changed slightly and could not be kept at a constant value with good reproducibility.

本発明はこのような事情に鑑み、ガラス原料を
所望の供給量に再現性よく保つことができるガラ
ス原料供給方法を提供することを目的とする。
In view of these circumstances, the present invention aims to provide a method for supplying glass raw materials that can maintain a desired supply amount of glass raw materials with good reproducibility.

〈問題点を解決するための手段〉 前記目的を達成するために、本発明者らは種々
検討を重ねた結果、従来のガラス原料供給方法に
おいては大気圧の変化によりガラス原料流量mが
変化してしまうことを知見した。すなわち、次の
(2)式において大気圧P0がΔP0だけ変化するとガラ
ス原料流量mは(3)式で表されるΔmだけ変化して
しまうことが判明した。
<Means for Solving the Problems> In order to achieve the above object, the present inventors have made various studies and found that in the conventional glass raw material supply method, the glass raw material flow rate m changes due to changes in atmospheric pressure. I found out that this can happen. That is, the following
It has been found that when the atmospheric pressure P 0 changes by ΔP 0 in equation (2), the glass raw material flow rate m changes by Δm expressed by equation (3).

m=C×M×P(T)/P0−P(T)……(2) Δm=C×M×(P(T)/P0−P(T) −P(T)/P0+ΔP−P(T))……(3) よつて、大気圧P0が変動した場合には、この
変動を打ち消すようにキヤリアガス流量M、容器
の温度T及び飽和度係数Cのうち何れか1つ又は
2つ以上を変化させるようにすればよい。
m=C×M×P (T) /P 0 −P (T) ……(2) Δm=C×M×(P (T) /P 0 −P (T) −P (T) /P 0 +ΔP−P (T) )……(3) Therefore, when the atmospheric pressure P 0 fluctuates, any one of the carrier gas flow rate M, the container temperature T, and the saturation coefficient C is adjusted to cancel out this fluctuation. One or more may be changed.

かかる知見に基づく本発明の構成、光フアイバ
用母材の液状ガラス原料を原料容器に充填し、こ
の液状ガラス原料にキヤリアガスをバブリングし
て蒸気化し、蒸気状ガラス原料及びキヤリアガス
の混合物を反応容器に供給するガラス原料供給方
法において、前記原料容器をとりかこむ大気の圧
力を測定し、この大気圧の変動に応じてキヤリア
ガスの流量、蒸気状ガラス原料の蒸気圧及びガラ
ス原料蒸気の飽和度の何れか1つ又は2つ以上を
変化させることにより蒸気状ガラス原料の供給量
を一定にすることを特徴とする。
The structure of the present invention based on this knowledge is to fill a raw material container with a liquid glass raw material for an optical fiber base material, vaporize the liquid glass raw material by bubbling a carrier gas into the liquid glass raw material, and transfer a mixture of the vaporized glass raw material and carrier gas into a reaction vessel. In the glass raw material supply method, the pressure of the atmosphere surrounding the raw material container is measured, and depending on the fluctuation of this atmospheric pressure, one of the flow rate of the carrier gas, the vapor pressure of the vaporized glass raw material, and the degree of saturation of the glass raw material vapor is adjusted. The method is characterized in that the amount of vaporized glass raw material supplied is made constant by changing one or more of the factors.

〈作用〉 大気圧の変動による蒸気状ガラス原料の供給量
の変化を打ち消すようにキヤリアガスの流量・蒸
気状ガラス原料の蒸気圧及びガラス原料蒸気の飽
和度の何れか1つ又は2つ以上を変化させること
により蒸気状ガラス原料の供給量を一定にする。
<Effect> Change any one or more of the flow rate of the carrier gas, the vapor pressure of the vaporous frit, and the degree of saturation of the frit vapor so as to cancel out changes in the supply amount of the vaporous frit due to changes in atmospheric pressure. By doing so, the amount of vaporized glass raw material supplied is kept constant.

〈実施例〉 以下、本発明を実施例を挙げて具体的に説明す
る。
<Example> Hereinafter, the present invention will be specifically described with reference to Examples.

第1図は本実施例を概念的に示す説明図であ
り、同図中、1はキヤリアガス流量制御器、2は
ガラス原料容器、3はガラス原料、4は反応容器
を示す。以上の構成は従来と同様であるが、本実
施例では周囲の大気圧を測定する大気圧センサ5
を設けるとともに、この大気圧センサ5の測定値
に応じてキヤリアガス流量制御器1を補正制御し
てガラス原料流量を一定に保つようにするキヤリ
アガスの補正制御装置6を設けている。さらに詳
言すると、補正制御装置6は、大気圧センサ5の
測定値の変化量より上述の(3)式にしたがいガラス
原料流量の変化量を計算し、この変化量を補う量
だけキヤリアガス流量を増加もしくは減少する制
御を行つている。これによりガラス原料流量は、
大気圧が変化しても常に一定になるように制御さ
れ、再現性よく光フアイバ用ガラス母材を得るこ
とができる。
FIG. 1 is an explanatory diagram conceptually showing this embodiment, in which 1 is a carrier gas flow rate controller, 2 is a frit container, 3 is a frit material, and 4 is a reaction container. The above configuration is the same as the conventional one, but in this embodiment, the atmospheric pressure sensor 5 that measures the surrounding atmospheric pressure
In addition, a carrier gas correction control device 6 is provided which corrects and controls the carrier gas flow rate controller 1 according to the measured value of the atmospheric pressure sensor 5 to keep the glass raw material flow rate constant. More specifically, the correction control device 6 calculates the amount of change in the glass raw material flow rate according to the above equation (3) from the amount of change in the measured value of the atmospheric pressure sensor 5, and adjusts the carrier gas flow rate by an amount that compensates for this amount of change. It is controlled to increase or decrease. As a result, the glass raw material flow rate is
It is controlled so that it is always constant even if the atmospheric pressure changes, and a glass preform for optical fiber can be obtained with good reproducibility.

次に実験例を説明する。 Next, an experimental example will be explained.

上述の実施例において、キヤリアガス制御装置
1としてマスフローコントローラーを用い、キヤ
リアガスとしてアルゴンガスを毎分200c.c.流し、
36.0℃に保つた反応容器4に輸送されたガラス原
料3である四塩化ケイ素の流量を測定した。な
お、大気圧を740mmHgから760mmHgに変化させた
ときの結果を第2図に示す。
In the above embodiment, a mass flow controller is used as the carrier gas control device 1, and argon gas is flowed at 200 c.c./min as the carrier gas.
The flow rate of silicon tetrachloride, which is the glass raw material 3, transported to the reaction vessel 4 maintained at 36.0°C was measured. Furthermore, Fig. 2 shows the results when the atmospheric pressure was changed from 740 mmHg to 760 mmHg.

比較のため、第4図に示す従来の方法によつて
上述の条件と同様な実験を行い、この結果を第5
図に示す。
For comparison, we conducted an experiment similar to the above conditions using the conventional method shown in Figure 4, and the results were
As shown in the figure.

第2図及び第5図に示すように、従来の方法で
は大気圧が変化するとガラス原料流量が変化して
しまうが、本発明方法によれば、大気圧が変化し
ても、ガラス原料流量が一定に保たれることが確
認された。
As shown in FIGS. 2 and 5, in the conventional method, the frit flow rate changes when the atmospheric pressure changes, but according to the method of the present invention, even if the atmospheric pressure changes, the frit flow rate changes. It was confirmed that it remained constant.

さらに、上記実施例の方法により、実際にグレ
イテツドインデツクス型光フアイバを100本製造
し、その1.3μmにおける伝送帯域について調べた
ところ、第3図に示す結果を得た。
Furthermore, 100 graded index type optical fibers were actually manufactured using the method of the above embodiment, and the transmission band at 1.3 μm was investigated, and the results shown in FIG. 3 were obtained.

また、比較のため、第4図に示す従来の方法に
より同様にグレイテツドインデツクス型光ファイ
バを100本製造し、その1.3μmにおける伝送帯域
について調べたところ、第6図に示す結果を得
た。
For comparison, 100 graded index optical fibers were similarly manufactured using the conventional method shown in Figure 4, and the transmission band at 1.3 μm was investigated, and the results shown in Figure 6 were obtained. Ta.

現在の技術水準では大気圧の変動以外の要因も
伝送帯域に影響するので、まつたく同質の光フア
イバを製造することは不可能であるが、第3図及
び第6図に示す結果から、本発明方法を用いるこ
とにより伝送帯域値のちらばり具合が低減できる
ことが明らかである。
With the current state of technology, factors other than atmospheric pressure fluctuations also affect the transmission band, so it is impossible to manufacture optical fibers of exactly the same quality. It is clear that the dispersion of transmission band values can be reduced by using the inventive method.

なお、上記実施例においては大気圧の変動に応
じてキヤリアガスの流量を変化させるようにして
いるが、この代りにガラス原料の蒸気圧(原料容
器の温度で制御する)あるいはガラス原料蒸気の
飽和度、もしくはこれらを2つ以上同時に変化さ
せることによりガラス原料流量を一定に保つこと
ができる。
Note that in the above embodiment, the flow rate of the carrier gas is changed according to fluctuations in atmospheric pressure, but instead of this, the vapor pressure of the glass raw material (controlled by the temperature of the raw material container) or the saturation degree of the glass raw material vapor can be changed. Or, by changing two or more of these simultaneously, the glass raw material flow rate can be kept constant.

〈発明の効果〉 以上、実施例とともに具体的に説明したよう
に、本発明にかかるガラス原料供給方法によれ
ば、ガラス原料が大気圧の変動に影響されずに一
定流量で供給されるので、再現性よく同質の光フ
アイバ母材を得ることができる。
<Effects of the Invention> As specifically explained above in conjunction with the examples, according to the glass raw material supply method according to the present invention, the glass raw material is supplied at a constant flow rate without being affected by fluctuations in atmospheric pressure. A homogeneous optical fiber base material can be obtained with good reproducibility.

また、本発明方法は、光フアイバ母材の製造の
みならず、種々の気相状態で堆積成長させる結晶
育成、材料製造分野における原料供給に応用して
も同様の理由から有用である。
Further, the method of the present invention is useful not only for the production of optical fiber base materials, but also for crystal growth in various vapor phase states and for supplying raw materials in the field of material production for the same reason.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の実施例にかかり、第
1図はその構成を概念的に示す説明図、第2図は
大気圧の変動に対するガラス原料の輸送量の変化
を示すグラフ、第3図は伝送帯域に対するフアイ
バ数を示すヒストグラム、第4図〜第6図は従来
技術にかかり、第4図はその構成を示す説明図、
第5図は大気圧の変動に対するガラス原料の輸送
量の変化を示すグラフ、第6図は伝送帯域に対す
るフアイバ数を示すヒストグラムである。 図面中、1はキヤリアガス制御装置、2はガラ
ス原料容器、3はガラス原料、4は反応容器、5
は大気圧センサ、6はキヤリアガス流量補正装置
である。
1 to 3 relate to an embodiment of the present invention, FIG. 1 is an explanatory diagram conceptually showing its configuration, and FIG. 2 is a graph showing changes in the transport amount of glass raw materials with respect to fluctuations in atmospheric pressure. Fig. 3 is a histogram showing the number of fibers with respect to the transmission band, Figs. 4 to 6 relate to the conventional technology, and Fig. 4 is an explanatory diagram showing its configuration.
FIG. 5 is a graph showing changes in the transport amount of glass raw material with respect to changes in atmospheric pressure, and FIG. 6 is a histogram showing the number of fibers with respect to the transmission band. In the drawing, 1 is a carrier gas control device, 2 is a frit container, 3 is a frit material, 4 is a reaction container, and 5
is an atmospheric pressure sensor, and 6 is a carrier gas flow rate correction device.

Claims (1)

【特許請求の範囲】[Claims] 1 光フアイバ用母材の液状ガラス原料を原料容
器に充填し、この液状ガラス原料にキヤリアガス
をバブリングして蒸気化し、蒸気状ガラス原料及
びキヤリアガスの混合物を反応容器に供給するガ
ラス原料供給方法において、前記原料容器をとり
かこむ大気の圧力を測定し、この大気圧の変動に
応じてキヤリアガスの流量、蒸気状ガラス原料の
蒸気圧及びガラス原料蒸気の飽和度の何れか1つ
又は2つ以上を変化させることにより蒸気状ガラ
ス原料の供給量を一定にすることを特徴とするガ
ラス原料供給方法。
1. A glass raw material supply method in which a liquid glass raw material as a base material for optical fiber is filled into a raw material container, a carrier gas is bubbled into the liquid glass raw material to vaporize it, and a mixture of the vaporized glass raw material and the carrier gas is supplied to a reaction vessel, Measuring the pressure of the atmosphere surrounding the raw material container, and changing any one or more of the flow rate of the carrier gas, the vapor pressure of the vaporized glass material, and the saturation degree of the glass material vapor according to fluctuations in the atmospheric pressure. A glass raw material supply method characterized in that the amount of vaporized glass raw material supplied is kept constant by
JP27393386A 1986-11-19 1986-11-19 Process for feeding raw material for glass Granted JPS63129033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27393386A JPS63129033A (en) 1986-11-19 1986-11-19 Process for feeding raw material for glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27393386A JPS63129033A (en) 1986-11-19 1986-11-19 Process for feeding raw material for glass

Publications (2)

Publication Number Publication Date
JPS63129033A JPS63129033A (en) 1988-06-01
JPH0433738B2 true JPH0433738B2 (en) 1992-06-03

Family

ID=17534594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27393386A Granted JPS63129033A (en) 1986-11-19 1986-11-19 Process for feeding raw material for glass

Country Status (1)

Country Link
JP (1) JPS63129033A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226849A (en) * 1988-07-15 1990-01-29 Shin Etsu Chem Co Ltd Production of optical fiber bace material
JPH0240440U (en) * 1988-09-08 1990-03-19
KR20180048667A (en) 2015-09-02 2018-05-10 톤제트 리미티드 Operation method of inkjet printhead

Also Published As

Publication number Publication date
JPS63129033A (en) 1988-06-01

Similar Documents

Publication Publication Date Title
US5431733A (en) Low vapor-pressure material feeding apparatus
JPH0433738B2 (en)
EP0088374A1 (en) Method of and device for fabricating optical-fibre preforms
JP2554356B2 (en) Glass raw material supply method and glass raw material supply device
US20200063257A1 (en) Apparatus and Method of Depositing a Layer at Atmospheric Pressure
US6326325B1 (en) Method for fabricating silicon oxynitride
JP4277574B2 (en) Gas material supply method and apparatus, and glass fine particle deposit body and glass material manufacturing method using the same
JP2517052B2 (en) Graded Index Optical Fiber-Manufacturing Method of Base Material
JP2003059836A (en) Method and apparatus of supplying gas for chemical vapor deposition unit
JP3157693B2 (en) Method for producing silica glass-based deposit
JP3375370B2 (en) Raw material supply device
JPH085690B2 (en) Raw material supply method and device
GB1229900A (en)
JPH0226849A (en) Production of optical fiber bace material
JPH02164734A (en) Production of quartz glass soot
JPH0657615B2 (en) Method for manufacturing optical fiber preform
JPH0457640B2 (en)
JP3192571B2 (en) Method for producing silica-based glass
JPS60245214A (en) Vapor growth of compound semiconductor crystal
AU731687B2 (en) Method for fabricating silicon oxynitride
JPS61229321A (en) Vapor growth method
JPS6390820A (en) Vapor growth method for iii-v compound semiconductor
JPS61247634A (en) Method for stabilizing flame in vad process
JPS6252199A (en) Production of mixed crystal of semiconductor
TOMOO et al. Crystal growth of ingaasp on inp

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term