JPH0226849A - Production of optical fiber bace material - Google Patents

Production of optical fiber bace material

Info

Publication number
JPH0226849A
JPH0226849A JP17629488A JP17629488A JPH0226849A JP H0226849 A JPH0226849 A JP H0226849A JP 17629488 A JP17629488 A JP 17629488A JP 17629488 A JP17629488 A JP 17629488A JP H0226849 A JPH0226849 A JP H0226849A
Authority
JP
Japan
Prior art keywords
base material
optical fiber
glass
amount
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17629488A
Other languages
Japanese (ja)
Inventor
Koichi Shiomoto
弘一 塩本
Kiyotaka Oki
大木 清孝
Kazuo Kamiya
和雄 神屋
Kiyoshi Yokogawa
清 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP17629488A priority Critical patent/JPH0226849A/en
Publication of JPH0226849A publication Critical patent/JPH0226849A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To stably produce the optical fiber of a graded index type having an excellent transmission characteristic by growing a porous glass material by using gaseous glass raw materials which consist of silicon tetrachloride and dopant and are corrected in change rate. CONSTITUTION:The gaseous glass raw materials which consist of the silicon tetrachloride and the dopant and are regulated in quantity are introduced to an oxyhydrogen flame burner and is subjected to a flame hydrolysis. The formed fine glass particles are deposited on a rotating base material. This base material is then pulled up, by which a porous glass body is grown thereon in the axial direction thereof. The quantity of the gaseous raw materials regulated in the method of producing the optical fiber base material by nitrifying the above- mentioned porous glass material to transparent glass is specified to the value corrected of the change rate by the atm. pressure. The correction of the quantity of the gaseous raw materials to be supplied may be executed by determining the change in the evaporation rate of the silicon tetrachloride and germanium tetrachloride as the dopant with the fluctuation in, for example, the atm. pressure, from the figure, then by determining the correction rate of the carrier gas to correct this change rate from the figure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光ファイバー母材の製造方法、特には伝送特性
のすぐれたグレーデツトインデックス型の光ファイバー
を連続的に安定して製造する方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing an optical fiber base material, and particularly to a method for continuously and stably manufacturing a graded index type optical fiber with excellent transmission characteristics. It is.

(従来の技術) 光ファイバー母材を、四塩化けい素などのガラス材料中
にキャリヤーガスをバブリングしてこれをガス化し、こ
のガスをバーナーに導入し酸水素火炎で火炎加水分解反
応させ、生成するガラス微粒子を回転している出発基材
上に堆積させて多孔質ガラス母材をその軸方向に成長さ
せたのち、これを加熱溶融して透明ガラス化することに
よって光ファイバーが得られることはすでによく知られ
ているところである。
(Prior art) An optical fiber base material is produced by bubbling carrier gas into a glass material such as silicon tetrachloride to gasify it, and introducing this gas into a burner to cause a flame hydrolysis reaction with an oxyhydrogen flame. It is already well known that optical fibers can be obtained by depositing glass particles on a rotating starting base material to grow a porous glass base material in the axial direction, and then heating and melting this material to make it transparent glass. It is a known place.

しかして、近年グレーデツトインデックス型光ファイバ
ーについてはコア内部の屈折率分布形状を最適化すれば
その伝送帯域特性を理論値に達するほどの値とすること
ができるようになってきているが、長尺ファイバーにお
いては光ファイバー母材製造中の変動によって長手方向
の伝送帯域が不均一になることがしばしばあり、また長
期間にわたって伝送帯域のすぐれた光ファイバー母材を
安定に製造することができず、低特性品が多発するとい
う不利がある。
However, in recent years, it has become possible to increase the transmission band characteristics of graded-index optical fibers to values that reach theoretical values by optimizing the refractive index distribution shape inside the core. In long fibers, the transmission band in the longitudinal direction often becomes uneven due to fluctuations during the manufacturing of the optical fiber base material, and it is not possible to stably manufacture an optical fiber base material with an excellent transmission band over a long period of time. There is a disadvantage that special products are produced frequently.

このため、光ファイバー母材の屈折率分布をその長手方
向に均一とするために、原料ガスの供給量を制御する方
法が種々提案されている(特開昭56−149335号
、特開昭59−45936号、特開昭59−13733
1号、特開昭60−81035号各公報参照)。しかし
、原料ガスの供給量を正確に制御することは困難である
し、四塩化けい素やドーパントの量に微少な変化がある
とドーパントの比率が変化して均一な光ファイバーを得
ることができなくなるという欠点がある6(発明の構成
) 本発明はこのような不利を解決した光ファイバー母材の
製造方法に関するものであり、これは四塩化けい素とド
ーパントよりなる規定された量の気体状ガラス原料を酸
水素火炎バーナーに導入して火炎加水分解させ、生成す
るガラス微粒子を回転している基材上に堆積させ、この
基材を引き上げることによってその軸方向に多孔質ガラ
ス体を成長させ、この多孔質ガラス母材を透明ガラス化
して光ファイバー母材を製造する方法において、制御さ
れた気体状ガラス原料の量が大気圧による変化量を補正
した値とされることを特徴とするものである。
Therefore, in order to make the refractive index distribution of the optical fiber base material uniform in its longitudinal direction, various methods have been proposed for controlling the supply amount of raw material gas (Japanese Patent Laid-Open Nos. 149335-1982 and 1983-1999). No. 45936, JP 59-13733
No. 1 and Japanese Patent Application Laid-Open No. 60-81035). However, it is difficult to accurately control the amount of raw material gas supplied, and if there is a slight change in the amount of silicon tetrachloride or dopant, the dopant ratio will change, making it impossible to obtain a uniform optical fiber. 6 (Structure of the Invention) The present invention relates to a method for producing an optical fiber preform that solves the above disadvantages, and is a method for producing an optical fiber preform by using a predetermined amount of a gaseous glass raw material consisting of silicon tetrachloride and a dopant. is introduced into an oxyhydrogen flame burner for flame hydrolysis, the resulting glass fine particles are deposited on a rotating base material, and this base material is pulled up to grow a porous glass body in its axial direction. A method for manufacturing an optical fiber preform by converting a porous glass preform into transparent vitrification, characterized in that the controlled amount of gaseous glass raw material is set to a value corrected for the amount of change due to atmospheric pressure.

これを説明すると、本発明者らは伝送特性のすぐれたグ
レーデツトインデックス型の光ファイバーを連続的に安
定して製造する方法について種々検討した結果、伝送特
性のすぐれたグレーデシ1〜インデツクス型の光ファイ
バーを得るためには構造、形状の均一な多孔質ガラス母
材を得ることが必要であり、このためには公知の気相軸
付は法(VAD法)においてガラス母材を成長させる基
材上に供給される気体状ガラス原料の供給量を正確に制
御する方法を見出し、これには規定された量の気体状ガ
ラス原料をバブラ一方法で酸水素火炎バーナーに導入し
て火炎加水分解させる際に、この気体状ガラス原料の量
を大気圧による変化量を補正した値とすればこれを容易
に行ない得るということを確認して本発明を完成させた
To explain this, the inventors of the present invention have conducted various studies on methods for continuously and stably manufacturing grade index type optical fibers with excellent transmission characteristics. In order to obtain a porous glass base material with a uniform structure and shape, it is necessary to obtain a porous glass base material with a uniform structure and shape. We have discovered a method to precisely control the amount of gaseous frit supplied to Furthermore, the present invention was completed by confirming that this can be easily achieved by setting the amount of the gaseous glass raw material to a value that corrects the amount of change due to atmospheric pressure.

以下これをさらに詳細に説明する。This will be explained in more detail below.

本発明の方法の実施は基本的には公知の気相軸付は法(
VAD法)によって行なえばよい、したがって、これは
第1図に示したように四塩化けい未供給用バブラー1と
ドーパント供給バブラー2にガラス原料キャリヤーガス
3をマスフローコントローラー4,5を通して送り込む
こ・とによって所定の四塩化けい素とこれに添加すべき
計算量のドーパントとをガス化させてこれらを混合し、
これを燃焼ガス供給管6から送られる計算量の酸素ガス
、水素ガスと共に酸水素火炎バーナー7に送り、この火
炎を排気口8を有する反応容器9に収納した石英、炭素
または炭化けい素などのような耐熱性の出発基材10に
あて\こ\に多孔質ガラスを堆積させ、これを回転引上
げ装置11を用いて垂直方向に引上ることによって多孔
質母材12を形成させればよい。
The method of the invention can basically be carried out using the known gas phase shafting method (
Therefore, this can be done by feeding the frit carrier gas 3 to the silicon tetrachloride unsupplied bubbler 1 and dopant supply bubbler 2 through mass flow controllers 4 and 5 as shown in FIG. A predetermined amount of silicon tetrachloride and the calculated amount of dopant to be added to it are gasified and mixed,
This is sent to an oxyhydrogen flame burner 7 along with calculated amounts of oxygen gas and hydrogen gas sent from a combustion gas supply pipe 6, and this flame is sent to a reaction vessel 9 having an exhaust port 8 made of quartz, carbon, silicon carbide, etc. Porous glass may be deposited on a heat-resistant starting base material 10 such as the above, and the porous glass may be pulled up vertically using a rotary pulling device 11 to form a porous base material 12.

本発明の方法はこのようにして成長させられる多孔質母
材12の屈折率分布を均一としてこれから作られる光フ
ァイバーの伝送帯域特性を均一のものとするというもの
である。すなわち、本発明の方法では第1図に示したよ
うに予じめ設定された原料ガス量が記憶されているマス
フローコントローラー制御装置16に気圧計18が設置
されており、気圧計18よりの大気圧の変動値がマスフ
ローコントローラー制御袋[16にフィードバックされ
るので、これにもとづいて原料ガスの供給量を補正すれ
ばよい。この原料ガス供給量の補正は例えば大気圧の変
動に伴う四塩化けい素およびドーパントとしての四塩化
ゲルマニウムの蒸発量の変化を第2図によって求め、つ
いでこの変化量を補正するためのキャリアガスの補正流
量を第3図によって求めればよい。しかし、この第2図
の気圧変動による原料ガスの蒸発量の変化、第3図の気
圧変動に対して原料ガス供給量を一定にするためのキャ
リアガス補正量の関係をマスフローコントローラー制御
装置16に記憶させておけば、このマスフローコントロ
ーラー制御装置16の作用によって大気圧の変動に対し
てマスフローコントローラー4,5を制御し、キャリア
ガスを制御して原料ガスの蒸発量を正確に補正すること
ができる。
The method of the present invention is to make the refractive index distribution of the porous preform 12 grown in this manner uniform, thereby making the transmission band characteristics of the optical fiber produced from it uniform. That is, in the method of the present invention, as shown in FIG. Since the fluctuation value of the atmospheric pressure is fed back to the mass flow controller control bag [16], the supply amount of the raw material gas can be corrected based on this. To correct this raw material gas supply amount, for example, the changes in the evaporation amount of silicon tetrachloride and germanium tetrachloride as a dopant due to fluctuations in atmospheric pressure are determined from Fig. 2, and then the amount of carrier gas is adjusted to correct the amount of change. The corrected flow rate may be determined using FIG. However, the relationship between the change in the amount of evaporation of the raw material gas due to the atmospheric pressure fluctuation shown in FIG. 2 and the carrier gas correction amount to keep the raw material gas supply amount constant in response to the atmospheric pressure fluctuation shown in FIG. If stored, the mass flow controller control device 16 can control the mass flow controllers 4 and 5 in response to changes in atmospheric pressure, control the carrier gas, and accurately correct the amount of evaporation of the raw material gas. .

なお、この場合、原料ガスとして四塩化けい素とドーパ
ントとの比率を一定になるように制御することが必要と
されるが、上記におけるキャリアガス量の補正のかわり
に、原料バブラーの温度を制御して大気圧による原料ガ
スの蒸発量の変化を補正してもよく、いずれの場合にも
同様の効果が与えられ、これによれば屈折率分布が均一
で形状も均一とされた多孔質母材を容易に得ることがで
きるという有利性が与えられる。
In this case, it is necessary to control the ratio of silicon tetrachloride as the raw material gas and the dopant to be constant, but instead of correcting the amount of carrier gas as described above, it is necessary to control the temperature of the raw material bubbler. The change in the amount of evaporation of the raw material gas due to atmospheric pressure may be corrected by The advantage is that the material can be easily obtained.

なお、この本発明の方法によって例えば外径80III
m、長さ800■醜のグレーデツトインデックス型光フ
ァイバー母材を製造する場合には、上記した方法によっ
て多孔質母材の引上げ速度を51゜5〜51.7mm/
時の範囲で、また四塩化けい素キャリアガス量を0.2
7〜0.31fl/分、ドーパントキャリアガス量を0
.20〜0.22Ω/分の範囲で制御すればよいが、こ
れによれば外径79〜81am、長さ800!Illの
グレーデッドインデックス型の光ファイバー母材をその
伝送帯域が長さ方向で約1,200±150MH2−一
であるものとして安定に得ることができ、例えば2ケ月
間の連続運転で伝送帯域の低いものは一本もなく、これ
を50本も安定に得ることができるという有利性かえら
れる。
In addition, by the method of the present invention, for example, an outer diameter of 80III
m, length 800 ■ When producing an ugly graded index type optical fiber base material, the pulling speed of the porous base material is set to 51°5 to 51.7 mm/min by the method described above.
and the amount of silicon tetrachloride carrier gas is 0.2
7 to 0.31 fl/min, dopant carrier gas amount to 0
.. It should be controlled within the range of 20 to 0.22 Ω/min, but according to this, the outer diameter is 79 to 81 am and the length is 800 ohms! It is possible to stably obtain a graded index type optical fiber base material with a transmission band of about 1,200±150 MH2-1 in the length direction, for example, by continuous operation for two months, The advantage is that you can stably obtain as many as 50 of these, instead of having a single one.

つぎに本発明方法の実施例を示す。Next, examples of the method of the present invention will be shown.

実施例 第1図に示したような装置を使用し、内容積1゜312
の反応容器中に石英ガラス製の直径16IIII、長さ
200mmの出発基材を回転引上げ装置に懸吊しておき
、これに酸水素火炎バーナーから5iC1,ガス0.3
8Q1分、ドーパントとしてのG e C1,ガス0.
036 A /分、酸素ガス10゜001分、水素ガス
6.8Q1分からなる混合ガスを送入してこの酸水素火
炎を出発基材に当てNこ\に多孔質ガラスを堆積させ、
出発基材を51゜5mm/時の一定速度で引上げて多孔
質ガラス母材を作った。
Example Using the apparatus shown in Fig. 1, the internal volume was 1°312
A starting substrate made of quartz glass with a diameter of 16III and a length of 200 mm was suspended in a rotating lifting device in a reaction vessel, and 5iC1 and gas of 0.3
8Q1 min, G e C1 as dopant, gas 0.
036 A/min, a mixed gas consisting of 10°001 min of oxygen gas and 6.8 Q1 min of hydrogen gas was introduced, and the oxyhydrogen flame was applied to the starting substrate to deposit porous glass on the N plate.
The starting substrate was pulled up at a constant speed of 51.5 mm/hour to produce a porous glass preform.

この際、テレビジョンデイスプレィ13中で多孔質母材
12の底部が基線17に接するようにテレビジョンカメ
ラで監視して、引上げ速度をコントロールすると共に、
S i C14キヤリアガス量を0.27〜0.316
1分、GeC1,キャリアガス量を0.20〜0.22
Q1分の各規定量の範囲内でマスフローコントローラー
4,511いて制御するようにして2ケ月間連続運転し
たところ、外径80mm、長さ800mmのグレーデッ
ドインデックス型の光ファイバー母材50本が得られた
が、これらはいずれもその伝送帯域(1,3Im)が1
゜050〜l、790MHz4mで安定しており、伝送
帯域の低いものはなく、これらは第1表に示したとおり
の結果を示した。
At this time, the bottom of the porous base material 12 is monitored with a television camera in the television display 13 so as to be in contact with the base line 17, and the pulling speed is controlled.
S i C14 carrier gas amount 0.27 to 0.316
1 minute, GeC1, carrier gas amount 0.20-0.22
When the mass flow controller 4,511 was used to control the amount within each specified amount for Q1 minutes and the system was operated continuously for two months, 50 graded index type optical fiber base materials with an outer diameter of 80 mm and a length of 800 mm were obtained. However, the transmission band (1,3Im) of these is 1
It was stable at 050~1, 790MHz, 4m, and there were no low transmission bands, and these showed the results shown in Table 1.

しかし、比較のために第1図において気圧計18’に除
いた装置を用いたほかは上記と同様に処理して光ファイ
バー母材を作ったところ、この場合には第1表に併記し
たとおりの結果が得られ、伝送帯域が低く、バラツキの
大きいものであった。
However, for comparison, an optical fiber base material was prepared in the same manner as above except that the device other than the barometer 18' in Fig. 1 was used. The results obtained showed that the transmission band was low and had large variations.

第  1  表Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法による光ファイバー母材の製造方
法に使用される製造装置の縦断面図を示したものであり
、第2図は気圧変動による蒸発量の変化、第3図は気圧
変動に対して原料ガスを一定にするためのキャリアガス
の補正量を示すグラフである。 1.2・・・原料ガス供給用バブラ、 3・・・キャリアガス供給口、 4.5・・・マスフローコントローラー6・・・燃焼ガ
ス、 7・・・バーナー、 8・・・排気口、 9・・・反応
容器、10・・・出発基材、 11・・・回転引上装置
、12・・・多孔質母材。 13・・・テレビジョンデイスプレィ、14・・・テレ
ビジョンカメラ、 15・・・引上制御装置、
Fig. 1 shows a longitudinal cross-sectional view of the manufacturing equipment used in the method of manufacturing an optical fiber preform according to the method of the present invention, Fig. 2 shows changes in evaporation amount due to atmospheric pressure fluctuations, and Fig. 3 shows changes in the amount of evaporation due to atmospheric pressure fluctuations. 3 is a graph showing a correction amount of carrier gas for making the raw material gas constant with respect to FIG. 1.2... Bubbler for raw material gas supply, 3... Carrier gas supply port, 4.5... Mass flow controller 6... Combustion gas, 7... Burner, 8... Exhaust port, 9 ... Reaction container, 10... Starting base material, 11... Rotary pulling device, 12... Porous base material. 13... Television display, 14... Television camera, 15... Lifting control device,

Claims (1)

【特許請求の範囲】 1、四塩化けい素とドーパントよりなる規定された量の
気体状ガラス原料を酸水素火炎バーナーに導入して火炎
加水分解させ、生成するガラス微粒子を回転している基
材上に堆積させ、この基材を引上げることによってその
軸方向に多孔質ガラス体を成長させ、この多孔質ガラス
母材を透明ガラス化して光ファイバー母材を製造する方
法において、規定された気体状ガラス原料の量が大気圧
による変化量を補正した値とされることを特徴とする光
ファイバー母材の製造方法。 2、気圧計の変化量がマスフローコントローラー、マス
フローコントローラー制御装置よりなる系にフィードバ
ックされ、気体状ガラス原料の量が一定に制御される請
求項1に記載の光ファイバー母材の製造方法。
[Scope of Claims] 1. A base material in which a specified amount of gaseous glass raw material consisting of silicon tetrachloride and a dopant is introduced into an oxyhydrogen flame burner and subjected to flame hydrolysis, and the resulting glass particles are rotated. In this method, a porous glass body is grown in the axial direction by pulling up the base material, and the porous glass base material is made into transparent glass to produce an optical fiber base material. A method for producing an optical fiber base material, characterized in that the amount of glass raw material is set to a value that corrects the amount of change due to atmospheric pressure. 2. The method for manufacturing an optical fiber preform according to claim 1, wherein the amount of change in the barometer is fed back to a system comprising a mass flow controller and a mass flow controller control device to control the amount of gaseous glass raw material to be constant.
JP17629488A 1988-07-15 1988-07-15 Production of optical fiber bace material Pending JPH0226849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17629488A JPH0226849A (en) 1988-07-15 1988-07-15 Production of optical fiber bace material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17629488A JPH0226849A (en) 1988-07-15 1988-07-15 Production of optical fiber bace material

Publications (1)

Publication Number Publication Date
JPH0226849A true JPH0226849A (en) 1990-01-29

Family

ID=16011072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17629488A Pending JPH0226849A (en) 1988-07-15 1988-07-15 Production of optical fiber bace material

Country Status (1)

Country Link
JP (1) JPH0226849A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129033A (en) * 1986-11-19 1988-06-01 Sumitomo Electric Ind Ltd Process for feeding raw material for glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129033A (en) * 1986-11-19 1988-06-01 Sumitomo Electric Ind Ltd Process for feeding raw material for glass

Similar Documents

Publication Publication Date Title
JPS64332B2 (en)
JP2517052B2 (en) Graded Index Optical Fiber-Manufacturing Method of Base Material
JPH0226849A (en) Production of optical fiber bace material
US4781740A (en) Method for producing glass preform for optical fiber
JP3816268B2 (en) Method for producing porous glass base material
JPH0525818B2 (en)
JP3157693B2 (en) Method for producing silica glass-based deposit
JPH10330129A (en) Production of porous glass body for optical fiber
JP3078590B2 (en) Manufacturing method of synthetic quartz glass
JPH03242341A (en) Production of porous glass preform for single-mode optical fiber
JPS63129033A (en) Process for feeding raw material for glass
JP3741832B2 (en) Dispersion shifted fiber glass preform manufacturing method
JP3758598B2 (en) Method and apparatus for manufacturing porous glass base material
JPH02164734A (en) Production of quartz glass soot
JPH0383830A (en) Optical fiber base material and preparation its
JPS6168339A (en) Production of parent material for optical fiber
JPS62162638A (en) Production of preform for optical fiber
JPH07187698A (en) Production of preform for optical fiber
JPH05319849A (en) Production of silica porous preform
JPS6259063B2 (en)
JPS6210936B2 (en)
JP3953855B2 (en) Method for producing porous base material
JPS5925742B2 (en) Method and device for manufacturing porous base material for optical fiber
JP2001199730A (en) Method for producing porous glass base material, and apparatus therefor
JPH0829957B2 (en) High NA step index type optical fiber preform manufacturing method