JPH04336B2 - - Google Patents

Info

Publication number
JPH04336B2
JPH04336B2 JP58045062A JP4506283A JPH04336B2 JP H04336 B2 JPH04336 B2 JP H04336B2 JP 58045062 A JP58045062 A JP 58045062A JP 4506283 A JP4506283 A JP 4506283A JP H04336 B2 JPH04336 B2 JP H04336B2
Authority
JP
Japan
Prior art keywords
lens
electron beam
objective lens
sample
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58045062A
Other languages
Japanese (ja)
Other versions
JPS59170753A (en
Inventor
Takeshi Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP58045062A priority Critical patent/JPS59170753A/en
Publication of JPS59170753A publication Critical patent/JPS59170753A/en
Publication of JPH04336B2 publication Critical patent/JPH04336B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/295Electron or ion diffraction tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子線回折パターンを観察するための
電子線回折装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electron diffraction apparatus for observing electron diffraction patterns.

[従来技術] 第1図は、電子線回折パターンを観察するため
の従来の電子線回折装置を説明するためのもの
で、図中、1は電子銃、2,3は各々第1,第2
の収束レンズである。4a,4bは対物レンズ4
の前方及び後方磁界レンズであり、これらのレン
ズ4a,4bの間に試料5が配置されている。6
は試料5を透過した電子線のうち光軸Cから大き
く外れた電子線をカツトするための筒状部であ
り、この筒状部6の中心に制限視野観察をする際
には制限視野絞り(図示せず)が挿入される。こ
の筒状部6の後段には中間レンズ及び投影レンズ
からなるレンズ系7が配置されており、更にレン
ズ系7の後段には螢光板8が配置されている。
[Prior Art] Fig. 1 is for explaining a conventional electron diffraction apparatus for observing an electron diffraction pattern. In the figure, 1 is an electron gun, and 2 and 3 are first and second
It is a converging lens. 4a and 4b are objective lenses 4
front and rear magnetic field lenses, and a sample 5 is placed between these lenses 4a and 4b. 6
is a cylindrical part for cutting off electron beams that are far away from the optical axis C out of the electron beams that have passed through the sample 5. When performing selected area observation at the center of this cylindrical part 6, a selected area diaphragm ( (not shown) is inserted. A lens system 7 consisting of an intermediate lens and a projection lens is arranged at the rear of the cylindrical portion 6, and a fluorescent plate 8 is arranged at the rear of the lens system 7.

さて、このような装置を用いて、第1,第2の
収束レンズ2,3及び前方磁界レンズ4aによ
り、電子銃1の像を試料5上に結像させるように
して入射せしめ、その結果試料5において回折さ
れた電子線を後方磁界レンズ4bによつてAの位
置に結像させ、更に前記中間レンズの物面位置を
このAの位置に一致せしめ、最終的に投影レンズ
によつてAの位置にできた回折像を螢光板8上に
投影すれば、第2図に示すような電子線回折パタ
ーンが得られる。このような回折パターンを観察
する場合に、同図においてイ,ロ等で示す回折ス
ポツトの中の模様を観察したい場合がある。この
ような場合に模様を容易に観察するため、スポツ
トとスポツトとが重なり合わない範囲で、スポツ
トをできるだけ大きく螢光板8に投影することが
望まれる。スポツトの大きさを変化させるには、
図中2αで示された収束角を変化させれば良い。
この際、スポツトとスポツトの間隔は試料の種類
と、どの結晶面に基づく回折像であるかによつて
種々異なるため、この収束角2αの調整は連続的
に調整できることが必要である。従つて、従来前
記収束角2αの調整は試料5の光軸方向の位置、
即ちz座標をずらすことによつて行なつていた。
そのため、試料のz座標はユーセントリツクゴニ
オメータにおける標準z位置からずれてしまう。
ところで、ユーセントリツクゴニオメータは試料
が標準のz位置に有る場合のみ、試料の傾斜角を
変化させても、観察視野を同一に保持できるだけ
であるため、上述したように試料が標準z位置か
らずれてしまうと、試料を傾斜した際に試料への
電子線照射位置が移動してしまう。そのため、結
晶完全である領域を最初に電子線照射領域として
設定しても、その照射領域が維持できなくなり所
望の回折像の観察ができなくなる。
Now, using such a device, the image of the electron gun 1 is formed onto the sample 5 by the first and second converging lenses 2 and 3 and the front magnetic field lens 4a, and as a result, the image of the electron gun 1 is made incident on the sample. The electron beam diffracted at step 5 is imaged at the position A by the backward magnetic field lens 4b, and the object plane position of the intermediate lens is made to coincide with the position A, and finally the image at the position A is formed by the projection lens. If the diffraction image formed at the position is projected onto the fluorescent plate 8, an electron beam diffraction pattern as shown in FIG. 2 will be obtained. When observing such a diffraction pattern, there are cases where it is desired to observe the patterns within the diffraction spots indicated by A, B, etc. in the figure. In order to easily observe the pattern in such a case, it is desirable to project the spots onto the fluorescent plate 8 as large as possible without overlapping the spots. To change the size of the spot,
It is sufficient to change the convergence angle indicated by 2α in the figure.
At this time, since the distance between the spots varies depending on the type of sample and which crystal plane the diffraction image is based on, it is necessary to be able to adjust the convergence angle 2α continuously. Therefore, conventionally, the adjustment of the convergence angle 2α is performed by adjusting the position of the sample 5 in the optical axis direction,
That is, this was done by shifting the z-coordinate.
Therefore, the z-coordinate of the sample deviates from the standard z-position in the Eucentric goniometer.
By the way, a eucentric goniometer can only maintain the same observation field of view even if the tilt angle of the sample is changed only when the sample is at the standard z position. Otherwise, when the sample is tilted, the electron beam irradiation position on the sample will shift. Therefore, even if a crystal-perfect region is initially set as an electron beam irradiation region, the irradiation region cannot be maintained and a desired diffraction image cannot be observed.

更に、試料5のz位置を移動させると、対物レ
ンズの後方磁界レンズ4bのレンズ作用も異なる
ため、回折電子線が前記筒状部6の中心にクロス
オーバーしなくなり、そのため螢光板8上に投影
される回折像の視野半径rが小さくなり、注目し
ているスポツトがカツトされてしまうことがあ
る。
Furthermore, when the z-position of the sample 5 is moved, the lens action of the rear magnetic field lens 4b of the objective lens also changes, so that the diffracted electron beam no longer crosses over to the center of the cylindrical portion 6, and is therefore projected onto the fluorescent plate 8. The visual field radius r of the diffraction image obtained may become small, and the spot of interest may be cut off.

[発明の目的] 本発明はこのような従来の欠点を解決し、前記
収束角2αを任意に変化でき、しかも2αを変化さ
せた場合にも、試料への電子線照射位置と照射径
が全く変化せず、更に、回折パターンの視野径r
の大きさも変化することのない電子線回折装置を
提供することを目的としている。
[Object of the Invention] The present invention solves these conventional drawbacks, allows the convergence angle 2α to be changed arbitrarily, and even when 2α is changed, the electron beam irradiation position and irradiation diameter on the sample are completely unchanged. The field diameter r of the diffraction pattern remains unchanged.
The object of the present invention is to provide an electron beam diffraction device whose size does not change.

[発明の構成] そのため本発明は、電子銃と、該電子銃よりの
電子線を収束するための第1,第2の収束レンズ
と、対物レンズの前方磁界レンズと、軸から大き
く外れた電子線をカツトするための筒状部又は制
限視野絞りと、中間及び投影レンズを備えた電子
線回折装置において、試料に照射される電子線の
スポツト径を一定に保持したまま試料に照射され
る電子線の開き角を任意に可変とするように前記
対物レンズと前記第1,第2の収束レンズに供給
される励磁電流を自動的に連動して変化させるた
めの制御手段と、対物レンズと中間レンズとの間
に配置された補助レンズと、対物レンズの励磁強
度の変化にかかわらず該補助レンズを経た電子線
を常に前記筒状部又は制限視野絞りの中心にクロ
スオーバーさせるため前記対物レンズの励磁強度
の変化に連動して該補助レンズの励磁強度を変化
させるための手段とを具備することを特徴として
いる。
[Structure of the Invention] Therefore, the present invention provides an electron gun, first and second converging lenses for converging the electron beam from the electron gun, a front magnetic field lens of an objective lens, and an electron beam that is largely off-axis. In an electron beam diffraction device equipped with a cylindrical part or selected area diaphragm for cutting the beam, and an intermediate and projection lens, the electron beam is irradiated onto the sample while keeping the spot diameter of the electron beam irradiated on the sample constant. a control means for automatically interlocking and changing excitation currents supplied to the objective lens and the first and second converging lenses so as to arbitrarily vary the opening angle of the line; an auxiliary lens disposed between the objective lens and the objective lens in order to cause the electron beam passing through the auxiliary lens to always cross over to the center of the cylindrical portion or selected area diaphragm regardless of changes in the excitation intensity of the objective lens; The present invention is characterized by comprising means for changing the excitation intensity of the auxiliary lens in conjunction with changes in the excitation intensity.

[実施例] 以下、図面に基づき本発明の実施例を詳述す
る。
[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.

本発明の一実施例を示す第3図において、第1
図と同一の構成要素に対しては同一の番号が付さ
れている。同図において、9,10は各々第1,
第2の収束レンズの電源である。11は対物レン
ズ4の励磁電源である。この励磁電源11よりの
励磁電流は調整器12により、調整できるように
なつている。又、励磁電源9,10の励磁電流は
各々調整器12よりの制御信号を変換器13,1
4で変換した信号に基づいて制御される。これら
変換器13,14は、調整器12の出力信号を変
化させることにより対物レンズの励磁強度を変化
させた際に、この変化にもかかわらず電子銃(あ
るいはそのクロスオーバー)の像が試料5上に同
一のスポツト径を有して結像されるように前記第
1,第2の収束レンズ2,3の励磁強度を連動し
て変化させるためのもので、これら変換器13,
14により調整器12よりの制御信号は第1,第
2の収束レンズ2,3を必要なだけ励磁するため
の制御信号に変換される。これら変換器13,1
4は各々メモリーとその読み出し機構とからなつ
ている。これら各変換器内のメモリーの記憶内容
は、調整器12の出力信号を種々変化させた際に
前方磁界レンズ4aがその位置をどのように変化
させるか(その変化量δ)、又、その際の倍率は
どのように変化するか(その変化量ΔM)を予め
調べ、この変化に合わせて第1及び第2の収束レ
ンズ2,3をどれだけ励磁することが必要かを理
論的あるいは実験的に求め、この必要な励磁強度
を与える制御信号値を調整器12の各値に対応し
た番地に記憶したものである。更に、対物レンズ
4と筒状部6の間には補助レンズ15が備えられ
ている。この補助レンズ15の励磁電源16の励
磁電流も前記調整器12よりの信号を変換器17
で変換した信号に基づいて制御される。変換器1
7もメモリーとその読み出し機構とよりなり、こ
のメモリーにも調整器12の出力信号を変化させ
て対物レンズ4の励磁強度を変化させた際に、こ
の変化によらずに常に回折電子線を前記筒状部6
の中心でクロスオーバーさせるのに必要な電源1
6の制御信号値が記憶されている。尚、Kは収束
レンズ絞りである。
In FIG. 3 showing one embodiment of the present invention, the first
Components that are the same as those in the figures are numbered the same. In the same figure, 9 and 10 are the first,
This is the power source for the second converging lens. 11 is an excitation power source for the objective lens 4. The excitation current from the excitation power source 11 can be adjusted by a regulator 12. The excitation currents of the excitation power supplies 9 and 10 are controlled by converters 13 and 1, respectively, by transmitting control signals from the regulator 12.
It is controlled based on the signal converted in step 4. These converters 13 and 14 are arranged so that when the excitation intensity of the objective lens is changed by changing the output signal of the adjuster 12, the image of the electron gun (or its crossover) remains on the sample 5 despite this change. This is for changing the excitation intensities of the first and second converging lenses 2 and 3 in conjunction so that an image having the same spot diameter is formed on the converging lens, and these converters 13,
14 converts the control signal from the adjuster 12 into a control signal for exciting the first and second converging lenses 2 and 3 as necessary. These converters 13,1
4 each consists of a memory and its reading mechanism. The stored contents of the memory in each of these converters are how the front magnetic field lens 4a changes its position (the amount of change δ) when the output signal of the adjuster 12 is changed in various ways, and how it changes its position. Investigate in advance how the magnification changes (the amount of change ΔM), and theoretically or experimentally determine how much it is necessary to excite the first and second converging lenses 2 and 3 in accordance with this change. The control signal values that provide the required excitation intensity are stored at addresses corresponding to each value of the regulator 12. Further, an auxiliary lens 15 is provided between the objective lens 4 and the cylindrical portion 6. The excitation current of the excitation power source 16 for this auxiliary lens 15 is also converted into a signal from the adjuster 12 to a converter 17.
It is controlled based on the signal converted by . converter 1
7 also consists of a memory and its readout mechanism, and when the output signal of the adjuster 12 is changed to change the excitation intensity of the objective lens 4, this memory always reads the diffracted electron beam as described above regardless of this change. Cylindrical part 6
Power supply 1 required for crossover at the center of
6 control signal values are stored. Note that K is a converging lens aperture.

このような構成において、調整器12の出力信
号を変化させると、この変化に伴なつて対物レン
ズの前方磁界レンズ4aが変化するが、調整器1
2の出力信号を変換する変換器13,14よりの
制御信号がこの変化に連動して変化して各々励磁
電源9,10に供給されるため、第1,第2の収
束レンズ2,3の励磁強度は電子銃(あるいはそ
のクロスオーバー)の像が引き続き同一倍率で試
料5上に結像されるように励磁される。従つて、
この変化に伴なつて該レンズ4aの物点位置が第
3図に示すように移動するため、収束角2αを変
化させることができる。そこで、操作者は螢光板
8上の回折パターンの回折スポツトを観察しなが
ら、そのスポツトが重ならない範囲でできるだけ
大きくなるように調整器12の出力を調整する。
又、この調整器12の出力信号の変化に伴なつて
後方磁界レンズ4bの位置及び倍率も変化する
が、調整器12の出力信号を変換した変換器17
よりの制御信号が励磁電源16に供給されるた
め、補助レンズ15は引き続き回折電子線を前記
中心でクロスオーバーさせるように作用する。従
つて、収束角2αの調整に伴なつて回折電子線の
カツト量が増えることはない。
In such a configuration, when the output signal of the adjuster 12 is changed, the front magnetic field lens 4a of the objective lens changes in accordance with this change, but the adjuster 1
The control signals from the converters 13 and 14 that convert the output signals of the first and second converging lenses 2 and 3 change in conjunction with this change and are supplied to the excitation power supplies 9 and 10, respectively. The excitation intensity is such that the image of the electron gun (or its crossover) is subsequently imaged onto the specimen 5 at the same magnification. Therefore,
With this change, the object point position of the lens 4a moves as shown in FIG. 3, so that the convergence angle 2α can be changed. Therefore, while observing the diffraction spots of the diffraction pattern on the fluorescent plate 8, the operator adjusts the output of the adjuster 12 so that the spots are as large as possible without overlapping.
Furthermore, as the output signal of the adjuster 12 changes, the position and magnification of the rear magnetic field lens 4b also change.
Since a control signal is supplied to the excitation power source 16, the auxiliary lens 15 continues to act to cause the diffracted electron beam to cross over at the center. Therefore, the amount of cutoff of the diffracted electron beam does not increase with adjustment of the convergence angle 2α.

[効果] 上述したように本発明に基づく電子線回折装置
によれば、試料に照射する電子線の径を一定値に
維持した状態で試料に照射する電子線の開き角を
可変とすることができる。従つて、集束電子線回
折において、回折スポツトを観察する場合に、結
晶が完全である領域にのみ電子線が照射されるよ
うに一旦試料への電子線の照射領域を設定すれ
ば、この照射領域をこの設定領域に維持しながら
開き角を調整して、回折スポツトの大きさを回折
スポツト同志が重ならない範囲で最大になるよう
に微調整することができる。その結果、開き角の
調整に伴つて照射径が変わることにより結晶欠陥
部が新たに電子線照射領域に加わることがないた
め、良質な回折像を微細な部分にわたつて観察す
ることが可能になる。
[Effect] As described above, according to the electron beam diffraction apparatus based on the present invention, it is possible to vary the aperture angle of the electron beam irradiated to the sample while maintaining the diameter of the electron beam irradiated to the sample at a constant value. can. Therefore, when observing diffraction spots in focused electron beam diffraction, once the electron beam irradiation area on the sample is set so that the electron beam is irradiated only on the area where the crystal is perfect, this irradiation area By adjusting the aperture angle while maintaining the diffraction spots within this set range, the size of the diffraction spots can be finely adjusted to the maximum size within a range where the diffraction spots do not overlap. As a result, as the irradiation diameter changes as the aperture angle is adjusted, new crystal defects are not added to the electron beam irradiation area, making it possible to observe high-quality diffraction images over minute areas. Become.

更に又、収束角の調整を行つても、回折電子線
のカツト量が増えることはなく、回折パターン像
の視野径rも最大に保つことができる。
Furthermore, even if the convergence angle is adjusted, the amount of cutoff of the diffracted electron beam does not increase, and the visual field diameter r of the diffraction pattern image can be maintained at the maximum.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の装置を説明するための図であ
り、第2図は螢光板上に投影される回折パターン
の回折スポツトと視野の径を説明するための図、
第3図は本発明の一実施例を示すための図であ
る。 1:電子銃、2,3:収束レンズ、4a:前方
磁界レンズ、4b:後方磁界レンズ、5:試料、
6:筒状部、7:レンズ系、8:螢光板、9,1
0,11,16:励磁電源、12:調整器、1
3,14,17:変換器、15:補助レンズ、
C:光軸、K:絞り。
FIG. 1 is a diagram for explaining a conventional device, and FIG. 2 is a diagram for explaining the diameter of a diffraction spot and field of view of a diffraction pattern projected onto a fluorescent plate.
FIG. 3 is a diagram showing one embodiment of the present invention. 1: Electron gun, 2, 3: Converging lens, 4a: Front magnetic field lens, 4b: Back magnetic field lens, 5: Sample,
6: Cylindrical part, 7: Lens system, 8: Fluorescent plate, 9, 1
0, 11, 16: Excitation power supply, 12: Regulator, 1
3, 14, 17: converter, 15: auxiliary lens,
C: Optical axis, K: Aperture.

Claims (1)

【特許請求の範囲】[Claims] 1 電子銃と、該電子銃よりの電子線を収束する
ための第1,第2の収束レンズと、対物レンズの
前方磁界レンズと、軸から大きく外れた電子線を
カツトするための筒状部又は制限視野絞りと、中
間及び投影レンズを備えた電子線回折装置におい
て、試料に照射される電子線のスポツト径を一定
に保持したまま試料に照射される電子線の開き角
を任意に可変とするように前記対物レンズと前記
第1,第2の収束レンズに供給される励磁電流を
自動的に連動して変化させるための制御手段と、
対物レンズと中間レンズとの間に配置された補助
レンズと、対物レンズの励磁強度の変化にかかわ
らず該補助レンズを経た電子線を常に前記筒状部
又は制限視野絞りの中心にクロスオーバーさせる
ため前記対物レンズの励磁強度の変化に連動して
該補助レンズの励磁強度を変化させるための手段
とを具備することを特徴とする電子線回折装置。
1. An electron gun, first and second converging lenses for converging the electron beam from the electron gun, a front magnetic field lens of the objective lens, and a cylindrical part for cutting off the electron beam that deviates significantly from the axis. Alternatively, in an electron beam diffraction apparatus equipped with a selected area diaphragm and an intermediate and projection lens, the aperture angle of the electron beam irradiated onto the sample can be arbitrarily varied while the spot diameter of the electron beam irradiated onto the sample is held constant. control means for automatically interlocking and changing excitation currents supplied to the objective lens and the first and second converging lenses so as to
An auxiliary lens disposed between the objective lens and the intermediate lens, and for making the electron beam that has passed through the auxiliary lens always cross over to the center of the cylindrical portion or selected area diaphragm regardless of changes in the excitation intensity of the objective lens. An electron beam diffraction apparatus comprising: means for changing the excitation intensity of the auxiliary lens in conjunction with changes in the excitation intensity of the objective lens.
JP58045062A 1983-03-17 1983-03-17 Electron ray diffracting device Granted JPS59170753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58045062A JPS59170753A (en) 1983-03-17 1983-03-17 Electron ray diffracting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58045062A JPS59170753A (en) 1983-03-17 1983-03-17 Electron ray diffracting device

Publications (2)

Publication Number Publication Date
JPS59170753A JPS59170753A (en) 1984-09-27
JPH04336B2 true JPH04336B2 (en) 1992-01-07

Family

ID=12708864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58045062A Granted JPS59170753A (en) 1983-03-17 1983-03-17 Electron ray diffracting device

Country Status (1)

Country Link
JP (1) JPS59170753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221457A1 (en) 2017-05-31 2018-12-06 富士フイルム株式会社 Photosensitive resin composition, polymeric precursor, cured film, laminate, cured film production method, and semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124371A (en) * 1975-04-23 1976-10-29 Jeol Ltd Scanning type electron microscope and similar equipment provided with means for controlling opening angle of electron beam for irradiating s amples
JPS55128243A (en) * 1979-03-28 1980-10-03 Hitachi Ltd Electron microscope
JPS57212755A (en) * 1981-06-25 1982-12-27 Internatl Precision Inc Transmission-type electron microscope
JPS5825055A (en) * 1981-07-16 1983-02-15 Jeol Ltd Electron microscope

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138064U (en) * 1975-04-28 1976-11-08

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124371A (en) * 1975-04-23 1976-10-29 Jeol Ltd Scanning type electron microscope and similar equipment provided with means for controlling opening angle of electron beam for irradiating s amples
JPS55128243A (en) * 1979-03-28 1980-10-03 Hitachi Ltd Electron microscope
JPS57212755A (en) * 1981-06-25 1982-12-27 Internatl Precision Inc Transmission-type electron microscope
JPS5825055A (en) * 1981-07-16 1983-02-15 Jeol Ltd Electron microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221457A1 (en) 2017-05-31 2018-12-06 富士フイルム株式会社 Photosensitive resin composition, polymeric precursor, cured film, laminate, cured film production method, and semiconductor device

Also Published As

Publication number Publication date
JPS59170753A (en) 1984-09-27

Similar Documents

Publication Publication Date Title
JP2868536B2 (en) Method of irradiating object in transmission electron microscope and electron microscope therefor
US4626689A (en) Electron beam focusing system for electron microscope
JP2685603B2 (en) Electron beam equipment
JPH0654639B2 (en) Electron beam controller for transmission electron microscope
JPH04336B2 (en)
US4316087A (en) Method of photographing electron microscope images on a single photographic plate and apparatus therefor
JPH0793119B2 (en) electronic microscope
JPH05135727A (en) Electron microscope
JPS5919408B2 (en) electronic microscope
JPS605503Y2 (en) Transmission scanning electron microscope
JP2541931B2 (en) Convergent electron beam diffractometer
JPH0234750Y2 (en)
JPS59181448A (en) Electron microscope
JPH0378738B2 (en)
JP2948242B2 (en) Focused electron beam diffractometer
JPH0232738B2 (en)
JPS5914222B2 (en) Magnification control device for scanning electron microscopes, etc.
JPS6363109B2 (en)
JPS6029187B2 (en) electronic microscope
JPH03233846A (en) Electron microscope
JPS586267B2 (en) scanning electron microscope
JPH0515029B2 (en)
JPH0161228B2 (en)
JPH0619964B2 (en) electronic microscope
JP2000048749A (en) Scanning electron microscope, and electron beam axis aligning method