JPH0433611B2 - - Google Patents

Info

Publication number
JPH0433611B2
JPH0433611B2 JP60265798A JP26579885A JPH0433611B2 JP H0433611 B2 JPH0433611 B2 JP H0433611B2 JP 60265798 A JP60265798 A JP 60265798A JP 26579885 A JP26579885 A JP 26579885A JP H0433611 B2 JPH0433611 B2 JP H0433611B2
Authority
JP
Japan
Prior art keywords
slurry
ceramic powder
sintered body
surfactant
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60265798A
Other languages
Japanese (ja)
Other versions
JPS62124902A (en
Inventor
Takenori Kashiwabara
Masao Tooyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikusui Kagaku Kogyo KK
Original Assignee
Kikusui Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikusui Kagaku Kogyo KK filed Critical Kikusui Kagaku Kogyo KK
Priority to JP26579885A priority Critical patent/JPS62124902A/en
Publication of JPS62124902A publication Critical patent/JPS62124902A/en
Publication of JPH0433611B2 publication Critical patent/JPH0433611B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、セラミツクスの射出成形において、
成形後の脱脂工程を簡素化すると伴に、従来多量
に使用されていたバインダーを大幅に低減せしめ
ることにより、焼結体の密度を高めることのでき
る製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides a method for injection molding ceramics.
The present invention relates to a manufacturing method that can increase the density of a sintered body by simplifying the degreasing process after molding and significantly reducing the amount of binder that has conventionally been used in large amounts.

(従来の技術) セラミツクスの成形方法は多種多様であるが、
近年射出成形機による加工方法が盛んに検討され
るようになつてきた。この加工方法の長所として
は、寸法精度が良いこと、複雑形状物が出来るこ
と、大量生産も少量生産も可能なこと等が挙げら
れる。
(Conventional technology) There are a wide variety of methods for molding ceramics, but
In recent years, processing methods using injection molding machines have been actively studied. Advantages of this processing method include good dimensional accuracy, the ability to produce products with complex shapes, and the ability to produce in large quantities or in small quantities.

(発明が解決しようとする問題点) 一方、セラミツクス粉末と伴に配合化されるバ
インダー量が他の成形方法(例えば、プレス成形
とか押し出し成形)に比較して35倍(セラミツク
ス粉末に対して10〜20wt%)と多く、このこと
が経済的なデメリツトばかりでなく、セラミツク
ス粉末の充填密度を低下せしめ、焼成後の収縮率
を大きくさせ、充分な寸法精度を保つことを困難
にせしめていた。
(Problem to be solved by the invention) On the other hand, the amount of binder mixed with ceramic powder is 35 times that of other molding methods (for example, press molding or extrusion molding) (10 times the amount of binder mixed with ceramic powder). ~20wt%), which not only has an economic disadvantage, but also reduces the packing density of the ceramic powder, increases the shrinkage rate after firing, and makes it difficult to maintain sufficient dimensional accuracy.

さらに、このバインダーを焼成により除去する
脱脂工程における加熱は、バインダーの分解蒸発
が急激に起こり、成形体に破壊・亀裂が発生しな
い為に、1〜10℃/時間とゆつくりした昇温速度
で行なう必要がある。この工程は通常3日間以上
に掛かり生産性の面で大きな問題となつていた。
Furthermore, in order to avoid rapid decomposition and evaporation of the binder and breakage and cracking of the molded product, heating in the degreasing process to remove this binder by firing is carried out at a slow heating rate of 1 to 10°C/hour. It is necessary to do it. This process usually takes three days or more and has been a major problem in terms of productivity.

従来の射出成形方法においては、セラミツクス
粉末に流動性と賦形性を与える為に、(1)熱可塑性
樹脂やパラフイン,ワツクス等の熱により溶融す
る材料をバインダーとして用いるか、(2)水等を溶
媒として用いることにより流動性を与え、かつ水
溶性バインダーを併用することにより賦形性を与
える方法が行なわれていたが、前者の方法では、
上記した問題点があり、また後者の方法でも、有
機質バインダー量は、軽減できるが、脱型できる
程の粘度がなければならず、そのため結局吐出圧
力が増大し、成形機に摩耗が生じる。その上、水
溶性バインダー量を0に近くすることは出来ない
ので、脱脂工程を省略することは不可能であつ
た。
In conventional injection molding methods, in order to give fluidity and formability to ceramic powder, (1) a material that melts with heat, such as a thermoplastic resin, paraffin, or wax, is used as a binder, or (2) water, etc. is used as a binder. A method has been used in which fluidity is imparted by using as a solvent and shapeability is imparted by using a water-soluble binder together, but in the former method,
The latter method also has the above-mentioned problems, and although the amount of organic binder can be reduced, it must have a viscosity that can be removed from the mold, which ultimately increases the discharge pressure and causes wear on the molding machine. Moreover, since the amount of water-soluble binder cannot be made close to 0, it has been impossible to omit the degreasing step.

(問題点を解決するための手段) 本発明は、このような従来の問題点に着目して
なされたもので、本質的に賦形性を与える有機質
バインダーを含有していない為、従来長時間掛け
て行なわれたいた脱脂工程が、ほぼ省略可能であ
るばかりか、セラミツクス粉末の充填密度を向上
せしめ、かつ低い吐出圧力で成形できるので成形
機に摩耗を生じせしめることも少ない。また、本
発明の本質的な構成要因を考えれば、単に射出成
形加工方法のみに限定せずに、泥奨鋳込み成形方
法等他の成形方法にも充分応用され得るものであ
る。
(Means for Solving the Problems) The present invention has been made by focusing on such conventional problems, and because it does not contain an organic binder that essentially provides shapeability, Not only can the conventional degreasing process be almost omitted, but the packing density of the ceramic powder can be improved, and molding can be performed at low discharge pressure, so there is less wear on the molding machine. Furthermore, considering the essential constituent factors of the present invention, the present invention is not limited only to the injection molding method, but can be sufficiently applied to other molding methods such as the mud casting method.

本発明では、セラミツクス粉末を水等の溶媒中
で界面活性剤を用いてスラリー状となし射出成形
機により金型内に注入後、凍結せしめたから、凍
結成形体として取り出し、炉焼結することにより
セラミツクス焼結体を得ることができる。また、
この製造方法において、スラリー中の溶媒の体積
濃度が60%以内で、かつ界面活性剤の添加量がセ
ラミツクス粉末に対して0.01%〜6%以内である
時、より効果的な製造方法となる。
In the present invention, ceramic powder is made into a slurry using a surfactant in a solvent such as water, is injected into a mold by an injection molding machine, and then frozen. A ceramic sintered body can be obtained. Also,
This manufacturing method becomes more effective when the volume concentration of the solvent in the slurry is within 60% and the amount of surfactant added is within 0.01% to 6% relative to the ceramic powder.

以下に本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明に使用するセラミツクスの粉末として
は、アルミナ、窒化硅素、炭化硅素、サイアロ
ン、チタン、酸バリウム、酸化ジルコニウム、酸
化マグネシウム、酸化ベリリウム、酸化チタン、
酸化亜鉛、酸化イツトリウム、酸化カルシウム、
酸化ハフニウム、窒化ホウ素、窒化チタン、炭化
ジルコニウム、フオルステライト、ステアタイ
ト、ムライト、コージイエライト、炭化タングス
テン、二酸化硅素、カーボン、モンモリロナイ
ト、バーミキユライト、カオリン、タルク、セビ
オライト、アタパルジヤイト、木節粘度、白陶
土、長石等が挙げられる。また、セラミツクス粉
末の組成は、上記したような単一組成物または化
合物、または固溶体物または共晶体物の単独もし
くはそれらの複数の混合物として使用しても一向
に差し仕えない。また、上記した物質の焼結体の
特性を改良するために、複数の添加剤が加えられ
た系のものについても使用することができる。ま
たこれらのセラミツクス粉末は、各種ミルによる
粉砕と分級の工程を経て得られる細分化プロセス
によつて提供されたものでも、あるいは、固相反
応法、固相気相反応法、液相法、気相法等のフア
インセラミツクスの形成プロセスにより提供され
たもののいずれか、もしくはその混合されたもの
でもかまわない。さらには、上記した粉末以外に
金属もしくは合金の粉末も使用することができ
る。これら粉末の粒径は、微細な程、最終的に達
成される焼結体の品質は良好でありその最大粒径
は、おおよそ30μである。これ以上粒径が大きい
と後述する凍結し取り出した後の焼成工程で成形
体が溶融し、形状を保持することができない状態
になる。また、このセラミツクス粉末の焼結体に
おける強度等の品質特性を最大に発揮させようと
すれば、セラミツクス粉末の粒径分布は狭く、粒
子形状は等方的で、その粒径は1μ以下であるこ
とが好ましい。
Ceramic powders used in the present invention include alumina, silicon nitride, silicon carbide, sialon, titanium, barium oxide, zirconium oxide, magnesium oxide, beryllium oxide, titanium oxide,
Zinc oxide, yttrium oxide, calcium oxide,
Hafnium oxide, boron nitride, titanium nitride, zirconium carbide, forsterite, steatite, mullite, cordierite, tungsten carbide, silicon dioxide, carbon, montmorillonite, vermiculite, kaolin, talc, seviolite, attapulgite, wood knot viscosity, Examples include white china clay and feldspar. Furthermore, the composition of the ceramic powder may be used as a single composition or compound as described above, or as a solid solution or eutectic, or a mixture of a plurality thereof. Further, in order to improve the characteristics of the sintered body of the above-mentioned substances, a system in which a plurality of additives are added can also be used. In addition, these ceramic powders may be provided by a subdivision process obtained through the steps of pulverization and classification using various mills, or may be provided by a solid phase reaction method, a solid phase gas phase reaction method, a liquid phase method, or a gas phase method. It may be any one provided by a fine ceramics forming process such as a phase method, or a mixture thereof. Furthermore, in addition to the powders mentioned above, metal or alloy powders can also be used. The finer the particle size of these powders, the better the quality of the finally achieved sintered body, and the maximum particle size is approximately 30μ. If the particle size is larger than this, the molded body will melt in the firing process after freezing and removal, which will be described later, and will be unable to maintain its shape. In addition, in order to maximize quality characteristics such as strength in a sintered body of ceramic powder, the particle size distribution of ceramic powder is narrow, the particle shape is isotropic, and the particle size is 1μ or less. It is preferable.

本発明に用いることのできる界面活性剤として
は、アニオン性界面活性剤、ノニオン性界面活性
剤、カチオン性界面活性剤、両性界面活性剤が挙
げられる。
Surfactants that can be used in the present invention include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants.

アニオン性界面活性剤としては、アルキルアリ
ールスルホン酸、アルキルスルホン酸、α−スル
ホン化脂肪酸等のナトリウム、カリウム、リチウ
ム、アンモニウムの塩または有機塩基の塩、ある
いは天然または合成の脂肪酸のアルカリ金属石ケ
ン、もしくはポリオキシエチレンアルキル硫酸エ
ステル等の硫酸エステル塩型アニオン界面活性剤
等が使用できる。但し、該セラミツクス粉末の焼
結体中に、ナトリウム等の金属元素が入り込み著
しく品質特性を劣化せしめる場合においては、上
記したものの内金属元素含有化合物は、避けるべ
きである。
Examples of anionic surfactants include salts of sodium, potassium, lithium, ammonium or organic bases such as alkylarylsulfonic acids, alkylsulfonic acids, α-sulfonated fatty acids, or alkali metal soaps of natural or synthetic fatty acids. Alternatively, a sulfate salt type anionic surfactant such as polyoxyethylene alkyl sulfate can be used. However, in cases where metallic elements such as sodium enter the sintered body of the ceramic powder and significantly deteriorate quality characteristics, the above-mentioned compounds containing metallic elements should be avoided.

上記したノニオン性界面活性剤としては、ポリ
オールエーテルと長鎖アルコール、脂肪酸、脂肪
族アミン、脂肪酸アミド、アルキルフエノール、
スルホン酸等の縮合物、あるいは、ポリオキシエ
チレンまたはポリプロピレングリコールの付加生
成物、ポリヒドロキシアルキルアミンとポリヒド
ロキシカルボン酸又はポリヒドロキシカルボン酸
アミドとの反応生成物、長鎖状第3級アミン酸化
物、長鎖状第3級ホスフイン酸化物等が挙げられ
る。
The nonionic surfactants mentioned above include polyol ethers, long chain alcohols, fatty acids, aliphatic amines, fatty acid amides, alkylphenols,
Condensates of sulfonic acids, etc., addition products of polyoxyethylene or polypropylene glycol, reaction products of polyhydroxyalkylamines and polyhydroxycarboxylic acids or polyhydroxycarboxylic acid amides, long-chain tertiary amine oxides , long-chain tertiary phosphine oxide, and the like.

上記したカチオン性界面活性剤としては、例え
ば、ラウリルアミンアセテート、ステアリルアミ
ンアセテート、ポリオキシエチレンステアリルア
ミン、ジステアリルジメチルアンモニウムクロラ
イド、セチルトリメチルアンモニウムクロライド
等アルキルアミン塩のエステル型、アミド型、エ
ーテル型のものを挙げることができる。
Examples of the above-mentioned cationic surfactants include ester-type, amide-type, and ether-type alkylamine salts such as laurylamine acetate, stearylamine acetate, polyoxyethylene stearylamine, distearyldimethylammonium chloride, and cetyltrimethylammonium chloride. I can list things.

上記した両性界面活性剤としては、アリキルス
ルフホペタイン、カルボキシル、ホスフエート、
ホスフイノ等の基で置換された脂肪族アミンもし
くは、その誘導体物等が挙げられる。
Examples of the above-mentioned amphoteric surfactants include alkyl sulfhopetaine, carboxyl, phosphate,
Examples thereof include aliphatic amines substituted with groups such as phosphino, and derivatives thereof.

以上述べた界面活性剤は、単独もしくは複数の
混合物として用いることが可能であるが、その添
加量は、該セラミツクス粉末の重量に対して、
0.01%〜6%以内が望ましい。0.01%以下では該
セラミツクス粉末のスラリー中の溶媒の体積濃度
を60%以下にすることが困難となるばかりでな
く、たとえ60%以内に溶媒濃度を達成したとして
も、後述するように凍結後脱型して焼成する過程
で、該成形体が融解し所定の形状を維持すること
が出来なくなる。また界面活性剤の添加量が6%
以上では該セラミツクス粉末に対する有機物量が
大きくなり、脱型後急速に焼結工程に入り、かな
りのスピードで昇温せしめると、分解ガスが発生
し焼結体に亀裂やフクレが発生することになり、
本発明の目的の1つとする成形後の脱脂工程の簡
略化が達成できなくなる。
The surfactants mentioned above can be used alone or as a mixture of two or more, and the amount added is determined based on the weight of the ceramic powder.
The content is preferably within 0.01% to 6%. If it is less than 0.01%, not only will it be difficult to reduce the volume concentration of the solvent in the ceramic powder slurry to 60% or less, but even if the solvent concentration is achieved within 60%, it will be difficult to desorb after freezing as described below. During the process of molding and firing, the molded body melts and is no longer able to maintain its predetermined shape. Also, the amount of surfactant added is 6%.
In the above case, the amount of organic matter in the ceramic powder becomes large, and if the sintering process is rapidly started after demolding and the temperature is raised at a considerable speed, decomposition gas will be generated and cracks and blisters will occur in the sintered body. ,
This makes it impossible to simplify the degreasing process after molding, which is one of the objectives of the present invention.

界面活性剤を用いて該スラリーを作成し、成形
したものを凍結後加熱してもなぜその形状を維持
するか、その機構やその際の界面活性剤の作用は
明確ではないが、実施例で詳述するように、現然
たる事実である。
Why the slurry is created using a surfactant and the shaped product maintains its shape even when it is heated after freezing, the mechanism and the effect of the surfactant at that time are not clear, but in the example As explained in detail, this is a fact.

本発明で用いることのできる溶媒としては、も
つとも好ましいものは水である。水以外にも、メ
タノール、エタノール、n−プレバノール、イソ
プロパノール等のアルコール類、アセトン、メチ
ルエチルケトン、メチルイソブチルケトン、エチ
ルブチルケトン等のケトン類、メチルセロソルブ
アセテート、セロソルブアセテート、酢酸エチル
等のエステル類、メチルセロソルブ、ブチルセロ
ソルブ、ブチルカルビトール等のエーテル類、ベ
ンゼン、トルエン、キシレン等の芳香族炭化水
素、n−ヘキサン等の脂肪族炭化水素等を本発明
の主旨を防げない限りにおいて添加することがで
きる。しかし、凍結温度が極めて低いものは、エ
ネルギーコストの観点から好ましいものとは言え
ない。
Among the solvents that can be used in the present invention, water is most preferred. In addition to water, alcohols such as methanol, ethanol, n-prebanol, and isopropanol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and ethyl butyl ketone, esters such as methyl cellosolve acetate, cellosolve acetate, and ethyl acetate, and methyl Ethers such as cellosolve, butyl cellosolve and butyl carbitol, aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as n-hexane, etc. can be added as long as the gist of the present invention is not obstructed. However, those with extremely low freezing temperatures are not desirable from the viewpoint of energy costs.

上記した溶媒の量はセラミツクス粉末と界面活
性剤を用いて溶媒中で混練したスラリーの体積中
で60vol%以上になると好ましくない。60vol%以
上では、該スラリーを射出成形により成形し、金
型内で凍結してとしても、脱型してから、焼結す
る際に成形体の形状をくずして融解してしまい所
定の形状を有する焼結体を製造することが困難と
なる。
It is not preferable that the amount of the above-mentioned solvent exceeds 60 vol % in the volume of the slurry obtained by kneading ceramic powder and surfactant in a solvent. At 60vol% or more, even if the slurry is molded by injection molding and frozen in the mold, the shape of the molded product will be destroyed and melted during sintering after demolding, resulting in the molded product not retaining the desired shape. It becomes difficult to manufacture a sintered body with

本発明においては、まずセラミツクス粉末を水
等の溶媒中で界面活性剤を使用して混合分散装置
にて充分分散せしめスラリーを作成する。なおこ
の際、本発明の本質を損なわない範囲で以下のよ
うな添加剤を使用することが出来る。すなわちス
ラリーの粘性を改良する為に、メチルセルロー
ス、エチルメチルセルロース、ヒドロキシプロピ
ルメチルセルロース、酢酸エチルセルロース、ヒ
ドロキシメチルセルロース、ヒドロキシプロピル
セルロース、澱粉、膠、カゼイン、カルボキシメ
チルセルロース、ポリビニルアルコール、アラビ
アゴム、変性マレイン酸樹脂、デキストリン、グ
アーガム、ポリエチレン、ワツクス、ポリプロピ
レンエチレン酢酸ビニル共重合体樹脂、アクリル
酸エステル樹脂、ポリブタジエン、スチレンアク
リル酸エステル共重合体樹脂、ウレタン樹脂等の
有機高分子化合物の粉末もしくはワニスあるいは
エマルシヨン等が挙げられる。
In the present invention, first, ceramic powder is sufficiently dispersed in a solvent such as water using a surfactant using a mixing and dispersing device to prepare a slurry. At this time, the following additives can be used within a range that does not impair the essence of the present invention. That is, in order to improve the viscosity of the slurry, methylcellulose, ethylmethylcellulose, hydroxypropylmethylcellulose, ethylcellulose acetate, hydroxymethylcellulose, hydroxypropylcellulose, starch, glue, casein, carboxymethylcellulose, polyvinyl alcohol, gum arabic, modified maleic acid resin, dextrin. , guar gum, polyethylene, wax, polypropylene ethylene vinyl acetate copolymer resin, acrylic acid ester resin, polybutadiene, styrene acrylic acid ester copolymer resin, urethane resin, and other organic polymer compound powders, varnishes, or emulsions. .

上記の要領で作成したスラリーを、好ましくは
真空中で充分脱泡させてから射出成形加工する。
脱泡させていないと凍結時に、溶媒の結晶化の為
に成形体に亀裂を生じさせるばかりでなく、焼結
後の焼結体の強度にも悪影響を及ぼす恐れがあ
る。次に該スラリーを射出成形機を用いて成形加
工するが、この際の射出成形機のシリンダー温度
は常温、具体的にはスラリーの融点以上沸点以下
の温度がよい。この時の射出圧力が比較的低くて
も充分成形できることも本発明の大きな特徴の一
つである。金型内に射出されたスラリーは、金型
温度をスラリーの氷点以下に、全体が凍結するま
でしばらく保持させ、その後エジエクトロツドの
機構等により金型から、凍結した成形方法体を取
り外す。但し、金型の設計は、水等のように凍結
時に膨張するような溶媒を用いる場合は、必要に
応じて膨張圧力の逃げを配慮しておくことが好ま
しい。金型より取り出された凍結成形体は取りあ
えず溶媒の沸点より若干高目の温度で、溶媒を乾
燥せしめてから、その後、適当な時期を見計らい
炉焼結により焼結体を得る方法でも、最初から炉
焼結の一段方式で、焼結体を得る方法でもよい。
この場合、乾燥時または、炉焼結時の昇温速度は
従来方法では全く不可能な程大きくすることがで
きるのは、本発明の最大の特徴である。従来法の
ように大量のバインダーが配合されている生の成
形体は、焼成時にバインダーが分解し大量のガス
を発生させたり、表面付近で酸化物を生成し、こ
れが内部からのガスの発散をしにくくし、亀裂等
の欠陥を起こさせていたが、本発明においては、
使用している溶媒は分解されることなく、蒸発に
よつて除去されるので分解ガスによる体積膨張が
全くなく、従つて昇温速度も非常に大きく取るこ
とができるものである。具体的には50℃/時間以
上の昇温速度が可能となり、薄い成形体等の場合
はさらに2〜4倍程度の昇温速度も可能となる。
The slurry prepared in the above manner is preferably sufficiently defoamed in a vacuum before injection molding.
If defoaming is not performed, the molded body may not only crack due to crystallization of the solvent upon freezing, but also have a negative effect on the strength of the sintered body after sintering. Next, the slurry is molded using an injection molding machine, and the cylinder temperature of the injection molding machine at this time is preferably room temperature, specifically a temperature above the melting point and below the boiling point of the slurry. One of the major features of the present invention is that sufficient molding can be achieved even if the injection pressure at this time is relatively low. The temperature of the slurry injected into the mold is kept below the freezing point of the slurry for a while until the entire slurry freezes, and then the frozen molding method body is removed from the mold by an ejector rod mechanism or the like. However, when designing a mold, if a solvent such as water that expands when frozen is used, it is preferable to take into account the release of expansion pressure as necessary. The frozen molded body taken out of the mold is first dried at a temperature slightly higher than the boiling point of the solvent, and then the sintered body is obtained by furnace sintering at an appropriate time. A method of obtaining a sintered body using a one-stage method of furnace sintering may also be used.
In this case, the greatest feature of the present invention is that the temperature increase rate during drying or furnace sintering can be increased to an extent that is completely impossible with conventional methods. When a raw molded body is mixed with a large amount of binder as in the conventional method, the binder decomposes during firing and generates a large amount of gas, and oxides are generated near the surface, which prevents gas from escaping from inside. However, in the present invention,
Since the solvent used is removed by evaporation without being decomposed, there is no volumetric expansion due to decomposed gas, and therefore the temperature can be increased at a very high rate. Specifically, a temperature increase rate of 50° C./hour or more is possible, and in the case of thin molded objects, a temperature increase rate of about 2 to 4 times is also possible.

以下実施例により詳述する。 This will be explained in detail below using examples.

実施例 1 セラミツクス粉末として酸化アルミニウム(純
度99.9%、平均粒径0.5μ)100重量部をノニオン
性界面活性剤3重量部が添加された水25重量部中
に、ハイスピードインペラーミルにて高速分散せ
しめスラリーとなし、真空脱泡装置にて脱泡後、
射出温度を室温とし、歯車状の複雑形状部品の成
形できる金型内に射出成形機により射出注入し、
その後金型内でスラリーを凍結せしめてから、凍
結成形体として取り出し、大気炉中で70℃/時間
の昇温速度で1700℃まで上昇せしめ焼結体を得
た。この焼結体の寸法精度及び密度は非常に良好
であつた。
Example 1 100 parts by weight of aluminum oxide (purity 99.9%, average particle size 0.5μ) as ceramic powder was dispersed at high speed in 25 parts by weight of water to which 3 parts by weight of nonionic surfactant was added using a high-speed impeller mill. After making a slurry and defoaming with a vacuum degassing device,
The injection temperature is set to room temperature, and the injection molding machine is used to inject into a mold that can form parts with complex shapes such as gears.
Thereafter, the slurry was frozen in a mold, taken out as a frozen molded body, and raised to 1700°C at a heating rate of 70°C/hour in an atmospheric furnace to obtain a sintered body. The dimensional accuracy and density of this sintered body were very good.

実施例 2 実施例1の中の酸化アルミニウム100重量部を
酸化イツトリウム3mol%含有した酸化ジルコニ
ウム(中心粒径0.8μ)140重量部としてあとは実
施例1と同様な方法で得た凍結成形体を不活性ガ
ス雰囲気炉中で80℃/時間の昇温速度で150℃ま
で昇温させ、その後、その仮焼された成形体を
1500℃2時間焼成して得られた焼結体は、寸法精
度及び密度とも非常に良好であつた。
Example 2 A frozen molded body obtained in the same manner as in Example 1 except that 100 parts by weight of aluminum oxide in Example 1 was replaced with 140 parts by weight of zirconium oxide (center particle size 0.8μ) containing 3 mol% of yttrium oxide. The temperature was raised to 150°C at a heating rate of 80°C/hour in an inert gas atmosphere furnace, and then the calcined compact was heated to 150°C.
The sintered body obtained by firing at 1500°C for 2 hours had very good dimensional accuracy and density.

実施例 3 セラミツクス粉末として炭化硅素(純度99.5
%、平均粒径0.2μ)100重量部をアニオン性界面
活性剤3重量部を含む、水:エタノールが3:1
の混合溶液25重量部中に分散させスラリーとし、
あとは実施例1と同様な方法で得た凍結成形体
を、真空炉中で70℃/時間の昇温速度で2000℃ま
で上昇せしめ焼結体を得た。この焼結体の寸法精
度及び密度は非常に良好であつた。
Example 3 Silicon carbide (purity 99.5
%, average particle size 0.2μ) containing 100 parts by weight of anionic surfactant, water:ethanol 3:1
Dispersed in 25 parts by weight of a mixed solution of
The frozen molded body obtained in the same manner as in Example 1 was then heated to 2000°C at a rate of 70°C/hour in a vacuum furnace to obtain a sintered body. The dimensional accuracy and density of this sintered body were very good.

比較例 1 実施例1中の界面活性剤の添加を行なわず、酸
化アルミニウム100重量部に対して水50重量部と
して、あとは実施例1と同様な方法で凍結成形体
を得たが、炉焼成の初期の段階で、成形体の形状
が完全に崩れてしまつた。
Comparative Example 1 A frozen compact was obtained in the same manner as in Example 1, except that the surfactant in Example 1 was not added and water was 50 parts by weight to 100 parts by weight of aluminum oxide, but At the initial stage of firing, the shape of the molded body completely collapsed.

比較例 2 実施例1中のノニオン性界面活性剤0.12重量%
を含む水25重量部を60重量部とし、増粘剤として
メチルセルロースを3重量部加えたスラリーを用
意し、あとは実施例1と同様な方法で凍結成形体
を得たが、これも炉焼成の初期の段階で、成形体
の形状が完全に崩れてしまつた。
Comparative Example 2 0.12% by weight of nonionic surfactant in Example 1
A slurry was prepared in which 60 parts by weight of water was changed from 25 parts by weight, and 3 parts by weight of methylcellulose was added as a thickener, and a frozen molded body was obtained in the same manner as in Example 1, but this was also furnace fired. At the initial stage, the shape of the molded product completely collapsed.

比較例 3 実施例1中の界面活性剤の添加を3重量部に
し、界面活性剤水溶液を30重量部用いセラミツク
ス粉末のスラリーを作成し、あとは実施例1と同
様にして凍結成形体を得たが炉焼成の結果は亀裂
の入つた焼結体となつた。
Comparative Example 3 A ceramic powder slurry was prepared using 3 parts by weight of the surfactant in Example 1 and 30 parts by weight of the surfactant aqueous solution, and the rest was carried out in the same manner as in Example 1 to obtain a frozen molded body. The result of furnace firing was a sintered body with cracks.

比較例 4 実施例1中の水をキシレン25重量部に代えてセ
ラミツクス粉末のスラリーを作成し、あとは実施
例1と同様にして凝結成形体を得、炉焼成を行つ
たが、炉焼成の初期の段階で、成形体に亀裂が入
つてしまつた。
Comparative Example 4 A slurry of ceramic powder was prepared by replacing the water in Example 1 with 25 parts by weight of xylene, and the rest was carried out in the same manner as in Example 1 to obtain an agglomerated body and fired in a furnace. Cracks appeared in the molded product at an early stage.

(発明の効果) 以上の実施例で明らかなように、本発明の方法
を用いてセラミツクス焼結体を製造すれば、有機
バインダー量を大幅に低減すると伴に昇温速度を
非常に速く行なうことが可能となるばかりでな
く、焼結体の密度が上がりその品質特性を向上せ
しめることができる。
(Effects of the Invention) As is clear from the above examples, if a ceramic sintered body is produced using the method of the present invention, the amount of organic binder can be significantly reduced and the temperature increase rate can be extremely fast. Not only is this possible, but the density of the sintered body can be increased and its quality characteristics can be improved.

Claims (1)

【特許請求の範囲】 1 セラミツクス粉末をスラリーとなし、射出成
形機を用いて成形し、これを取り出し、そのまま
炉焼結させるセラミツクス焼結体を得る製造方法
において、 スラリーとなす溶媒が主として水であり、スラ
リー中の溶媒の体積濃度が60%以内であり、スラ
リーには、界面活性剤をセラミツクス粉末に対し
て、0.01〜6重量%以内含んだものを用い、成形
機中で凍結させ、凍結成形体となしていることを
特徴とするセラミツクス焼結体の製造方法。
[Claims] 1. A manufacturing method for obtaining a ceramic sintered body in which ceramic powder is made into a slurry, molded using an injection molding machine, taken out and sintered in a furnace as it is, wherein the solvent used in the slurry is mainly water. Yes, the volume concentration of the solvent in the slurry is within 60%, the slurry contains a surfactant within 0.01 to 6% by weight based on the ceramic powder, and is frozen in a molding machine. A method for producing a ceramic sintered body, characterized in that it is a molded body.
JP26579885A 1985-11-26 1985-11-26 Manufacture of ceramics sintered body Granted JPS62124902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26579885A JPS62124902A (en) 1985-11-26 1985-11-26 Manufacture of ceramics sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26579885A JPS62124902A (en) 1985-11-26 1985-11-26 Manufacture of ceramics sintered body

Publications (2)

Publication Number Publication Date
JPS62124902A JPS62124902A (en) 1987-06-06
JPH0433611B2 true JPH0433611B2 (en) 1992-06-03

Family

ID=17422184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26579885A Granted JPS62124902A (en) 1985-11-26 1985-11-26 Manufacture of ceramics sintered body

Country Status (1)

Country Link
JP (1) JPS62124902A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168507A (en) * 1982-03-30 1983-10-04 ノ−トン・カンパニ− Method of casting slip
JPS60217106A (en) * 1984-04-12 1985-10-30 高橋 信之 Inorganic-powder freezing molding method
JPS61158403A (en) * 1984-12-28 1986-07-18 京セラ株式会社 Method of molding ceramic
JPS61263703A (en) * 1985-05-20 1986-11-21 トヨタ自動車株式会社 Injection molding method of powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168507A (en) * 1982-03-30 1983-10-04 ノ−トン・カンパニ− Method of casting slip
JPS60217106A (en) * 1984-04-12 1985-10-30 高橋 信之 Inorganic-powder freezing molding method
JPS61158403A (en) * 1984-12-28 1986-07-18 京セラ株式会社 Method of molding ceramic
JPS61263703A (en) * 1985-05-20 1986-11-21 トヨタ自動車株式会社 Injection molding method of powder

Also Published As

Publication number Publication date
JPS62124902A (en) 1987-06-06

Similar Documents

Publication Publication Date Title
JP2604592B2 (en) Molding method of metal, ceramic powder, etc. and composition therefor
EP0294305B1 (en) Alumina-based core containing yttria and method of producing the same
US5047182A (en) Complex ceramic and metallic shaped by low pressure forming and sublimative drying
JP4236285B2 (en) Process for producing molded articles from ceramic and metal powders
JP4782282B2 (en) Binder system for honeycomb ceramic body and method for manufacturing the honeycomb body
US5047181A (en) Forming of complex high performance ceramic and metallic shapes
JP3065087B2 (en) Forming method using ceramic and metal
US4164424A (en) Alumina core having a high degree of porosity and crushability characteristics
JPS6045973B2 (en) Normal solidification casting method for superalloys
JP2000202573A (en) Core composition excellent in characteristic used for casting in application to gas turbine and article
WO1993004011A1 (en) Aqueous process for injection molding ceramic powders at high solids loadings
US4191720A (en) Method for making porous, crushable core having an integral outer barrier layer
US4191721A (en) Making ceramic articles having a high degree of porosity and crushability characteristics
US4814302A (en) Stable slip-casting compositions having a base of powders containing finely divided aluminum nitride
JPH064502B2 (en) Ceramics manufacturing method
JPH0433611B2 (en)
US4970036A (en) Process for producing green compacts by molding sinterable ceramic mixtures based on silicon nitride
JPH0329740B2 (en)
WO1988006575A1 (en) Process for the preparation of aluminium oxide ceramics having increased abrasion resistance
JPS63100065A (en) Manufacture of nitride sintered body
WO1988001991A1 (en) Binders for refractory grain
JP3210770B2 (en) Method for producing solid product form
JPS61225004A (en) Manufacture of injection molding ceramic molded shape with large-sized section
JPS61158403A (en) Method of molding ceramic
GB1602025A (en) Composition for fired ceramic articles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term