JPS63100065A - Manufacture of nitride sintered body - Google Patents

Manufacture of nitride sintered body

Info

Publication number
JPS63100065A
JPS63100065A JP61243807A JP24380786A JPS63100065A JP S63100065 A JPS63100065 A JP S63100065A JP 61243807 A JP61243807 A JP 61243807A JP 24380786 A JP24380786 A JP 24380786A JP S63100065 A JPS63100065 A JP S63100065A
Authority
JP
Japan
Prior art keywords
nitride
sintered body
mixed
sol
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61243807A
Other languages
Japanese (ja)
Inventor
河内 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61243807A priority Critical patent/JPS63100065A/en
Publication of JPS63100065A publication Critical patent/JPS63100065A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエンジニアリングセラミクス、工具材料、半導
体基板等に用いられる窒化物焼結体の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a nitride sintered body used for engineering ceramics, tool materials, semiconductor substrates, etc.

〔従来の技術〕[Conventional technology]

S i s N a * T i N t Z r N
 + Hf Nなどの窒化物焼結体は高強度、高硬度、
高耐熱性等の特性を持つエラミクスである為に、エンジ
ニアリングセラミクス、工具材、半導体基板等に広く用
いられている。しかし、焼結性が非常に悪い為に焼結の
際には高温高圧力等の複雑なプロセスが必要である。(
セラミックス 18  NoI  PIO又これを軽減
する為に原3:1粉末を微細化するなどの方策もとられ
ている。(機 材料 1985年4月号 P5) 〔本発明が解決しようとする問題点〕 しかしながら前述の従来技術では焼結の際の困難なプロ
セス条件はつきまとい、特に成型が困難であった。
S i s N a * T i N t Z r N
+ Nitride sintered bodies such as HfN have high strength, high hardness,
Because it is an elamic with characteristics such as high heat resistance, it is widely used in engineering ceramics, tool materials, semiconductor substrates, etc. However, since the sinterability is very poor, complicated processes such as high temperature and high pressure are required for sintering. (
Ceramics 18 NoI PIO In order to alleviate this problem, measures such as making the original 3:1 powder finer are also being taken. (Machine Materials, April 1985 issue, P5) [Problems to be Solved by the Present Invention] However, the above-mentioned prior art was plagued with difficult process conditions during sintering, and in particular, molding was difficult.

本発明はこのような問題点を解決する、ものであり、高
圧力を要せずに窓体的焼結体を得、又容易に成型体を得
ることを可能ならしめる窒化物焼結体の製造方法を提供
するものである。
The present invention solves these problems, and provides a nitride sintered body that makes it possible to obtain a window body-like sintered body without requiring high pressure and to easily obtain a molded body. A manufacturing method is provided.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明の窒化物焼結体の製造方法は焼結助剤成分のゾル
中に窒化物微粉末を混合分散した後ゲル化し、乾燥、焼
結することを特徴とする。
The method for producing a nitride sintered body of the present invention is characterized in that fine nitride powder is mixed and dispersed in a sol containing a sintering aid component, then gelled, dried, and sintered.

〔実施例〕〔Example〕

実施例1 ベリリウムプロポオキサイドα15kgとアルミニウム
イソプロポキサイド0.3kgとセリウムブトキサイド
(11,1ユを混合して複合アルコキシトトシた後、塩
酸1gを含む水Q、5に9を滴下し加水分解してゾ/し
化した。
Example 1 After mixing 15 kg of beryllium propoxide α, 0.3 kg of aluminum isopropoxide, and cerium butoxide (11.1 U) to form a composite alkoxy, 9 was added dropwise to water Q and 5 containing 1 g of hydrochloric acid and hydrolyzed. It turned into a zo/shi.

このゾルの中へ平均粒911000オングストロームの
窒化硅素微粉末を1.5に9混合した。
Fine silicon nitride powder having an average particle size of 911,000 angstroms was mixed into this sol.

この混合ゾルを箱型容器に入れて密封し、約3日間室温
で熟成してゲル化した後5%の開孔率をもつフタに変え
て60℃〜70℃で10日間乾燥しドライゲルを得た。
This mixed sol was placed in a box-shaped container, sealed, and aged at room temperature for about 3 days to form a gel.Then, the lid was replaced with a lid with a 5% porosity and dried at 60°C to 70°C for 10 days to obtain a dry gel. Ta.

このドライヴpを真空中で1400℃まで徐々に昇温し
た後1気圧窒素雰囲気として1700℃で1時間保持し
、窒化硅素焼結体を得た。
The temperature of this drive p was gradually raised to 1400° C. in a vacuum, and then maintained at 1700° C. for 1 hour in a 1 atm nitrogen atmosphere to obtain a silicon nitride sintered body.

曲げ強度は室温で130 klil / wx2であっ
た。
The bending strength was 130 klil/wx2 at room temperature.

実施例2 実施例1に於て、パラフィンでタービンブレード形状の
雌型を乍シ、その中へ窒化硅素微粉末含有ゾルを注入し
た。熟成ゲル化した後パラフィン型より取り出し、乾燥
、焼結を行ない、窒化硅素のタービンブレード焼結体を
得た。
Example 2 In Example 1, a female mold in the shape of a turbine blade was made of paraffin, and a sol containing fine silicon nitride powder was injected into it. After being aged into a gel, it was taken out from the paraffin mold, dried and sintered to obtain a sintered silicon nitride turbine blade.

なお複雑形状の窒化硅素焼結体の成型方法としては更に
実施例1に於て、ドライゲルの状、態での切削加工及び
1400℃までの昇温過程の途中における焼結中間状態
での切削加工も容易に行うことができる・。
In addition, as a method for forming a complex-shaped silicon nitride sintered body, in Example 1, cutting in a dry gel state and cutting in an intermediate state of sintering during the heating process up to 1400°C are performed. It can also be done easily.

実施例3 イツトリウムエトキシドcL2′に9、アルミニウムイ
ソプロポキサイドα2ゆを混合し、複合アルコキシドと
した後、1gの塩酸の入った水400ccを滴下しゾル
とした。このゾル中へプラズマ気相法で得られた窒化硅
素微粉末tokg及び窒化アルミニウムウィスカーα3
に9を混入し、攪拌した。
Example 3 Yttrium ethoxide cL2' was mixed with 9 and aluminum isopropoxide α2 to form a composite alkoxide, and 400 cc of water containing 1 g of hydrochloric acid was added dropwise to form a sol. Silicon nitride fine powder tokg and aluminum nitride whiskers α3 obtained by plasma vapor phase method were added to this sol.
9 was mixed into the mixture and stirred.

これを密封箱型容器中で30℃で2日間熟成ゲル化した
後開孔率5%のフタにかえて60℃で2週間乾燥を行な
ってドライゲルを得た。これを高温雰囲気炉に入れて1
500℃までヘリウム雰囲気で焼結し、1500℃まで
窒素雰囲気で焼結を行ない、窒化硅素焼結体を得た。こ
の焼結体の曲げ強度は室温で150 kg/lus”で
あった。
This was aged in a sealed box type container at 30° C. for 2 days to form a gel, then replaced with a lid having a porosity of 5% and dried at 60° C. for 2 weeks to obtain a dry gel. Put this in a high temperature atmosphere furnace 1
Sintering was performed in a helium atmosphere up to 500°C and in a nitrogen atmosphere up to 1500°C to obtain a silicon nitride sintered body. The bending strength of this sintered body was 150 kg/lus" at room temperature.

実施例4 イツトリウムエトキシド400gを塩酸酸性Q水100
gで加水分解とゾル化を行なった。このゾル中へ窒化ア
ルミニウム微粉末を400g添加混合し分散した。10
(m角の容器にゾルを入れて室温で2日間熟成した後開
孔率3%の穴のあいたフタに代えて70℃で10日間の
乾燥で得た固型物を1500℃真空中で5時間焼結し、
板状窒化アルミニウム焼結体を得た。
Example 4 400 g of yttrium ethoxide was mixed with 100 g of hydrochloric acid acidic Q water.
Hydrolysis and solization were performed using g. 400 g of aluminum nitride fine powder was added, mixed and dispersed into this sol. 10
(After putting the sol in a m square container and aging it at room temperature for 2 days, replace it with a lid with holes with a porosity of 3% and dry it at 70℃ for 10 days. sintered for an hour,
A plate-shaped aluminum nitride sintered body was obtained.

この焼結体の熱伝導率は200 w / m −Okで
あった。ビッカース硬度は1000以上であった。
The thermal conductivity of this sintered body was 200 w/m-Ok. The Vickers hardness was 1000 or more.

実施例5 エチルシリケート127gとアルミニウムイソプロポキ
サイド204.9を混合した換水250gと塩酸α3g
で加水分解し、ゾルを形成した。これへ窒化硅素超微粉
末70gと窒化アルミニウム超微粉末82gを添加混合
攪拌した。箱型密閉容器に入れて室温で2日間の熟成の
後開孔率10%のフタに変えて65℃で2i間乾燥した
。得られたドライゲルを真空中1500℃で2時間焼結
しテS i s A l 4 N 404のサイアロン
組成の焼結体を得た。
Example 5 250 g of water mixed with 127 g of ethyl silicate and 204.9 g of aluminum isopropoxide and 3 g of hydrochloric acid α
was hydrolyzed to form a sol. 70 g of ultrafine silicon nitride powder and 82 g of ultrafine aluminum nitride powder were added to this and mixed and stirred. It was placed in a box-shaped airtight container and aged for 2 days at room temperature, then replaced with a lid with a porosity of 10% and dried at 65° C. for 2 hours. The obtained dry gel was sintered in a vacuum at 1500° C. for 2 hours to obtain a sintered body having a sialon composition of SiS Al 4 N 404.

実施例6 7/レミニウムプロポキ−″、′ド200gを1醗酸性
の水21で加水分解した後窟化硅素超微粉末840gと
炭化硅素超微粉末120gを添加混合分散した。実施例
1と同様にしてゲル化の後、穴アキのフタに代えて75
℃の恒温槽で10日間乾燥した。
Example 6 200g of 7/reminium propoxylate was hydrolyzed with 21% acidic water, and then 840g of ultrafine silicon carbide powder and 120g of ultrafine silicon carbide powder were added and mixed and dispersed.Example 1 After gelling in the same manner as above, replace the hole with a lid of 75
It was dried for 10 days in a constant temperature bath at ℃.

得られた固型物を真空中1600℃で1時間焼結して窒
化硅素と炭化硅素の混合焼結体を得た。
The obtained solid material was sintered in vacuum at 1600° C. for 1 hour to obtain a mixed sintered body of silicon nitride and silicon carbide.

実施例7 マグネシウムメトキサイド300Iを塩酸酸性の水21
で加水分解した1TiN敞粉末640gを添加混合した
。実施例1と同様にしてゲル化の後乾燥、焼成を行ない
TiN焼結体を得た。
Example 7 Magnesium methoxide 300I was mixed with hydrochloric acid acidified water 21
640 g of 1TiN powder that had been hydrolyzed was added and mixed. After gelation, drying and firing were performed in the same manner as in Example 1 to obtain a TiN sintered body.

実施例8 シリコニウムプロポキサイド200.9を水250g、
塩酸251で加水分解した後ZrN@粉末を300g添
加、混合分散した。実施例1と同様にして熟成ゲル化し
、乾燥、焼結によりZrN焼結体を得た。
Example 8 Siliconium propoxide 200.9 was added to 250 g of water,
After hydrolyzing with 251 g of hydrochloric acid, 300 g of ZrN@ powder was added and mixed and dispersed. A ZrN sintered body was obtained by aging, gelling, drying, and sintering in the same manner as in Example 1.

実施例? エチルシリケー)250.9を水250gと塩酸2gで
加水分解した後HfN微粉末をsoag添加、混合分散
した。実施例1と同様にして熟成ゲル化し、乾燥、焼結
によりHfN焼結体を得た。
Example? After hydrolyzing 250.9 (ethyl silica) with 250 g of water and 2 g of hydrochloric acid, HfN fine powder was added to the solution using soap and mixed and dispersed. The product was aged to form a gel in the same manner as in Example 1, dried and sintered to obtain a HfN sintered body.

〔発明の効果〕〔Effect of the invention〕

本発明によシ高融点を持ち、焼結性の良くないとされて
きた窒化物の焼結体を容易に得ることができた。特に従
来窒化物の焼結に不可欠とされていたHIP等の高圧力
を要せずに簡便なる装置で高硬度耐磨耗性高熱伝導耐熱
材料である窒化物焼結体の製造が可能となった。又焼結
時の雰曲気及び温度を調整することにより多孔質窒化物
焼結体も可能であった。
According to the present invention, it was possible to easily obtain a sintered body of nitride, which has a high melting point and has been considered to have poor sinterability. In particular, it has become possible to manufacture nitride sintered bodies, which are high hardness, wear resistance, and high heat conductivity heat-resistant materials, using simple equipment without requiring high pressure such as HIP, which was traditionally considered indispensable for sintering nitrides. Ta. It was also possible to produce porous nitride sintered bodies by adjusting the atmosphere and temperature during sintering.

さらには、ドライゲpの状態あるいは昇温Iの程の途中
における焼結中間体の切削加工も容易であるなどの効果
も有している。
Furthermore, it also has the effect that cutting of the sintered intermediate in the dry stage P state or in the middle of the temperature rising stage I is easy.

硼素の粉末を用いても、同様の効果が得られる。A similar effect can be obtained using boron powder.

以上that's all

Claims (3)

【特許請求の範囲】[Claims] (1)窒化物焼結体を製造する方法において、焼結助剤
成分のゾル中に窒化物微粉末を混合分散した後ゲル化し
、乾燥、焼結することを特徴とする窒化物焼結体の製造
方法。
(1) A method for producing a nitride sintered body, characterized in that fine nitride powder is mixed and dispersed in a sol containing a sintering aid component, and then gelled, dried, and sintered. manufacturing method.
(2)窒化物が窒化硅素、窒化アルミニウム、窒化チタ
ン、窒化ジルコニウム、窒化ハフニウムであることを特
徴とする特許請求の範囲第一項記載の窒化物焼結体の製
造方法。
(2) The method for producing a nitride sintered body according to claim 1, wherein the nitride is silicon nitride, aluminum nitride, titanium nitride, zirconium nitride, or hafnium nitride.
(3)焼結助剤がBeO、SiO_2、Y_2O_3、
Al_2O_3、MgO、ZrO_2、CeO_2希土
類酸化物の単体もしくは複合体であり、金属アルコキシ
ドを加水分解してゾルとすることを特徴とする特許請求
の範囲第一項記載の窒化物焼結体の製造方法。
(3) Sintering aids are BeO, SiO_2, Y_2O_3,
A method for producing a nitride sintered body according to claim 1, which is a simple substance or a composite of rare earth oxides such as Al_2O_3, MgO, ZrO_2, and CeO_2, and is characterized in that a metal alkoxide is hydrolyzed to form a sol. .
JP61243807A 1986-10-14 1986-10-14 Manufacture of nitride sintered body Pending JPS63100065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61243807A JPS63100065A (en) 1986-10-14 1986-10-14 Manufacture of nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61243807A JPS63100065A (en) 1986-10-14 1986-10-14 Manufacture of nitride sintered body

Publications (1)

Publication Number Publication Date
JPS63100065A true JPS63100065A (en) 1988-05-02

Family

ID=17109227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61243807A Pending JPS63100065A (en) 1986-10-14 1986-10-14 Manufacture of nitride sintered body

Country Status (1)

Country Link
JP (1) JPS63100065A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242972A (en) * 1987-03-31 1988-10-07 株式会社東芝 Manufacture of aluminum nitride sintered body
JPH01242469A (en) * 1988-03-24 1989-09-27 Nisshin Flour Milling Co Ltd Production of sintered body of aluminum nitride having improved heat conductivity
JPH0283261A (en) * 1988-09-21 1990-03-23 Shin Etsu Chem Co Ltd Silicon nitride-based target material for sputtering
US8318327B2 (en) 2002-03-21 2012-11-27 Lam Research Corporation Low contamination components for semiconductor processing apparatus and methods for making components

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242972A (en) * 1987-03-31 1988-10-07 株式会社東芝 Manufacture of aluminum nitride sintered body
JPH01242469A (en) * 1988-03-24 1989-09-27 Nisshin Flour Milling Co Ltd Production of sintered body of aluminum nitride having improved heat conductivity
JPH0283261A (en) * 1988-09-21 1990-03-23 Shin Etsu Chem Co Ltd Silicon nitride-based target material for sputtering
US8318327B2 (en) 2002-03-21 2012-11-27 Lam Research Corporation Low contamination components for semiconductor processing apparatus and methods for making components
US8935990B2 (en) 2002-03-21 2015-01-20 Lam Research Corporation Low contamination components for semiconductor processing apparatus and methods for making components

Similar Documents

Publication Publication Date Title
JPH0388765A (en) Dimension-controlled ceramics
CN111620679B (en) Method for preparing high-purity mullite material by taking fused silica as silicon source
JPH07277814A (en) Alumina-based ceramic sintered compact
JPH0577632B2 (en)
JPS63100065A (en) Manufacture of nitride sintered body
US5439851A (en) Process for coating ceramic powder with alumina by sol-gel process and improved densification
JPH0339967B2 (en)
JP2786719B2 (en) Method for producing rare earth oxide sintered body
JPH0549627B2 (en)
JPH0224789B2 (en)
JPH025711B2 (en)
SU1571035A1 (en) Charge for producing ceramics
JPS5926966A (en) Manufacture of ceramics green molded body
JPS63100063A (en) Manufacture of carbide sintered body
JPS63265849A (en) Molding material for ceramics molding
JPH03247557A (en) Production of alumina-silica-based ceramic sintered body excellent in high-temperature strength
JPS62202703A (en) Method of molding ceramics
CN112500162A (en) YAG transparent ceramic and densification sintering method thereof
JPS61158403A (en) Method of molding ceramic
JP2916934B2 (en) Method for producing sialon-based sintered body
JPS62288166A (en) Manufacture of tungsten carbide-oxide composite sintered body
JPS6395155A (en) Composite sintered body comprising carbide and oxide
JPH0818876B2 (en) Method for manufacturing silicon nitride sintered body
JPS6270269A (en) Production of aluminum nitride sintered body
JPH0422864B2 (en)