JPH0329740B2 - - Google Patents

Info

Publication number
JPH0329740B2
JPH0329740B2 JP61024400A JP2440086A JPH0329740B2 JP H0329740 B2 JPH0329740 B2 JP H0329740B2 JP 61024400 A JP61024400 A JP 61024400A JP 2440086 A JP2440086 A JP 2440086A JP H0329740 B2 JPH0329740 B2 JP H0329740B2
Authority
JP
Japan
Prior art keywords
weight
slurry
mold
ceramic powder
ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61024400A
Other languages
Japanese (ja)
Other versions
JPS62182149A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61024400A priority Critical patent/JPS62182149A/en
Publication of JPS62182149A publication Critical patent/JPS62182149A/en
Publication of JPH0329740B2 publication Critical patent/JPH0329740B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、セラミツクスの噴出成形において、
成形後の脱脂工程を簡素化すると伴に、従来多量
に使用されていたバインダーを大幅に低減せしめ
ることにより、焼結体の密度を高めることのでき
る製造方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a method for injection molding ceramics.
The present invention relates to a manufacturing method that can increase the density of a sintered body by simplifying the degreasing process after molding and significantly reducing the amount of binder that has conventionally been used in large amounts.

(従来の技術) セラミツクスの成形方法は多種多様であるが、
近年射出成形機による加工方法が盛んに検討され
るようになつてきた。この加工方法の長所として
は、寸法精度が良いこと、複雑形状物が出来るこ
と、大量生産も少量生産も可能なこと等が挙げら
れる。
(Conventional technology) There are a wide variety of methods for molding ceramics, but
In recent years, processing methods using injection molding machines have been actively studied. Advantages of this processing method include good dimensional accuracy, the ability to produce products with complex shapes, and the ability to produce in large quantities or in small quantities.

(発明が解決しようとする問題点) 一方、セラミツクス粉末と伴に配合化されるバ
インダー量が他の成形方法(例えば、プレス成形
とか押し出し成形)に比較して3〜5倍(セラミ
ツクス粉末に対して10〜20wt%)と多く、この
ことが経済的なデメリツトばかりでなく、セラミ
ツクス粉末の充填密度を低下せしめ、焼成後の収
縮率を大きくさせ、充分な寸法精度を保つことを
困難にせしめていた。
(Problems to be Solved by the Invention) On the other hand, the amount of binder mixed with ceramic powder is 3 to 5 times that of other molding methods (for example, press molding or extrusion molding) (relative to ceramic powder). (10 to 20 wt%), which not only has an economic disadvantage, but also reduces the packing density of the ceramic powder, increases the shrinkage rate after firing, and makes it difficult to maintain sufficient dimensional accuracy. Ta.

さらに、このバインダーを焼成により除去する
脱脂工程における加熱は、バインダーの分解蒸発
が急激に起こり、成形体に破壊・亀裂が発生しな
い為に、1〜10℃/時間とゆつくりした昇温速度
で行なう必要がある。この工程は通常3日間以上
も掛かり生産性の面で大きな問題となつていた。
Furthermore, in order to avoid rapid decomposition and evaporation of the binder and breakage and cracking of the molded product, heating in the degreasing process to remove this binder by firing is carried out at a slow heating rate of 1 to 10°C/hour. It is necessary to do it. This process usually takes more than three days and has been a major problem in terms of productivity.

従来の射出成形方法においては、セラミツクス
粉末に流動性と賦形性を与える為に、(1)熱可塑性
樹脂やパラフイン、ワツクス等の熱により溶融す
る材料をバインダーとして用いるか、(2)水等を溶
解として用いることにより流動性を与え、かつ水
溶性バインダーを併用することにより賦形性を与
える方法が行なわれていたが、前者の方法では、
上記した問題点があり、また後者の方法でも、有
機質バインダー量は、軽減できるが、脱型できる
程の粘度がなければならず、そのため結局吐出圧
力が増大し、成形機に摩耗が生じる。その上、水
溶性バインダー量を0に近くすることは出来ない
ので、脱脂工程を省略することは不可能であつ
た。
In conventional injection molding methods, in order to give fluidity and formability to ceramic powder, (1) a material that melts with heat, such as a thermoplastic resin, paraffin, or wax, is used as a binder, or (2) water, etc. is used as a binder. A method has been used in which fluidity is imparted by using as a solution and shapeability is imparted by using a water-soluble binder together, but in the former method,
The latter method also has the above-mentioned problems, and although the amount of organic binder can be reduced, it must have a viscosity that can be removed from the mold, which ultimately increases the discharge pressure and causes wear on the molding machine. Moreover, since the amount of water-soluble binder cannot be made close to 0, it has been impossible to omit the degreasing step.

(問題点を解決するための手段) 本発明は、このような従来の問題点に着目して
なされたもので、本質的に賦形性を与える有機質
バインダーを少量としている為、従来長時間掛け
て行なわれていた脱脂工程が、ほぼ省略可能であ
るばかりか、セラミツクス粉末の充填密度を向上
せしめ、かつ低い吐出圧力で成形できるので成形
機に摩耗を生じせしめることも少ない。また、本
発明の本質的な構成要因を考えれば、単に射出成
形加工方法のみに限定せずに、泥漿鋳込みの成形
方法等他の成形方法にも充分応用され得るもので
ある。
(Means for Solving the Problems) The present invention has been made by focusing on such conventional problems, and because it uses a small amount of organic binder that essentially provides shapeability, it is difficult to Not only can the previously performed degreasing step be almost omitted, the packing density of the ceramic powder can be improved, and molding can be performed at low discharge pressure, so there is less wear on the molding machine. Furthermore, considering the essential constituent factors of the present invention, it is not limited to merely injection molding processing methods, but can be sufficiently applied to other molding methods such as slurry casting molding methods.

本発明では、セラミツクス粉末にエステル樹脂
エマルシヨンとエステル系溶剤を必須成分とし、
界面活性剤を加えてスラリーとなし、PHを8以上
にして射出成形機により金型内に注入後、金型内
の温度を50〜100℃に加温し、上記スラリーを固
化させ成形体として取り出し、炉焼結を行うこと
によりセラミツクス焼結体を得ることができる。
また、この製造方法において、エステル樹脂エマ
ルシヨンおよびエステル系溶剤の添加量は、セラ
ミツクス粉末に対して0.5〜10重量%および0.1〜
5重量%が適当である。
In the present invention, the ceramic powder contains an ester resin emulsion and an ester solvent as essential components,
Add a surfactant to make a slurry, adjust the pH to 8 or higher, and inject it into a mold using an injection molding machine.Then, heat the temperature inside the mold to 50-100℃ to solidify the slurry and form a molded product. A ceramic sintered body can be obtained by taking it out and performing furnace sintering.
In addition, in this manufacturing method, the amount of the ester resin emulsion and ester solvent added is 0.5 to 10% by weight and 0.1 to 10% by weight based on the ceramic powder.
5% by weight is suitable.

以下に本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明に使用するセラミツクスの粉末として
は、アルミナ、窒化硅素、炭化硅素、サイアロ
ン、チタン酸バリウム、酸化ジルコニウム、酸化
マグネシウム、酸化ベリリウム、酸化チタン、酸
化亜鉛、酸化イツトリウム、酸化カルシウム、酸
化ハフニウム、窒化ホウ素、窒化チタン、炭化ジ
ルコニウム、フオルステライト、ステアタイト、
ムライト、コージイエライト、炭化タングステ
ン、二酸化硅素、カーボン、モンモリロナイト、
バーミキユライト、カオリン、タルク、セピオラ
イト、アタパルジヤイト、木節粘土、白陶土、長
石等が挙げられる。また、セラミツクス粉末の組
成は、上記したような単一組成物または化合物、
または固溶体物または共晶体物の単独もしくはそ
れらの複数の混合物として使用しても一向に差し
仕えない。また、上記した物質の焼結体の特性を
改良するために、複数の添加剤が加えられた系の
ものについても使用することができる。またこれ
らのセラミツクスの粉末は、各種ミルによる粉砕
と分級の工程を経て得られる細分化プロセスによ
つて提供されたものでも、あるいは、固相反応
法、固相気相反応法、液相法、気相法等のフアイ
ンセラミツクスの形成プロセスにより提供された
もののいずれか、もしくはその混合されたもので
もかまわない。さらには、上記した粉末以外に金
属もしくは合金の粉末も使用することができる。
これら粉末の粒径は、微細な程、最終的に達成さ
れる焼結体の品質は良好でありその最大粒径は、
おおよそ30μである。これ以上粒径が大きいと後
述する加温固化し取り出した後の焼成工程で成形
体が溶融し、形状を保持することができない状態
になる。また、このセラミツクス粉末の焼成体に
おける強度等の品質特性を最大に発揮させようと
すれば、セラミツクス粉末の粒径分布は狭く、粒
子径状は等方的で、その粒径は1μ以下であるこ
とが好ましい。
Ceramic powders used in the present invention include alumina, silicon nitride, silicon carbide, sialon, barium titanate, zirconium oxide, magnesium oxide, beryllium oxide, titanium oxide, zinc oxide, yttrium oxide, calcium oxide, hafnium oxide, and nitride. Boron, titanium nitride, zirconium carbide, forsterite, steatite,
Mullite, cordierite, tungsten carbide, silicon dioxide, carbon, montmorillonite,
Examples include vermiculite, kaolin, talc, sepiolite, attapalgite, kibushi clay, white china clay, and feldspar. In addition, the composition of the ceramic powder may be a single composition or a compound as described above,
Alternatively, there is no problem in using a solid solution or a eutectic alone or in a mixture of a plurality of them. Further, in order to improve the characteristics of the sintered body of the above-mentioned substances, a system in which a plurality of additives are added can also be used. In addition, these ceramic powders may be provided by a fragmentation process obtained through a process of pulverization and classification using various mills, or may be obtained by a solid phase reaction method, a solid phase gas phase reaction method, a liquid phase method, It may be any one provided by a fine ceramics formation process such as a gas phase method, or a mixture thereof. Furthermore, in addition to the powders mentioned above, metal or alloy powders can also be used.
The finer the particle size of these powders, the better the quality of the final sintered body, and the maximum particle size is
It is approximately 30μ. If the particle size is larger than this, the molded body will melt in the firing process after being heated and solidified and taken out, which will be described later, and will be unable to maintain its shape. In addition, in order to maximize the quality characteristics such as strength in the fired body of ceramic powder, the particle size distribution of ceramic powder is narrow, the particle size shape is isotropic, and the particle size is 1μ or less. It is preferable.

本発明に用いるエステル樹脂エマルジヨンと
は、水分散型エマルシヨンの樹脂組成がエステル
系合成樹脂より成るものである。このエステル系
合成樹脂には、アクリル酸、メタクリル酸、イタ
コン酸、マレイン酸又はフマル酸などの不飽和カ
ルボン酸類のエステル誘導体があげられ、そのア
クリル酸における例として、アクリル酸メチル、
アクリル酸エチル、アクリル酸ブチル、アクリル
酸−2−エチルヘキシル、アクリル酸グリシジ
ル、アクリル酸−2−ヒドロキシエチル、アクリ
ル酸ヒドロキシプロピルなどがある。また、これ
らの樹脂に対して、ジビニル化合物あるいは熱硬
化樹脂を併用して共重合させたものや、N−メチ
ロールアクリルアミド、グルシジルメタクリレー
ト、ヒドロキシエチルメタクリレートとアクリル
酸等の樹脂の共重合樹脂によれば反応硬化性が得
られる。
The ester resin emulsion used in the present invention is a water-dispersed emulsion whose resin composition consists of an ester-based synthetic resin. Examples of this ester-based synthetic resin include ester derivatives of unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid. Examples of acrylic acid include methyl acrylate,
Examples include ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, glycidyl acrylate, 2-hydroxyethyl acrylate, and hydroxypropyl acrylate. In addition, these resins may be copolymerized with divinyl compounds or thermosetting resins, or copolymerized with resins such as N-methylol acrylamide, glycidyl methacrylate, hydroxyethyl methacrylate, and acrylic acid. Reactive curability can be obtained.

本発明に用いるエステル系溶剤とは、多くは低
級脂肪酸と各種アルコールとのエステルであり、
例えば酢酸メチル、酢酸エチル、酢酸ブチル、酢
酸エチレングリコールモノメチルエーテル、酢酸
エチレングリコールモノエチルエーテル、酢酸ジ
エチレングリコールモノメチルエーテル、酢酸ジ
エチレングリコールモノエチルエーテル等があ
る。
The ester solvents used in the present invention are mostly esters of lower fatty acids and various alcohols,
Examples include methyl acetate, ethyl acetate, butyl acetate, ethylene glycol monomethyl acetate, ethylene glycol monoethyl acetate, diethylene glycol monomethyl acetate, diethylene glycol monoethyl acetate, and the like.

上記エステル樹脂エマルシヨンあるいはエステ
ル系溶剤の使用量は、セラミツクス粉末に対して
それぞれ0.5〜10重量%、0.1〜5重量%が適当で
ある。エステル樹脂エマルシヨンの使用量が0.5
重量%以下では、セラミツクススラリーの固化時
における成形体強度が得られないし、10重量%以
上では従来技術の改良とはならず、脱脂工程が必
要となる。エステル系溶剤の使用量が0.1重量%
以下の場合セラミツクススラリーの固化が起らな
かつたり、固化してもその強度が充分でない。ま
た、5重量%以上では、常温でもゲル化するた
め、貯蔵性に欠ける。
The appropriate amount of the ester resin emulsion or ester solvent used is 0.5 to 10% by weight and 0.1 to 5% by weight, respectively, based on the ceramic powder. The amount of ester resin emulsion used is 0.5
If it is less than 10% by weight, the strength of the molded product cannot be obtained when the ceramic slurry is solidified, and if it is more than 10% by weight, it will not be an improvement over the prior art and a degreasing step will be required. The amount of ester solvent used is 0.1% by weight.
In the following cases, the ceramic slurry does not solidify, or even if it solidifies, its strength is insufficient. Moreover, if it is more than 5% by weight, it will gel even at room temperature, resulting in poor storage stability.

本発明では、セラミツクス粉末を分散させてか
らPHを8以上に調整するが、PH8以下ではスラリ
ーの固化が起らない。このPH調整にはアンモニ
ア、アミン等の揮発性化合物が望ましい。
In the present invention, after dispersing the ceramic powder, the pH is adjusted to 8 or higher; however, if the pH is lower than 8, solidification of the slurry does not occur. Volatile compounds such as ammonia and amines are desirable for this pH adjustment.

本発明では、セラミツクススラリーを射出成形
機により金型内に注入してから、加温するが、加
温は成形体の形状によつても異なつてくるが、所
定の温度に至つてから10秒以上であればよい。
In the present invention, ceramic slurry is injected into a mold by an injection molding machine and then heated. The heating time varies depending on the shape of the molded product, but the heating time is 10 seconds after reaching a predetermined temperature. Any above is sufficient.

本発明においては、まずセラミツクス粉末を
水、エステル樹脂エマルシヨンおよびエステル系
溶剤からなる溶媒中で界面活性剤を使用して混合
分散装置にて充分分散せしめスラリーを作成し、
PHを調整する。なおこの際、本発明の本質を損な
わない範囲で以下のような添加剤を使用すること
が出来る。すなわちスラリーの粘性を改良する為
に、メチルセルロース、エチルメチルセルロー
ス、ヒドロキシプロピルメチルセルロース、酢酸
エチルセルロース、ヒドロキシメチルセルロー
ス、ヒドロキシプロピルセルロース、澱粉、膠、
カゼイン、カルボキシメチルセルロース、ポリビ
ニルアルコール、アラビアゴム、変性マレイン酸
樹脂、デキストリン、グアーガム、エチレン酢酸
ビニル共重合体樹脂、アクリル酸エステル樹脂、
ポリブタジエン、スチレンアクリル酸エステル共
重合体樹脂等の有機高分子化合物の粉末もしくは
ワニスあるいはエマルシヨン等が挙げられる。
In the present invention, first, ceramic powder is sufficiently dispersed in a solvent consisting of water, an ester resin emulsion, and an ester solvent using a mixing and dispersing device using a surfactant to create a slurry.
Adjust PH. At this time, the following additives may be used within a range that does not impair the essence of the present invention. That is, in order to improve the viscosity of the slurry, methylcellulose, ethylmethylcellulose, hydroxypropylmethylcellulose, ethylcellulose acetate, hydroxymethylcellulose, hydroxypropylcellulose, starch, glue,
Casein, carboxymethyl cellulose, polyvinyl alcohol, gum arabic, modified maleic acid resin, dextrin, guar gum, ethylene vinyl acetate copolymer resin, acrylic ester resin,
Examples include powders, varnishes, and emulsions of organic polymer compounds such as polybutadiene and styrene acrylate copolymer resins.

上記の要領で作成したスラリーを、好ましくは
真空中で充分脱泡させてから射出成形加工する。
脱泡させていないと凍結時に、溶媒の結晶化の為
に成形体に亀裂を生じさせるばかりでなく、焼結
後の焼結体の強度にも悪影響を及ぼす恐れがあ
る。次に該スラリーを射出成形機を用いて成形加
工するが、この際の射出成形機のシリンダー温度
は常温、具体的にはスラリーの融点以上沸点以下
の温度がよい。この時の射出圧力が比較的低くて
も充分成形できることも本発明の大きな特徴の一
つである。金型内に射出されたスラリーは、金型
温度50〜100℃迄加温し、そのまま10秒以上保持
させ、その後エジエクトロツドの機構等により金
型から、固化した成形体を取り外す。但し、金型
を設計は、水等は加温時に蒸発して水蒸気を発生
するので、必要に応じて蒸気圧力の逃げを配慮し
ておくことが好ましい。
The slurry prepared in the above manner is preferably sufficiently defoamed in a vacuum before injection molding.
If defoaming is not performed, the molded body may not only crack due to crystallization of the solvent upon freezing, but also have a negative effect on the strength of the sintered body after sintering. Next, the slurry is molded using an injection molding machine, and the cylinder temperature of the injection molding machine at this time is preferably room temperature, specifically a temperature above the melting point and below the boiling point of the slurry. One of the major features of the present invention is that sufficient molding can be achieved even if the injection pressure at this time is relatively low. The slurry injected into the mold is heated to a mold temperature of 50 to 100°C, held at that temperature for 10 seconds or more, and then the solidified molded body is removed from the mold using an ejector rod mechanism or the like. However, when designing the mold, it is preferable to take into consideration the escape of steam pressure as necessary, since water and the like evaporate during heating and generate steam.

金型より取り出された固化成形体は、最初から
炉焼結の一段方式で、焼結体を得ることができ
る。この場合、炉焼結時の昇温速度は従来方法で
は全く不可能な程大きくすることができるのは、
本発明の最大の特徴である。従来法のように大量
のバインダーが配合されている生の成形体は、焼
結時にバインダーが分解し大量のガスを発生させ
たり、表面付近で酸化物を生成し、これが内部か
らのガスの発散をしにくくし、亀裂等の欠陥を起
させていたが、本発明においては、使用している
バインダー量が少なく、また添加した溶媒は分解
されることなく、蒸発によつて除去されるので分
解ガスによる体積膨張が少なく、従つて昇温速度
も非常に大きく取ることができるものである。具
体的には50℃/時間以上の昇温速度が可能とな
り、薄い成形体等の場合はさらに2〜4倍程度の
昇温速度も可能となる。
The solidified molded body taken out from the mold can be sintered in a single stage of furnace sintering from the beginning. In this case, the temperature increase rate during furnace sintering can be increased to a level that is completely impossible with conventional methods.
This is the greatest feature of the present invention. When a raw molded body is mixed with a large amount of binder as in the conventional method, the binder decomposes during sintering and generates a large amount of gas, and oxides are generated near the surface, which causes gas to escape from the inside. However, in the present invention, the amount of binder used is small and the added solvent is removed by evaporation without being decomposed. Volumetric expansion due to gas is small, and therefore the heating rate can be very high. Specifically, a temperature increase rate of 50° C./hour or more is possible, and in the case of thin molded objects, a temperature increase rate of about 2 to 4 times is also possible.

以下実施例により詳述する。 This will be explained in detail below using examples.

実施例 1 セラミツクス粉末として酸化アルミニウム(純
度99.9%、平均粒径0.5μ)460重量部を界面活性
剤8重量部が添加された水90重量部中に、エステ
ル樹脂エマルシヨン(固形分50%)を10重量部と
ブチルカルビトールアセテート(酢酸エチレング
リコールモノエチルエーテル)3重量部を加え、
ハイスピードインペラーミルにて高速分散せしめ
スラリーとなし、更にアンモニア水を2重量部加
え混合し、真空脱泡装置にて脱泡後、射出温度を
室温とし、歯車状の複雑形状部品の成形できる金
型内に射出成形機により射出注入し、その後金型
内でスラリーを加温、固化せしめてから、固化成
形体として取り出し、大気炉中で70℃/時間の昇
温速度で1700℃まで上昇せしめ焼結体を得た。こ
の焼結体の寸法精度及び密度は非常に良好であつ
た。
Example 1 An ester resin emulsion (solid content 50%) was added to 460 parts by weight of aluminum oxide (purity 99.9%, average particle size 0.5μ) as ceramic powder in 90 parts by weight of water to which 8 parts by weight of a surfactant was added. Add 10 parts by weight and 3 parts by weight of butyl carbitol acetate (ethylene glycol monoethyl ether acetate),
High-speed dispersion is made into a slurry using a high-speed impeller mill, and 2 parts by weight of ammonia water is added and mixed. After defoaming using a vacuum defoaming device, the injection temperature is set to room temperature, and the molding material is made into a slurry that can be molded into complex-shaped parts such as gears. The slurry is injected into a mold using an injection molding machine, and then heated and solidified in the mold, taken out as a solidified molded product, and heated to 1700°C at a heating rate of 70°C/hour in an atmospheric furnace. A sintered body was obtained. The dimensional accuracy and density of this sintered body were very good.

実施例 2 実施例1の中の酸化アルミニウム460重量部を
酸化イツトリウム3mol%含有した酸化ジルコニ
ウム(中心粒径0.8μ)600重量部としてあとは実
施例1と同様な方法で得た固化成形体を不活性ガ
ス雰囲気炉中で80℃/時間の昇温速度で150℃ま
で昇温させ、その後、その仮焼された成形体を
1500℃2時間焼結して得られた焼結体は、寸法精
度及び密度とも非常に良好であつた。
Example 2 A solidified molded body obtained in the same manner as in Example 1 except that 460 parts by weight of aluminum oxide in Example 1 was replaced with 600 parts by weight of zirconium oxide (center particle size 0.8μ) containing 3 mol% of yttrium oxide. The temperature was raised to 150°C at a heating rate of 80°C/hour in an inert gas atmosphere furnace, and then the calcined compact was heated to 150°C.
The sintered body obtained by sintering at 1500°C for 2 hours had very good dimensional accuracy and density.

比較例 1 実施例1中のブチルカルビトールアセテートの
添加を行なわず、酸化アルミニウム100重量部に
対して界面活性剤8重量部が添加された水90重量
部中にエステル樹脂エマルシヨンを10重量部加え
たものを使用し、あとは実施例1と同様な方法で
固化成形体を得たが、金型から取り出す時に、成
形体の形状が完全に崩れてしまつた。
Comparative Example 1 Butyl carbitol acetate in Example 1 was not added, but 10 parts by weight of ester resin emulsion was added to 90 parts by weight of water to which 8 parts by weight of surfactant was added to 100 parts by weight of aluminum oxide. A solidified molded product was obtained in the same manner as in Example 1, but the shape of the molded product completely collapsed when taken out from the mold.

比較例 2 実施例1のエステル樹脂エマルシヨンを酢酸ビ
ニル樹脂エマルシヨンに代えて、あとは実施例1
と同様な方法で固化成形体を得たが、これも金型
から取り出す時に、成形体の形状が完全に崩れて
しまつた。
Comparative Example 2 The ester resin emulsion in Example 1 was replaced with vinyl acetate resin emulsion, and the rest was as in Example 1.
A solidified molded product was obtained in the same manner as above, but the shape of the molded product completely collapsed when it was removed from the mold.

比較例 3 実施例1中のアンモニア水の添加を0とし、あ
とは実施例1と同様にして凍結成形体を得たが、
これも金型から取り出す時に、成形体の形状が崩
れてしまつた。
Comparative Example 3 A frozen molded product was obtained in the same manner as in Example 1 except that the addition of ammonia water in Example 1 was set to 0.
The shape of the molded product also collapsed when it was removed from the mold.

比較例 4 実施例1中のブチルカルビトールアセテートの
添加量3重量部を30重量部としてセラミツクスス
ラリーを作成したが、常温のままで貯蔵中(スラ
リー作成3日後)に固化してしまつた。但し、ス
ラリー作成直後に、脱泡、射出成形したものは、
その後の焼成で焼結体を得ることができた。
Comparative Example 4 A ceramic slurry was prepared by changing the amount of butyl carbitol acetate added from 3 parts by weight in Example 1 to 30 parts by weight, but it solidified during storage at room temperature (3 days after preparation of the slurry). However, if the slurry is degassed and injection molded immediately after making the slurry,
A sintered body could be obtained by subsequent firing.

(発明の効果) 以上の実施例で明らかなように、本発明の方法
を用いてセラミツクス焼結体を製造すれば、有機
バインダー量を大幅に低減すると伴に昇温速度を
非常に速く行なうことが可能となるばかりでな
く、焼結体の密度が上がりその品質特性を向上せ
しめることができる。
(Effects of the Invention) As is clear from the above examples, if a ceramic sintered body is produced using the method of the present invention, the amount of organic binder can be significantly reduced and the temperature increase rate can be extremely fast. Not only is this possible, but the density of the sintered body can be increased and its quality characteristics can be improved.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツクス粉末に対して、エステル樹脂エ
マルシヨンを0.5〜10重量%、エステル系溶剤0.1
〜5重量%を必須成分として、水溶媒中で、界面
活性剤を用いてセラミツクス粉末を分散せしめて
から、PHを8以上に調整して得られるスラリー
を、射出成形機により金型内に注入後、金型内の
温度を50〜100℃に加温し、上記スラリーを固化
させ成形体として取り出し、炉焼結を行なうこと
を特徴とするセラミツクス焼結体の製造方法。
1 0.5 to 10% by weight of ester resin emulsion and 0.1% of ester solvent based on ceramic powder
Disperse ceramic powder with ~5% by weight as an essential component in an aqueous solvent using a surfactant, then adjust the pH to 8 or higher, and inject the resulting slurry into a mold using an injection molding machine. Thereafter, the temperature inside the mold is heated to 50 to 100°C, the slurry is solidified, and the molded body is taken out and sintered in a furnace.
JP61024400A 1986-02-06 1986-02-06 Manufacture of ceramic sintered body Granted JPS62182149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61024400A JPS62182149A (en) 1986-02-06 1986-02-06 Manufacture of ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61024400A JPS62182149A (en) 1986-02-06 1986-02-06 Manufacture of ceramic sintered body

Publications (2)

Publication Number Publication Date
JPS62182149A JPS62182149A (en) 1987-08-10
JPH0329740B2 true JPH0329740B2 (en) 1991-04-25

Family

ID=12137110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61024400A Granted JPS62182149A (en) 1986-02-06 1986-02-06 Manufacture of ceramic sintered body

Country Status (1)

Country Link
JP (1) JPS62182149A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4726403B2 (en) * 2003-02-26 2011-07-20 京セラ株式会社 Method for producing three-dimensional structure and method for producing ceramic sintered body

Also Published As

Publication number Publication date
JPS62182149A (en) 1987-08-10

Similar Documents

Publication Publication Date Title
JP2604592B2 (en) Molding method of metal, ceramic powder, etc. and composition therefor
EP0294305B1 (en) Alumina-based core containing yttria and method of producing the same
JP4236285B2 (en) Process for producing molded articles from ceramic and metal powders
US5250251A (en) Aqueous process for injection molding ceramic powders at high solids loadings
JP2928486B2 (en) Forming method
HU212043B (en) Moulding mass for producing inorganic sintered products and process for producing said products
EP0599933A1 (en) Moulding finely divided sinterable material
JPH064502B2 (en) Ceramics manufacturing method
US4814302A (en) Stable slip-casting compositions having a base of powders containing finely divided aluminum nitride
JPH0329740B2 (en)
CN111875393B (en) Sintering aid, aluminum titanate ceramic precursor, aluminum titanate ceramic, and method for producing same
JPH02267160A (en) High strength alumina
JPH0433611B2 (en)
WO1988001990A1 (en) Improved binders for refractories
JPH111704A (en) Powder forming method
JP4701494B2 (en) Method for producing sintered boron carbide
US6328918B1 (en) Low pressure injection molding of metal and ceramic threaded components
JPH0820803A (en) Production of sintered compact
JPS6311562A (en) Material for injection forming
JP2003201178A (en) Method of producing carbide sintered compact and carbide sintered compact
JP2979445B2 (en) Casting method of ceramics
WO1988001991A1 (en) Binders for refractory grain
JPS5899171A (en) Non-oxide ceramic composition and manufacture of non-oxide ceramic sintered body therefrom
JPH04275970A (en) Ceramic composition for injection molding
JPS62191458A (en) Manufacture of ceramic formed body

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term