JPH04334849A - Composite shadow mask and manufacture thereof - Google Patents

Composite shadow mask and manufacture thereof

Info

Publication number
JPH04334849A
JPH04334849A JP10617291A JP10617291A JPH04334849A JP H04334849 A JPH04334849 A JP H04334849A JP 10617291 A JP10617291 A JP 10617291A JP 10617291 A JP10617291 A JP 10617291A JP H04334849 A JPH04334849 A JP H04334849A
Authority
JP
Japan
Prior art keywords
shadow mask
bismuth
powder
copper
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10617291A
Other languages
Japanese (ja)
Inventor
Hiroshi Kimura
寛 木村
Masayasu Koitabashi
小板橋 正康
Tetsuya Watanabe
徹也 渡辺
Mutsumi Hattori
睦 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10617291A priority Critical patent/JPH04334849A/en
Publication of JPH04334849A publication Critical patent/JPH04334849A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

PURPOSE:To provide a composite shadow mask which is high in prevention effect against thermal deformation, and furthermore hardly deteriorates its cathode with oxygen emitted. CONSTITUTION:A composite shadow mask is so constituted that a film 4 is plated on a shadow mask 3 in which the film is made of bismuth alloys containing 3 to 17% copper by atom, or bismuth alloys containing 2 to 6% germanium by atom, or bismuth alloys containing 1 to 6% tungsten by atom and/or of bismuth alloys containing 1 to 10%, plural kinds of elements out of copper, germanium and tungsten by atom in total.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、カラーテレビ用ブラ
ウン管のシャドウマスクに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shadow mask for a cathode ray tube for color television.

【0002】0002

【従来の技術】従来、シャドウマスクの熱変形防止には
、シャドウマスク上にBi2O3 粉末の被膜を設ける
ことが行われてきた。この技術は発明者らの先の出願(
特公昭61−6969 号公報「カラーブラウン管」)
に詳細に開示されており、これを図1に示す。図におい
て、1は内部を高真空に保つガラス製の外囲器、2は電
子ビームを放出する電子銃、3は色選択電極を構成する
シャドウマスクであり、例えば多数のスリットをもつ薄
い鉄板からなる。4はBi2O3 粉末よりなる被膜で
ある。なお、Bi2O3 粉末の付着には、通常水ガラ
スが使用されている。
2. Description of the Related Art Conventionally, in order to prevent thermal deformation of a shadow mask, a coating of Bi2O3 powder has been provided on the shadow mask. This technology was developed in the inventors' earlier application (
Special Publication No. 61-6969 “Color Braun Tube”)
This is disclosed in detail in FIG. In the figure, 1 is a glass envelope that maintains a high vacuum inside, 2 is an electron gun that emits an electron beam, and 3 is a shadow mask that constitutes a color selection electrode.For example, it is made of a thin iron plate with many slits. Become. 4 is a coating made of Bi2O3 powder. Note that water glass is usually used for attaching the Bi2O3 powder.

【0003】シャドウマスク3上に設けられたBi2O
3 の被膜4は、電子銃2からの電子ビームのうち、シ
ャドウマスク3のスリット孔以外の部分に衝突する電子
ビームを有効に反射し、その結果、シャドウマスク3の
温度上昇が妨げられるため、シャドウマスク3の熱変形
が防止される。従来例におけるBi2O3 被膜による
熱変形防止能力、すなわちアンチドーミング効果は30
〜35%であった。
Bi2O provided on the shadow mask 3
The coating 4 of No. 3 effectively reflects the electron beam from the electron gun 2 that impinges on parts other than the slit holes of the shadow mask 3, and as a result, the temperature rise of the shadow mask 3 is prevented. Heat deformation of the shadow mask 3 is prevented. The thermal deformation prevention ability of the Bi2O3 film in the conventional example, that is, the anti-doming effect, was 30
It was ~35%.

【0004】0004

【発明が解決しようとする課題】しかしながら、Bi2
O3 は酸化物であるため、ブラウン管中で電子ビーム
照射をうけた時に、微量の酸素を放出する。放出された
酸素は、カソードを劣化させ、ブラウン管の寿命を低下
させる。
[Problem to be solved by the invention] However, Bi2
Since O3 is an oxide, it releases a small amount of oxygen when exposed to electron beam irradiation in a cathode ray tube. The released oxygen degrades the cathode and reduces the life of the cathode ray tube.

【0005】一方、金属ビスマスは酸素を含まないため
、Bi2O3 よりもいろんな観点からみて有望である
が、その融点が 270℃と低いため、ブラウン管製造
工程中の熱処理(450 ℃)に耐えることができず、
せっかく形成されたビスマスの被膜が450 ℃に加熱
されると、融解して、小さな丸粒状となって、はがれ落
ちるので、実用化ができなかった。
On the other hand, since metal bismuth does not contain oxygen, it is more promising than Bi2O3 from various points of view, but because its melting point is as low as 270°C, it cannot withstand heat treatment (450°C) during the cathode ray tube manufacturing process. figure,
When the bismuth coating that had been formed was heated to 450°C, it melted, turned into small round particles, and peeled off, making it impossible to put it into practical use.

【0006】この発明は上記のような問題点を解消する
ためになされたもので、Bi2O3 被膜以上にアンチ
ドーミング効果の大きくしかも酸素ガスを放出しにくい
被膜を得ることを目的とし、金属ビスマスの実用化をひ
らくものである。
[0006] This invention was made to solve the above-mentioned problems, and aims to obtain a film that has a greater anti-doming effect than a Bi2O3 film and is less likely to release oxygen gas, and is intended to improve the practical use of bismuth metal. It is something that opens the door to change.

【0007】[0007]

【課題を解決するための手段】この発明に係る複合シャ
ドウマスクは、銅を3〜17アトム%含有するビスマス
合金、またはゲルマニウムを2〜6アトム%含有するビ
スマス合金、またはタングステンを1〜6アトム%含有
するビスマス合金または銅,ゲルマニウム,およびタン
グステンのうちの複数種の元素を合計量として1〜10
アトム%含有するビスマス合金からなる被膜を、シャド
ウマスク上に設けたものである。
[Means for Solving the Problems] A composite shadow mask according to the present invention is made of a bismuth alloy containing 3 to 17 atom % of copper, a bismuth alloy containing 2 to 6 atom % of germanium, or a bismuth alloy containing 1 to 6 atom % of tungsten. % bismuth alloy or multiple elements of copper, germanium, and tungsten as a total amount of 1 to 10
A film made of a bismuth alloy containing % atoms is provided on a shadow mask.

【0008】また、本発明の別の発明に係る複合シャド
ウマスクの製造方法は、銅,ゲルマニウム,およびタン
グステンのうちの少なくとも一種を含有するビスマス合
金粉末をメカニカルアロイング法で合成する工程、並び
に上記ビスマス合金粉末をシャドウマスク上に被膜形成
する工程を備えるものである。
[0008] A method for manufacturing a composite shadow mask according to another aspect of the present invention includes a step of synthesizing bismuth alloy powder containing at least one of copper, germanium, and tungsten by a mechanical alloying method; This method includes a step of forming a film of bismuth alloy powder on a shadow mask.

【0009】[0009]

【作用】この発明においてビスマスに所定量添加される
銅,ゲルマニウム,およびタングステンは、ビスマスの
融点を 500℃以上に向上させ、その結果、先に述べ
たようにビスマス被膜が融解して、はがれ落ちるという
ような不都合は無くなる。
[Operation] In this invention, the copper, germanium, and tungsten added in predetermined amounts to bismuth increase the melting point of bismuth to 500°C or higher, and as a result, the bismuth coating melts and peels off as described above. Such inconveniences will disappear.

【0010】なお、これら合金粉末の製造は、一度、合
金インゴットを作成した後、粉砕して粉末状としてもよ
いが非常に手間がかかる。添加量が少ないため、ビスマ
スの粉末と、添加元素の粉末とを所定比で混合し、ボー
ルミルなど、適当な粉砕混合手段を用いることにより、
メカニカルアロイング的手法により、簡単に合金化を達
成することができる。こうした手段により、粉末は等軸
晶状化するので、水ガラスと混合してスプレーする等の
取扱いに好都合である。
[0010] The production of these alloy powders can be done by first preparing an alloy ingot and then pulverizing it into a powder form, but it is very time-consuming. Since the amount added is small, by mixing the bismuth powder and the powder of the additive element in a predetermined ratio and using an appropriate grinding and mixing means such as a ball mill,
Alloying can be easily achieved using a mechanical alloying method. By such means, the powder becomes equiaxed crystallized, which is convenient for handling such as mixing with water glass and spraying.

【0011】[0011]

【実施例】以下、この発明の一実施例を図をもとに説明
する。この発明の一実施例による複合シャドウマスクの
構成は図1に示す従来のものと同一であり、被膜4の材
料が異なるのみである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. The structure of the composite shadow mask according to an embodiment of the present invention is the same as the conventional one shown in FIG. 1, and only the material of the coating 4 is different.

【0012】銅を3〜17アトム%含有するビスマス合
金、またはゲルマニウムを2〜6アトム%含有するビス
マス合金、またはタングステンを1〜6アトム%含有す
るビスマス合金、または銅,ゲルマニウム,およびタン
グステンのうちの複数種の元素を合計量として1〜10
アトム%含有するビスマス合金は、主成分であるビスマ
スに適当量のCuあるいはGeあるいはWを加えて、適
当な温度で融解し、均一組成とした後急冷し、その後、
適当な粉砕手段などで、微粒化する方法が一般的である
。しかし、この合金系に関しては、ビスマスが軟らかく
、かつ砕けやすい金属であるため、メカニカルアロイン
グの手法が適用できる。すなわち、数十μmのビスマス
粉末と、同程度の大きさをもつCuあるいはGeあるい
はW粉末とを適当量秤り合わせ、高エネルギー型ボール
ミルなどにより粉砕混合することにより、容易に所望組
成の合金粉末を得ることができる。このようにして得た
合金粉末をBi2O3 のかわりに用いて、水ガラスを
加えてスプレーすることにより、シャドウマスク上にこ
れら合金の粉末からなる被膜を作成することができる。 これら被膜を形成した後は、通常の製造工程に従って熱
処理を与えるが、これら合金粉末は融解しないだけでな
く、酸化に対しても純Bi粉末よりは大きい耐酸化性を
有するため、大きく酸化されることはない。すなわち、
添加元素であるCu,Ge,W自身がBiよりも速く一
部酸化され、生じた酸化膜がその後の酸化を抑制するた
めである。
[0012] A bismuth alloy containing 3 to 17 at % of copper, or a bismuth alloy containing 2 to 6 at % of germanium, or a bismuth alloy containing 1 to 6 at % of tungsten, or one of copper, germanium, and tungsten. 1 to 10 as the total amount of multiple types of elements
A bismuth alloy containing % atoms is made by adding an appropriate amount of Cu, Ge, or W to bismuth, the main component, melting it at an appropriate temperature, making it have a uniform composition, and then rapidly cooling it.
A common method is to atomize the material using appropriate pulverization means. However, since bismuth is a soft and brittle metal, mechanical alloying can be applied to this alloy system. That is, by weighing appropriate amounts of bismuth powder of several tens of micrometers and Cu, Ge, or W powder of similar size, and grinding and mixing them using a high-energy ball mill, etc., alloy powder with a desired composition can be easily obtained. can be obtained. By using the alloy powder thus obtained in place of Bi2O3 and spraying it with water glass added thereto, a film made of the powder of these alloys can be created on the shadow mask. After forming these films, heat treatment is applied according to the normal manufacturing process, but these alloy powders not only do not melt, but also have greater oxidation resistance than pure Bi powder, so they are oxidized to a large extent. Never. That is,
This is because the additive elements Cu, Ge, and W themselves are partially oxidized faster than Bi, and the resulting oxide film suppresses subsequent oxidation.

【0013】なお、メカニカルアロイング法については
、例えば文献(「日本金属学会会報」27巻、1988
、10月号、”メカニカルアロイングの最近の研究動向
”)等に詳細に記載されている。
[0013] Regarding the mechanical alloying method, for example, the literature ("Bulletin of the Japan Institute of Metals", Vol. 27, 1988
, October issue, "Recent Research Trends in Mechanical Alloying").

【0014】このようにして作成された被膜は完全に金
属ではなく、表面に薄い酸化物層を有するものの、その
主体はあくまでも金属であるため、電子ビーム反射率が
Bi2O3 膜よりも一段と高い。また電気伝導度も高
いため、被膜の熱伝導度も高く、その結果、マスクの表
面熱伝達率も大きくなる。表面に薄い酸化物層を有する
ため、熱輻射率は従来のBi2O3 膜のそれに勝ると
も劣らない。その結果、アンチドーミング効果として、
50%を越える値がえられる。また、この被膜は酸化物
をあまり含有しないため、電子ビーム照射を受けたとき
にもアウトガス量が少なく、カソードが劣化することも
少ない。
[0014] Although the film thus prepared is not completely metal and has a thin oxide layer on the surface, it is mainly metal, so its electron beam reflectivity is much higher than that of the Bi2O3 film. Furthermore, since the electrical conductivity is high, the thermal conductivity of the coating is also high, and as a result, the surface heat transfer coefficient of the mask is also high. Because of the thin oxide layer on the surface, the thermal emissivity is comparable to that of the conventional Bi2O3 film. As a result, as an anti-doming effect,
Values exceeding 50% can be obtained. Furthermore, since this film does not contain much oxide, the amount of outgassing is small even when exposed to electron beam irradiation, and the cathode is less likely to deteriorate.

【0015】なお、メカニカルアロイングで作成した合
金粉末の粒径がスプレーに用いるには大きい場合、適当
な分散剤を加えた溶媒中に分散させた後、適当な粉砕手
段により、微粒化することができる。
[0015] If the particle size of the alloy powder produced by mechanical alloying is too large to be used for spraying, it may be dispersed in a solvent containing an appropriate dispersant and then pulverized by an appropriate pulverizing means. Can be done.

【0016】実施例1.20〜30μmの粒径のビスマ
ス粉末 100gに、同じく20〜30μmの粒系の銅
粉末を7アトム%(2.24重量%)加え、銅合金製容
器内に入れて、同じく銅合金製円柱(10mmφ×10
mm長)をボールとして用い、遊星ボールミル装置で3
時間、容器内の空気をアルゴンガスに置換した後、粉砕
混合を行ない、大きさ数μmの合金粉末をえた。この粉
末にナトリウム水ガラス80ccおよび水120gおよ
びアニオン系界面活性剤0.4nt %を加えて、スプ
レー液を作成し、シャドウマスク上に、厚さ数μmの被
膜を形成した後、450 ℃30分空気中で2回焼成し
たものをCRTφに組み込みCRTを作成した。 アンチドーミング効果をラスターサイズ100 ×10
0mm,26kv, 90μA で測定したところ、5
0%がえられた。また、このCRTにゲッターを入れず
にライフテストを行なったところ、1000時間以上安
定した特性を示した。
Example 1. To 100 g of bismuth powder with a particle size of 20 to 30 μm, 7 atom% (2.24% by weight) of copper powder with a particle size of 20 to 30 μm was added, and the mixture was placed in a copper alloy container. , the same copper alloy cylinder (10mmφ×10
mm length) as a ball, using a planetary ball mill device.
After replacing the air in the container with argon gas for an hour, pulverization and mixing were performed to obtain an alloy powder with a size of several μm. To this powder, 80 cc of sodium water glass, 120 g of water, and 0.4 nt% of anionic surfactant were added to create a spray solution, and after forming a film several μm thick on the shadow mask, it was heated at 450°C for 30 minutes. A CRT was fabricated by baking it twice in air and incorporating it into a CRTφ. Anti-doming effect raster size 100 x 10
When measured at 0mm, 26kV, 90μA, 5
0% was obtained. Furthermore, when a life test was conducted on this CRT without adding a getter, it showed stable characteristics for over 1000 hours.

【0017】実施例2.20〜30μmの粒径のビスマ
ス粉末 100gに、数μmのGe粉末を5アトム%(
1.8 重量%)加え、アルミナ容器およびアルミナボ
ール(10mmφ×10)を用いて同じ遊星ボールミル
装置で5時間粉砕混合を行ない、大きさ数μmの合金粉
末をえた。この粉末を用い実施例1と同様の方法でシャ
ドウマスクを作成し、CRTを組立てた後、アンチドー
ミング効果を同様の方法で測定したところ、実施例1と
同様、50%の値をえた。また同じく、ゲッターなしで
ライフテストを行ない、実施例1と同様、良好なライフ
特性をえた。
Example 2. Ge powder of several μm was added to 100 g of bismuth powder with a particle size of 20 to 30 μm at 5 atom % (
1.8% by weight) was added and pulverized and mixed for 5 hours in the same planetary ball mill using an alumina container and alumina balls (10 mmφ x 10) to obtain an alloy powder with a size of several μm. A shadow mask was prepared using this powder in the same manner as in Example 1, a CRT was assembled, and the antidoming effect was measured in the same manner. As in Example 1, a value of 50% was obtained. Similarly, a life test was conducted without a getter, and as in Example 1, good life characteristics were obtained.

【0018】実施例3.20〜30μmの粒径のビスマ
ス粉末 100gに、数μmのW粉末を3アトム%(2
.6 重量%)加え、実施例2と同様の装置を用い同一
条件で合金粉末を作成し、粒径数μmの合金粉末をえた
。実施例1と同様の方法でシャドウマスクを作成し、C
RT組立後、アンチドーミング効果を測定し、50%を
えた。ゲッターなしで行なったライフテストの結果も実
施例2同様、良好で1000時間をこえてもカソードの
劣化はみられなかった。
Example 3. To 100 g of bismuth powder with a particle size of 20 to 30 μm, W powder of several μm was added at 3 atom % (2
.. In addition, an alloy powder was prepared using the same equipment as in Example 2 under the same conditions as in Example 2 to obtain an alloy powder with a particle size of several μm. A shadow mask was created in the same manner as in Example 1, and C
After RT assembly, the anti-doming effect was measured and was found to be 50%. Similar to Example 2, the results of the life test conducted without a getter were good, with no deterioration of the cathode observed even after 1000 hours.

【0019】なお、ビスマスに添加する金属は、銅は3
〜17アトム%、ゲルマニウムは2〜6アトム%、タン
グステンは1〜6アトム%、銅,ゲルマニウム,および
タングステンのうちの複数種の元素の場合は合計量とし
て1〜10アトム%が適当であり、それより少ないとビ
スマスの融点が上がらず、また、それより多いと特にメ
カニカルアロイング法で合成する場合に製造が困難であ
ったりコストが高かったりする。
[0019] The metal added to bismuth is 3 copper.
~17 atom%, germanium is 2 to 6 atom%, tungsten is 1 to 6 atom%, and in the case of multiple elements among copper, germanium, and tungsten, a total amount of 1 to 10 atom% is appropriate; If it is less than that, the melting point of bismuth will not rise, and if it is more than that, production will be difficult or expensive, especially when synthesized by mechanical alloying.

【0020】[0020]

【発明の効果】以上のように、この発明によれば、銅を
3〜17アトム%含有するビスマス合金、またはゲルマ
ニウムを2〜6アトム%含有するビスマス合金、または
タングステンを1〜6アトム%含有するビスマス合金、
または銅,ゲルマニウム,およびタングステンのうちの
複数種の元素を合計量として1〜10アトム%含有する
ビスマス合金からなる被膜を、シャドウマスク上に設け
たので、シャドウマスクの熱変形を効果的に防止でき、
しかも酸素ガスによるカソード劣化もしにくい。
As described above, according to the present invention, a bismuth alloy containing 3 to 17 at % of copper, a bismuth alloy containing 2 to 6 at % of germanium, or a bismuth alloy containing 1 to 6 at % of tungsten can be used. bismuth alloy,
Alternatively, a film made of a bismuth alloy containing 1 to 10 atom% of multiple elements among copper, germanium, and tungsten in total is provided on the shadow mask, effectively preventing thermal deformation of the shadow mask. I can do it,
Moreover, the cathode is less susceptible to deterioration due to oxygen gas.

【0021】また、本発明の別の発明によれば、銅、ゲ
ルマニウム,およびタングステンのうちの少なくとも一
種を含有するビスマス合金粉末をメカニカルアロイング
法で合成する工程、並びに上記ビスマス合金粉末をシャ
ドウマスク上に被膜形成する工程を備えるので、熱変形
防止効果が高く、しかも酸素ガスを放出しにくい複合シ
ャドウマスクを簡単に製造することができる。
According to another aspect of the present invention, there is also a step of synthesizing a bismuth alloy powder containing at least one of copper, germanium, and tungsten by a mechanical alloying method, and a step of synthesizing the bismuth alloy powder with a shadow mask. Since the step of forming a film thereon is included, it is possible to easily manufacture a composite shadow mask that is highly effective in preventing thermal deformation and is less likely to release oxygen gas.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】従来およびこの発明の一実施例による複合シャ
ドウマスクを示す断面図である。
FIG. 1 is a cross-sectional view showing a composite shadow mask according to a conventional method and an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3  シャドウマスク 4  被膜 3 Shadow mask 4 Coating

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  銅を3〜17アトム%含有するビスマ
ス合金、またはゲルマニウムを2〜6アトム%含有する
ビスマス合金、またはタングステンを1〜6アトム%含
有するビスマス合金、または銅,ゲルマニウム,および
タングステンのうちの複数種の元素を合計量として1〜
10アトム%含有するビスマス合金からなる被膜を、シ
ャドウマスク上に設けた複合シャドウマスク。
Claim 1: A bismuth alloy containing 3 to 17 at % of copper, or a bismuth alloy containing 2 to 6 at % of germanium, or a bismuth alloy containing 1 to 6 at % of tungsten, or copper, germanium, and tungsten. The total amount of multiple types of elements is 1~
A composite shadow mask in which a coating made of bismuth alloy containing 10 atom% is provided on the shadow mask.
【請求項2】  銅、ゲルマニウム,およびタングステ
ンのうちの少なくとも一種を含有するビスマス合金粉末
をメカニカルアロイング法で合成する工程、並びに上記
ビスマス合金粉末をシャドウマスク上に被膜形成する工
程を備える複合シャドウマスクの製造方法。
2. A composite shadow comprising a step of synthesizing a bismuth alloy powder containing at least one of copper, germanium, and tungsten by a mechanical alloying method, and a step of forming a film on a shadow mask with the bismuth alloy powder. How to make a mask.
JP10617291A 1991-05-13 1991-05-13 Composite shadow mask and manufacture thereof Pending JPH04334849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10617291A JPH04334849A (en) 1991-05-13 1991-05-13 Composite shadow mask and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10617291A JPH04334849A (en) 1991-05-13 1991-05-13 Composite shadow mask and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04334849A true JPH04334849A (en) 1992-11-20

Family

ID=14426839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10617291A Pending JPH04334849A (en) 1991-05-13 1991-05-13 Composite shadow mask and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04334849A (en)

Similar Documents

Publication Publication Date Title
US4029828A (en) X-ray target
US2339392A (en) Cathode
US3719854A (en) Tungsten alloy x-ray target
US4195247A (en) X-ray target with substrate of molybdenum alloy
US2536673A (en) Zirconium coating for electron discharge devices
US4081713A (en) Directly heated oxide cathode
US5757115A (en) Cathode member and electron tube having the cathode member mounted thereon
US4109058A (en) X-ray tube anode with alloyed surface and method of making the same
US5157705A (en) X-ray tube anode with oxide coating
JPS5816737B2 (en) Oxide cathode for electron tubes
JPH04334849A (en) Composite shadow mask and manufacture thereof
US4220891A (en) Directly heated cathode for electron tube
JPS6023454B2 (en) electron tube cathode
JP2516251B2 (en) Manufacturing method of oxide superconducting film
US5199059A (en) X-ray tube anode with oxide coating
JPH0448530A (en) Color cathode ray tube and its manufacture
JP5533607B2 (en) Sputtering target and manufacturing method thereof
CA1139827A (en) Oxide cathode and method of manufacturing powder metallurgical nickel for such a cathode
JPS5641636A (en) Directly heated type oxide cathode
KR830000725B1 (en) Tube cathode
KR830000979B1 (en) Base metal plate materials for directly heated oxide cathode
JP3290789B2 (en) Getter device for electron tube
JPS6167754A (en) Material for component in electronic tube
JPH0471144A (en) Shadow mask for cathode-ray tube
JPH07169383A (en) Impregnated cathode and electron tube or electron beam applying apparatus using same