JPH04333394A - Production of flux cored wire for welding - Google Patents

Production of flux cored wire for welding

Info

Publication number
JPH04333394A
JPH04333394A JP4410891A JP4410891A JPH04333394A JP H04333394 A JPH04333394 A JP H04333394A JP 4410891 A JP4410891 A JP 4410891A JP 4410891 A JP4410891 A JP 4410891A JP H04333394 A JPH04333394 A JP H04333394A
Authority
JP
Japan
Prior art keywords
welding
steel strip
flux
wire
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4410891A
Other languages
Japanese (ja)
Inventor
Toshiya Matsuyama
松山 隼也
Chiaki Shiga
千晃 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4410891A priority Critical patent/JPH04333394A/en
Publication of JPH04333394A publication Critical patent/JPH04333394A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • B23K35/406Filled tubular wire or rods

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To improve productivity by omitting a heat treating stage in the drawing process of the flux cored wire for welding. CONSTITUTION:A thin steel strip contg. <=0.01wt.% C is used as a thin steel strip enclosing a welding flux and after molding of this thin steel strip, both ends of the steel strip are so welded that the difference HV between the max. hardness in a weld zone and the min. hardness in a non-weld zone attains <=40.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、ガスシールドアーク
溶接の用途に供せられる、溶接フラックスを内包するア
ーク溶接用フラックスコアードワイヤの製造に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the manufacture of arc welding flux cored wire containing welding flux, which is used in gas shielded arc welding.

【0002】0002

【従来の技術】溶接用フラックスコアードワイヤについ
ては、例えば特開昭63−115697 号公報に開示
されているように、金属帯を湾曲させつつ溶接フラック
スを充てんし該金属帯の両耳部を相互に当接させたのち
伸線する方式や、特開昭56−148494 号公報に
開示されているように、溶接フラックスを充てんしたの
ち金属帯の突き合わせ部を溶接して伸線する方式、ある
いは予め金属帯を成形して鋼管体とし、この鋼管体の中
にフラックスを充てんする方式が一般に採用されている
[Prior Art] Regarding welding flux cored wires, for example, as disclosed in Japanese Patent Laid-Open No. 63-115697, a metal strip is curved and filled with welding flux, and both ears of the metal strip are filled with welding flux. A method in which the metal strips are brought into contact with each other and then wire drawn, a method in which the abutting portions of the metal strips are filled with welding flux and then welded and wire drawn as disclosed in JP-A-56-148494; Generally, a method is adopted in which a metal strip is formed in advance to form a steel pipe body, and the steel pipe body is filled with flux.

【0003】上記従来の技術のうち、特開昭63−11
5697 号公報に開示の技術は、ワイヤの製造要領が
比較的簡単であり、製造コストが低いという利点がある
反面、鋼帯両耳部が単なる突き合わせのためフラックス
がこぼれ易く、またねじれ易いためワイヤの狙い精度が
劣り、また水分を吸湿し易い欠点があった。このような
欠点は最近のロボットを適用した自動溶接においては致
命的であり、また、通電性向上のためCuめっきを施す
ような場合に、突き合わせ目から酸洗液やめっき液が浸
透するのが避けられないため、Cuめっきを施したワイ
ヤの製造は不可能であった。かかる観点から、溶接用フ
ラックスコアードワイヤにおいては、上記特開昭56−
148494 号公報に開示されているような金属帯の
突き合わせ部を溶接する方式のものが理想的であるが、
従来の技術に単に従っただけでは次に述べるとおり製造
コストの上昇が免れ得ず工業的な生産には適さないのが
現状であった。
Among the above-mentioned conventional techniques, Japanese Patent Application Laid-Open No. 1983-11
The technique disclosed in 5697 has the advantage that the wire manufacturing procedure is relatively simple and the manufacturing cost is low. However, since the two ends of the steel strip are simply butted together, flux easily spills and the wire is easily twisted. The aim accuracy was poor, and it also had the disadvantage of easily absorbing moisture. These drawbacks are fatal in automatic welding using modern robots, and when Cu plating is applied to improve electrical conductivity, it is difficult for pickling solution or plating solution to penetrate through the butt joints. Since this is unavoidable, it has been impossible to manufacture wires with Cu plating. From this point of view, in the flux cored wire for welding,
Ideally, a method of welding the butt portions of metal strips as disclosed in Publication No. 148494 would be ideal.
At present, simply following the conventional techniques inevitably leads to an increase in manufacturing costs, as described below, and is not suitable for industrial production.

【0004】すなわち、フラックスを包み込む鋼帯の突
き合わせ部を溶接した形式のワイヤにおいては、溶接部
が急熱・急冷のために非溶接部である母材原質部(以下
単に非溶接部と記す)より高硬度となる。また溶接部は
溶融・凝固した溶接金属と未溶融で熱の影響を受ける熱
影響部から成るが、溶加材を用いない溶接では溶接金属
と熱影響部は同程度の硬度であり、溶加材を用いて溶接
金属部の軟質化を図ったとしても熱影響部の高硬度化は
避けられないため、いずれにせよ母材より硬度の高い部
分が存在することになっていた。
[0004] In other words, in a type of wire in which the butt portions of steel strips that envelop flux are welded, the welded portion is rapidly heated and cooled, so that the base metal material portion (hereinafter simply referred to as the non-welded portion) is a non-welded portion. ) has higher hardness. Furthermore, the weld zone consists of the molten and solidified weld metal and the unmelted heat-affected zone, which is affected by heat, but in welding without filler metal, the weld metal and the heat-affected zone have the same hardness; Even if we tried to soften the weld metal using a new material, the heat-affected zone would inevitably become harder, so in any case, there would be a part that was harder than the base metal.

【0005】ミクロ的に見て、フラックスを包む鋼帯部
分に高硬度部が存在すると、伸線工程で著しい不利をも
たらす。すなわち、伸線過程では、鋼帯の高硬度部と低
硬度部の塑性変形能差に由来して両者の境界にせん断応
力が発生し、ミクロ的な縦割れを余儀なくされた。この
縦割れは、溶接部と非溶接部の境界近傍域だけでなく溶
接部の内部においても見られ、何れの場合も溶接部に高
硬度部が存在するときに発生していて、溶接を施したフ
ラックスコアードワイヤでは、本来のシーム溶接の目的
を達成することはできなかったのである。従って、かよ
うな方式で製造されるワイヤでは、伸線過程で複数回の
中間焼鈍あるいは中間焼準などの熱処理を施す必要があ
り、これが高コスト化をもたらす原因になっていた。ま
た、上記の熱処理では、内包フラックスが変質するため
にアーク安定性に劣る欠点もあった。
[0005] Microscopically, the presence of a high hardness portion in the steel strip surrounding the flux brings about a significant disadvantage in the wire drawing process. That is, during the wire drawing process, shear stress was generated at the boundary between the high-hardness part and the low-hardness part due to the difference in plastic deformability between the high-hardness part and the low-hardness part, which inevitably caused microscopic longitudinal cracks. These vertical cracks are observed not only near the boundary between welded and non-welded parts, but also inside welded parts. The original purpose of seam welding could not be achieved using flux-cored wire. Therefore, wire manufactured by such a method requires heat treatment such as intermediate annealing or intermediate normalization to be performed multiple times during the wire drawing process, which causes high costs. Furthermore, the heat treatment described above also had the disadvantage of poor arc stability due to the deterioration of the included flux.

【0006】[0006]

【発明が解決しようとする課題】フラックスを包む鋼帯
の端部に溶接を施す方式を適用して溶接用フラックスコ
アードワイヤを製造する場合において、中間熱処理を施
すことなく伸線性を向上させ得る品質の良好なワイヤを
得ることができる方法を提案することがこの発明の目的
である。
[Problem to be Solved by the Invention] When manufacturing a flux cored wire for welding by applying a method of welding the end of a steel strip surrounding flux, it is possible to improve wire drawability without performing intermediate heat treatment. It is an object of this invention to propose a method by which wires of good quality can be obtained.

【0007】[0007]

【課題を解決するための手段】この発明は、溶接フラッ
クスを包み込む薄鋼帯を成形ロールによってU形、O形
に順次成形しつつ、かかる成形完了前に溶接フラックス
を供給し、しかるのち該フラックスの充てんされた鋼管
体に伸線加工を施すに当たり、上記薄鋼帯としてC:0
.01wt%以下の低炭素薄鋼帯を用いることにより、
この薄鋼帯のO形成形完了後に該鋼帯の合わせ部分に溶
接を施し、溶接後における合わせ部分の最高硬さと鋼帯
の非溶接部における最低硬さの差が、ビッカース硬さに
して40以下に調整して、伸線加工における中間処理を
省略することを特徴とする溶接用フラックスフコアード
ワイヤの製造方法である。
[Means for Solving the Problems] The present invention involves sequentially forming a thin steel strip enclosing welding flux into a U-shape and an O-shape using forming rolls, supplying welding flux before the completion of the forming, and then supplying the welding flux. When wire drawing is performed on the filled steel pipe body, the above thin steel strip is C: 0.
.. By using a low carbon thin steel strip of 0.01 wt% or less,
After completing the O-forming of this thin steel strip, welding is applied to the joint portion of the steel strip, and the difference between the maximum hardness of the joint portion after welding and the minimum hardness of the non-welded portion of the steel strip is 40 in terms of Vickers hardness. This is a method for manufacturing a flux-cored wire for welding, which is adjusted as follows to omit intermediate treatment in wire drawing.

【0008】[0008]

【作用】C:0.001 〜0.050 wt%、Mn
:0.1wt%、その他、任意成分として例えばNb:
0.1 wt%、Ti:0.008 wt%を含み残部
Feおよび不可避的不純物からなる、厚さ1.5mm 
の数種類の薄鋼帯を用いて、これをU形、O形に順次成
形しつつ、直径15mmの鋼管に仕上げ、かかる成形完
了前にTiO2を主成分とするいわゆるルテール系の溶
融フラックスを供給するとともに、鋼帯の端部に高周波
電縫溶接を適用して接合処理( インピーダレス、溶接
電流10.2A、溶接電圧15.8kV、周波数330
kHz)を施し、さらに該フラックスの充てんされた鋼
管体に、中間焼鈍を施すことなくダイスで伸線加工を施
した各種ワイヤについて、鋼帯中のC含有量の影響、溶
接部における最高硬さと非溶接部の最低硬さの差と限界
伸線速度も調査した。 その結果を図1に示す。なお、溶接部および非溶接部の
硬度は荷重300g以下のマイクロビッカース計を適用
して0.3mm の測定ピッチで計測した。
[Action] C: 0.001 to 0.050 wt%, Mn
:0.1wt%, and other optional components such as Nb:
0.1 wt%, Ti: 0.008 wt%, the balance is Fe and unavoidable impurities, thickness 1.5 mm
Using several types of thin steel strips, this is sequentially formed into U-shape and O-shape, and finished into a steel pipe with a diameter of 15 mm, and before the forming is completed, a so-called luteal-based molten flux containing TiO2 as the main component is supplied. At the same time, high-frequency electric resistance welding is applied to the ends of the steel strips to join them (impederless, welding current 10.2A, welding voltage 15.8kV, frequency 330).
kHz), and the steel pipe body filled with the flux was then drawn with a die without intermediate annealing. The difference in minimum hardness of non-welded parts and the limit wire drawing speed were also investigated. The results are shown in Figure 1. The hardness of the welded portion and non-welded portion was measured using a micro Vickers meter with a load of 300 g or less at a measurement pitch of 0.3 mm.

【0009】溶接を施す形式のワイヤでは、図1に示す
如く、その伸線性が溶接部における硬さと非溶接部にお
ける硬さの差ΔHv に強く依存し、その差ΔHv が
40以下では中間熱処理を施さなくとも塑性変形能差に
よるミクロ的なせん断応力の発生が極めて小さくなり伸
線性を格段に向上させることができる。上記のΔHv 
と鋼帯のC含有量は強い相関関係があり、この発明にお
いてはΔHv を40以下とするためにとくに鋼帯のC
含有量を0.01wt%以下に調整することとした。な
お、この発明において溶接方式などはとくに限定されな
い。
As shown in FIG. 1, the drawability of wires that are welded depends strongly on the difference ΔHv between the hardness of the welded part and the hardness of the non-welded part, and if the difference ΔHv is 40 or less, intermediate heat treatment is not required. Even without this, the generation of microscopic shear stress due to the difference in plastic deformability becomes extremely small, and wire drawability can be significantly improved. ΔHv above
There is a strong correlation between the C content of the steel strip and the C content of the steel strip.
The content was adjusted to 0.01 wt% or less. In addition, in this invention, a welding method etc. are not specifically limited.

【0010】0010

【実施例】表−1に示した種々の低C含有鋼帯(板厚1
.1mm)を用いて、各鋼帯にて溶接フラックスを包み
込みながら、該鋼帯の端部の溶接を施し、直径15mm
の鋼管に仕上げ、しかるのちに伸線して直径1.2 m
mφのワイヤに仕上げた。各ワイヤの溶接方法、ΔHV
 、伸線限界を比較して表−1に示す。なお、溶接に際
しては高周波電縫溶接とTIG溶接を適用し、電縫溶接
では、周波数335kHz、溶接電流10.1A、溶接
電圧15.6kVの条件とし、また、インピーダ有りで
は周波数340kHz、溶接電流10A、溶接電圧15
.8kVの条件とし、TIG溶接は、電流 200A、
電圧11V、速度4m/分の条件とした。
[Example] Various low C content steel strips (thickness 1
.. 1mm), welded the ends of the steel strips while wrapping the welding flux in each steel strip to a diameter of 15mm.
Finished into a steel pipe of 1.2 m in diameter, and then drawn into a wire.
Finished with mφ wire. Welding method of each wire, ΔHV
Table 1 shows a comparison of wire drawing limits. In addition, high frequency electric resistance welding and TIG welding are applied for welding, and the conditions for electric resistance welding are a frequency of 335 kHz, a welding current of 10.1 A, and a welding voltage of 15.6 kV, and with an impeder, a frequency of 340 kHz and a welding current of 10 A. , welding voltage 15
.. The condition is 8kV, and the current for TIG welding is 200A.
The conditions were a voltage of 11 V and a speed of 4 m/min.

【0011】[0011]

【表1】[Table 1]

【0012】表1における No.1〜3、 No.6
〜8および No.11〜13は適合例であり、C含有
量が0.01wt%以下になる鋼帯を用い、鋼帯段部の
溶接に際してΔHV が40以下となるような溶接を施
すことこにより良好な伸線性を確保することができるこ
とが確かめられた。
[0012] In Table 1, No. 1-3, No. 6
~8 and no. 11 to 13 are suitable examples, and good wire drawability is obtained by using a steel strip with a C content of 0.01 wt% or less and performing welding such that ΔHV is 40 or less when welding the step part of the steel strip. It was confirmed that it was possible to secure the

【0013】[0013]

【発明の効果】かくしてこの発明によれば、中間熱処理
を施さなくとも高速伸線性を格段に向上させることがで
き、品質の良好なワイヤを効率よく生産できる。
Thus, according to the present invention, high-speed wire drawability can be significantly improved without performing intermediate heat treatment, and wires of good quality can be efficiently produced.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】溶接用フラックスコアードワイヤのΔHV と
伸線速度の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between ΔHV and wire drawing speed of a welding flux cored wire.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  溶接フラックスを包み込む薄鋼帯を成
形ロールによってU形、O形に順次成形しつつ、かかる
成形完了前に溶接フラックスを供給し、しかるのち該フ
ラックスの充てんされた鋼管体に伸線加工を施すに当た
り、上記薄鋼帯としてC:0.01wt%以下の低炭素
薄鋼帯を用いることにより、この薄鋼帯のO形成形完了
後に該鋼帯の合わせ部分に溶接を施し、溶接後における
合わせ部分の最高硬さと鋼帯の非溶接部における最低硬
さの差が、ビッカース硬さにして40以下に調整し、伸
線加工における中間熱処理を省略することを特徴とする
溶接用フラックスフコアードワイヤの製造方法。
Claim 1: A thin steel strip enclosing welding flux is sequentially formed into a U-shape and an O-shape using forming rolls, and before the forming is completed, welding flux is supplied, and then the flux is stretched into a steel pipe body filled with the flux. When performing wire processing, by using a low carbon thin steel strip with C: 0.01 wt% or less as the thin steel strip, after the O-forming of this thin steel strip is completed, welding is performed on the joint portion of the steel strip, For welding, the difference between the maximum hardness of the mating part after welding and the minimum hardness of the non-welded part of the steel strip is adjusted to 40 or less in terms of Vickers hardness, and intermediate heat treatment in wire drawing is omitted. A method for producing flux fucored wire.
JP4410891A 1991-02-18 1991-02-18 Production of flux cored wire for welding Pending JPH04333394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4410891A JPH04333394A (en) 1991-02-18 1991-02-18 Production of flux cored wire for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4410891A JPH04333394A (en) 1991-02-18 1991-02-18 Production of flux cored wire for welding

Publications (1)

Publication Number Publication Date
JPH04333394A true JPH04333394A (en) 1992-11-20

Family

ID=12682421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4410891A Pending JPH04333394A (en) 1991-02-18 1991-02-18 Production of flux cored wire for welding

Country Status (1)

Country Link
JP (1) JPH04333394A (en)

Similar Documents

Publication Publication Date Title
JP5509657B2 (en) Welded steel pipe joined by high-density energy beam and manufacturing method thereof
KR100228252B1 (en) The method for producing electric-resistance-welded steel pipe
CA1144092A (en) Thick welded steel pipe of large diameter and production thereof
JP2012519598A (en) Flux-cored wire electrode
AU2017362454B2 (en) Method of cleaning a workpiece after a thermal joining process with cathodic cleaning; cleaning device and processing gas
Kim et al. Improvement of fatigue strength of lap fillet joints by using tandem MAG welding in a 590-MPa-grade galvannealed steel sheet
JPH04333394A (en) Production of flux cored wire for welding
JP3566862B2 (en) Plasma welding of small diameter pipes
JPH08276273A (en) Butt welding method for clad steel
WO2018147389A1 (en) Method for manufacturing electroseamed metal tube, and electroseamed metal tube
JPS5913577A (en) T-joint welding method
JPS63220977A (en) Manufacture of welded steel pipe
JP3625917B2 (en) Linear welded parts
JPH04262894A (en) Manufacture of flux-cored wire for welding
JPH0523869A (en) Manufacture of weld tube
KR20010056389A (en) A Method of Flash Butt Welding for High Carbon Steel
JPH03275281A (en) Welding method for high allow clad steel pipes
JPH04294893A (en) Method for connecting flux cored wire for welding
JPH02224815A (en) Method and apparatus for manufacturing high damping steel pipe
JPH05200544A (en) Manufacture of welded pipe
JPH1190681A (en) Butt welding method for flux cored wire for welding
JP2006150412A (en) Welded steel tube having secondary workability equivalent to that of base material in weld, and its manufacturing method
JPH0523875B2 (en)
JP2017177215A (en) Method for production of electric resistance welded steel tube
JPS61289993A (en) Joining method for flux cored wire for welding