JP2017177215A - Method for production of electric resistance welded steel tube - Google Patents

Method for production of electric resistance welded steel tube Download PDF

Info

Publication number
JP2017177215A
JP2017177215A JP2017002223A JP2017002223A JP2017177215A JP 2017177215 A JP2017177215 A JP 2017177215A JP 2017002223 A JP2017002223 A JP 2017002223A JP 2017002223 A JP2017002223 A JP 2017002223A JP 2017177215 A JP2017177215 A JP 2017177215A
Authority
JP
Japan
Prior art keywords
electric resistance
welding
steel pipe
tubular body
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017002223A
Other languages
Japanese (ja)
Other versions
JP6485463B2 (en
Inventor
晃英 松本
Akihide Matsumoto
晃英 松本
橋本 裕二
Yuji Hashimoto
裕二 橋本
岡部 能知
Takatoshi Okabe
能知 岡部
昌士 松本
Masashi Matsumoto
昌士 松本
井手 信介
Shinsuke Ide
信介 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017177215A publication Critical patent/JP2017177215A/en
Application granted granted Critical
Publication of JP6485463B2 publication Critical patent/JP6485463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a production method for an electric resistance welded steel tube capable of surely preventing generation of oxides during electric resistance welding.SOLUTION: An objective method for production of an electric resistance welded steel tube 15 comprises: previously making a polymeric material 2 generating a reductive gas by combustion adhere to both circumferential end parts (parts 11 to be welded) of a tubular body prior to heating when heating and butting both end parts of the tubular body while molding a steel belt into the tubular body (elemental tube 10) and electric resistance-welding; shielding the heating range from the heating start points 12 of both circumferential end parts of the tubular body to a welding point 13 by a non-oxidative gas; and electric resistance-welding the tubular body in the oxygen concentration range of 0.01-10 vol.%.SELECTED DRAWING: Figure 1

Description

本発明は、電縫鋼管、中でも特に、油井ラインパイプ向けや自動車用の部品などの、溶接部に高い機械的特性が要求される電縫鋼管の製造方法に関する。   The present invention relates to a method for producing an electric resistance welded steel pipe, in particular, an electric resistance welded steel pipe that requires high mechanical properties in a welded part, such as for oil well line pipes and automobile parts.

電縫鋼管は、鋼板(鋼帯の意、以下同じ)を払出しつつ幅を丸めて、丸めた幅の端部を融点以上まで高周波通電又は誘導加熱し突き合わせてアプセットして溶接する電縫溶接法により製造されるが、一般に溶接部の機械的特性は母材より劣ると云われ、電縫鋼管の適用に当たって、用途ごとに溶接部の靭性や強度や伸びなどの保証が常に問題となってきた。   ERW steel pipe is an electric seam welding method in which the width of the ERW pipe is rounded while discharging the steel plate (the meaning of the steel strip, the same shall apply hereinafter), and the end of the rounded width is subjected to high-frequency energization or induction heating to the melting point or higher, butting up and welding In general, it is said that the mechanical properties of welds are inferior to those of the base metal, and guaranteeing the toughness, strength, and elongation of welds has always been a problem for each application when using ERW pipes. .

電縫溶接してなる溶接部の機械的特性が劣化する原因としては、ペネトレータと呼ばれる酸化物主体の溶接欠陥が、電縫溶接時に被溶接部(詳しくは、鋼帯を丸めてなるオープン管である素管の周方向両端面を突き合わせた部位である素管エッジ突合せ部)に生成して残留することが考えられ、この残留したペネトレータを原因として靭性が低下したり強度不足になったりする例が多かった。   The cause of the deterioration of the mechanical properties of welded parts made by ERW welding is that an oxide-based welding defect called a penetrator is caused by welded parts (more specifically, open pipes made by rolling steel strips) during ERW welding. An example where the pipe end butt is a part where both ends of the pipe in the circumferential direction are abutted and remains, and due to this residual penetrator, the toughness is reduced or the strength is insufficient. There were many.

そこで、従来技術として電縫溶接不良の主原因であるペネトレータを溶接部から除くため、被溶接部へのガス吹き付けにより被溶接部の酸化を防止するガスシールド溶接方法やアプセット等の手段により可能な限り外部に排出する方法が数多く提案されてきた。   Therefore, in order to remove the penetrator, which is the main cause of ERW welding failure, from the welded portion as a conventional technique, it is possible by means of gas shield welding method or upset to prevent the welded portion from being oxidized by blowing gas onto the welded portion. There have been many proposals for ways to discharge outside.

例えば、特許文献1には、酸化物の生成を防止するため鋼帯の接合端部を非酸化性雰囲気中で加熱するとともに、接合不良を防止し、かつ、非金属介在物が溶接部の表面に現れるのを防止するためアプセット量を肉厚の25〜125%として電縫溶接し、優れた溶接部の靭性、耐SSC性を確保する技術が開示されている。雰囲気ガスとしては窒素、アルゴンを使用し、シールボックスを設けて溶接部を非酸化性に保つ旨記載されている。   For example, in Patent Document 1, in order to prevent the formation of oxides, the joining end portion of the steel strip is heated in a non-oxidizing atmosphere, the joining failure is prevented, and the non-metallic inclusions are on the surface of the welded portion. In order to prevent the occurrence of the above, a technique is disclosed in which the upset amount is 25 to 125% of the wall thickness and electro-welding is performed to ensure excellent toughness and SSC resistance of the welded portion. It is described that nitrogen and argon are used as the atmospheric gas and a sealed box is provided to keep the welded portion non-oxidizing.

又、特許文献2には、管状体の付き合わされたエッジ部をレーザービームの照射により溶融するとともにアプセットして溶接することで、溶接時に生成した酸化物を溶融した鋼の外部に排出し、溶接部の酸素量を200ppm以下にする技術が開示されている。   In addition, in Patent Document 2, the edge part with which the tubular body is attached is melted by irradiating with a laser beam and is upset and welded to discharge the oxide generated at the time of welding to the outside of the molten steel. Has disclosed a technique for reducing the oxygen content of the part to 200 ppm or less.

又、特許文献3には、電縫鋼管の製造に際し、溶接(圧接)時に溶接部をガスシールド・ボックスで覆いガス(例えばアルゴンガス、窒素ガス)を噴射してシールドし、酸素量を低下させ酸化物の発生量を低くするとともに、高周波加熱中の溶接部位に、レーザービームまたはプラズマアークを照射して加熱されている圧接されるべき端部をより高温にし、その端部の液状酸化物を排出しやすい状態にして、その後の加圧圧接により排出することで、溶接欠陥を著しく低減し、電縫溶接部の靭性、加工性を改善する技術が開示されている。   Further, in Patent Document 3, when manufacturing an electric resistance welded steel pipe, a welded portion is covered with a gas shield box during welding (pressure welding), and a gas (for example, argon gas or nitrogen gas) is injected and shielded to reduce the amount of oxygen. While reducing the amount of oxide generated, the end to be pressed is heated by irradiating a laser beam or plasma arc to the welding site during high frequency heating, and the liquid oxide at the end is heated. A technique has been disclosed in which welding defects are remarkably reduced and the toughness and workability of an electric-welded welded part are improved by making it easy to discharge and discharging by subsequent pressure welding.

又、特許文献4には、オープン管の側端面に炭素、有機化合物又は有機ケイ素化合物を塗布した後、溶接することで、ペネトレータの発生を防止する方法が開示されている。   Patent Document 4 discloses a method of preventing the occurrence of a penetrator by applying carbon, an organic compound or an organosilicon compound to the side end face of an open tube and then welding.

特開昭63−241116号公報JP 63-241116 A 特開平9−194998号公報JP-A-9-194998 特開平5−23867号公報JP-A-5-23867 特開昭58−23582号公報JP 58-23582 A

しかしながら、特許文献1に記載のシールボックスまたは特許文献3に記載のガスシールド・ボックスを設置して溶接部を非酸化性ガスでガスシールドする方法は、充分にシールドができずに電縫溶接時に酸化物が生成し、溶接部に残留して溶接部の機械的性質を劣化する場合があった。   However, the method of installing the seal box described in Patent Document 1 or the gas shield box described in Patent Document 3 and gas-shielding the welded portion with a non-oxidizing gas is not sufficient for shielding and can be performed during ERW welding. In some cases, oxides are generated and remain in the welded portion, thereby deteriorating the mechanical properties of the welded portion.

また、特許文献2に記載のレーザービームの照射によって、付き合わされたエッジ部を溶融し、アプセットして溶接することで溶接時に生成した酸化物を外部に排出する方法、または、特許文献3に記載のレーザービームまたはプラズマアークの照射によって、溶接部の温度を高温にし、液状酸化物を排出し易くする方法、または、特許文献4に記載の、オープン管の側端面に炭素、有機化合物又は有機ケイ素化合物を塗布した後、溶接することで、ペネトレータの発生を防止する方法のいずれも、溶接部に生成した酸化物が完全に排出されずに残存する場合があり、溶接部の強度や靭性などの機械的性質がばらつき、管全長に亘って溶接部の品質保証ができないという問題があった。   Also, a method of discharging the oxide generated at the time of welding by melting, upsetting, and welding the edge portions brought together by laser beam irradiation described in Patent Document 2, or described in Patent Document 3 The method of increasing the temperature of the welded portion by irradiating the laser beam or plasma arc to facilitate discharge of the liquid oxide, or carbon, organic compound or organic silicon on the side end face of the open tube described in Patent Document 4 Any of the methods to prevent the generation of the penetrator by applying the compound and then welding may leave the generated oxide in the welded part without being completely discharged, such as the strength and toughness of the welded part. There was a problem that the mechanical properties varied and the quality of the welded portion could not be guaranteed over the entire length of the pipe.

以上のように、これら従来技術では、電縫溶接時の被溶接部を確実に非酸化性雰囲気として酸化を抑制することができず、ペネトレータの生成を防止することができないという課題があった。   As described above, in these conventional techniques, there is a problem in that the welded part at the time of ERW welding cannot be reliably suppressed by using a non-oxidizing atmosphere, and generation of a penetrator cannot be prevented.

本発明の目的は、上記課題を解決し、電縫溶接時の酸化物の生成を確実に防止しうる電縫鋼管の製造方法を提供することである。   An object of the present invention is to solve the above-mentioned problems and to provide a method for manufacturing an electric resistance welded steel pipe that can reliably prevent the formation of oxides during electric resistance welding.

本発明者らは、前記課題を解決する為に鋭意検討し、その結果、燃焼して還元性ガスを生成する高分子材料を電縫溶接すべき端部に予め付着させた後、電縫溶接することに加え、電縫溶接中に特定のガスシールドを行うことで溶接部における酸化物の生成を防止できることを見出し、本発明を完成した。すなわち本発明は以下の通りである。
(1) 電縫鋼管の製造方法において、鋼帯を管状体に成形しつつ該管状体の周方向両端部を加熱し突合せて電縫溶接するにあたり、燃焼して還元性ガスを生成する高分子材料を、前記加熱前の管状体の周方向両端部に予め付着させた後、電縫溶接し、且つ、少なくとも電縫溶接中は前記管状体の周方向両端部の加熱起点から溶接点に至る加熱範囲を非酸化性ガスでシールドし、酸素濃度を0.01〜10vol.%の範囲にすることを特徴とする電縫鋼管の製造方法。
(2) 前記(1)において、前記還元性ガスが、メタン、エチレン、アセチレン、エタンのうちいずれか1つ以上を含むことを特徴とする電縫鋼管の製造方法。
(3) 前記(2)において、前記高分子材料が、ポリエステル、ポリエチレン、ポリプロピレン、熱硬化型アクリル樹脂のいずれかであることを特徴とする電縫鋼管の製造方法。
(4) 前記(1)〜(3)のいずれか1つにおいて、前記高分子材料の付着量を、付着厚みで10〜1000μmとすることを特徴とする電縫鋼管の製造方法。
(5) 前記(1)〜(4)のいずれか1つにおいて、シールドに用いる非酸化性ガスが不活性ガスであることを特徴とする電縫鋼管の製造方法。
(6) 前記(1)〜(5)のいずれか1つにおいて、シールドに用いる非酸化性ガスはシールドボックス内に流すものとし、該シールドボックス内の非酸化性ガス流量を50〜3000l/minとすることを特徴とする電縫鋼管の製造方法。
(7) 前記(1)〜(6)のいずれか1つにおいて、前記管状体の電縫溶接直後の外径は、10〜700mmであることを特徴とする電縫鋼管の製造方法。
(8) 前記(1)〜(7)のいずれか1つにおいて、前記鋼帯の板厚は、0.5〜30mmであることを特徴とする電縫鋼管の製造方法。
The present inventors have intensively studied to solve the above-mentioned problems, and as a result, after pre-adhering a polymer material that burns to generate a reducing gas to the end portion to be subjected to ERW welding, ERW welding is performed. In addition, the present inventors have found that the formation of oxides in the welded portion can be prevented by performing a specific gas shield during electric resistance welding. That is, the present invention is as follows.
(1) In a method for producing an electric resistance steel pipe, a polymer that burns to generate a reducing gas when forming a steel strip into a tubular body and heating and butt-welding both ends in the circumferential direction of the tubular body The material is preliminarily attached to both ends in the circumferential direction of the tubular body before heating, and is then subjected to electric resistance welding, and at least during the electric resistance welding, reaches the welding point from the heating starting points at both ends in the circumferential direction of the tubular body. A method for producing an ERW steel pipe, wherein the heating range is shielded with a non-oxidizing gas, and the oxygen concentration is in the range of 0.01 to 10 vol.%.
(2) In the method (1), the reducing gas contains any one or more of methane, ethylene, acetylene, and ethane.
(3) In the method (2), the polymer material is any one of polyester, polyethylene, polypropylene, and a thermosetting acrylic resin.
(4) In any one of said (1)-(3), the adhesion amount of the said polymeric material shall be 10-1000 micrometers in adhesion thickness, The manufacturing method of the electric resistance steel pipe characterized by the above-mentioned.
(5) In any one of (1) to (4), the non-oxidizing gas used for the shield is an inert gas.
(6) In any one of the above (1) to (5), the non-oxidizing gas used for the shield is caused to flow in the shield box, and the non-oxidizing gas flow rate in the shield box is set to 50 to 3000 l / min. A method for producing an ERW steel pipe.
(7) In any one of the above (1) to (6), the outer diameter of the tubular body immediately after ERW welding is 10 to 700 mm.
(8) In any one of the above (1) to (7), the steel strip has a thickness of 0.5 to 30 mm.

本発明によれば、電縫溶接部の酸化物の生成量を十分低いレベルに維持でき、電縫鋼管の溶接部特性を確実に従来レベルよりも向上させることができる。   According to the present invention, the amount of oxide generated in the ERW welded portion can be maintained at a sufficiently low level, and the welded portion characteristics of the ERW steel pipe can be reliably improved from the conventional level.

本発明の実施形態を示す概略図である。It is the schematic which shows embodiment of this invention. ガス溶射法による高分子材料の塗布方法(一例)を示す概略図である。It is the schematic which shows the coating method (an example) of the polymeric material by a gas spraying method.

図1は、本発明の実施形態を示す概略図である。鋼管素材である鋼帯を図示しないアンコイラーで連続的に払出し、図示しないレベラーで矯正し、造管方向20に送りつつ、図示しないロール成形機で鋼帯の幅を丸めて管状体である素管(オープン管)10となし、該素管10の周方向両端部を突合せてなる素管エッジ突合せ部である被溶接部11を電縫溶接機(図示しないエッジ部加熱用給電手段と、図示した圧接用スクイズロール16とで構成されている)により、電縫溶接して、電縫鋼管15を得る。ここで、採用される鋼帯の板厚は、0.5〜30mmである。また、管状体の電縫溶接直後の外径は、10〜700mmである。なお、鋼帯の鋼種としては、低炭素低合金鋼、機械構造用鋼、溶接構造用鋼、ボイラ・熱交換器用鋼、配管用ステンレス鋼などが挙げられる。   FIG. 1 is a schematic view showing an embodiment of the present invention. The steel strip, which is a steel pipe material, is continuously discharged by an uncoiler (not shown), corrected by a leveler (not shown), and fed in the pipe forming direction 20, while the width of the steel strip is rounded by a roll forming machine (not shown) to form a tubular body (Open pipe) 10 and the welded part 11 which is a raw pipe edge butting portion formed by abutting both ends in the circumferential direction of the raw pipe 10 is shown in an electric resistance welding machine (not shown) The squeeze roll 16 for pressure welding is used to perform electric resistance welding to obtain an electric resistance steel pipe 15. Here, the plate | board thickness of the steel strip employ | adopted is 0.5-30 mm. Moreover, the outer diameter immediately after the electric resistance welding of the tubular body is 10 to 700 mm. Examples of steel types of the steel strip include low carbon low alloy steel, steel for machine structure, steel for welded structure, steel for boiler / heat exchanger, stainless steel for piping, and the like.

12は素管エッジ部加熱起点、13は前記圧接により被溶接部11が接合する通管方向位置を指す溶接点である。尚、素管10乃至電縫鋼管15の管内面側には、図示しないインピーダを配置する場合もある。電縫溶接機を出た電縫鋼管15は図示しないサイザーで外径調整をされる。   Reference numeral 12 denotes an element pipe edge heating start point, and reference numeral 13 denotes a welding point indicating a pipe passing direction position where the welded part 11 is joined by the pressure welding. In addition, an impeller (not shown) may be disposed on the inner surface side of the base tube 10 to the ERW steel tube 15. The outer diameter of the ERW steel pipe 15 exiting the ERW welder is adjusted by a sizer (not shown).

本発明では、素管エッジ部加熱起点12よりも上流側の位置(図示しないフィンパスロールの出側の位置が望ましい。)において、高分子材料塗布装置1により両端部に高分子材料2を塗布する(付着させる)。高分子材料2は、燃焼する際に、燃焼生成物としてメタン、エチレン、アセチレン、エタンなどの還元性ガスを生成する高分子材料が望ましい。但し、環境安全面より燃焼生成物に塩化水素、シアン化水素、アンモニア、硫化水素などの有毒物質が少ない高分子材料が望ましい。具体的には、ポリエステル、ポリエチレン、ポリプロピレン、熱硬化型アクリル樹脂などが好適である。   In the present invention, the polymer material 2 is applied to both ends by the polymer material applicator 1 at a position upstream of the raw tube edge heating start point 12 (a position on the exit side of the fin pass roll not shown) is desirable. Do (attach). The polymer material 2 is desirably a polymer material that generates a reducing gas such as methane, ethylene, acetylene, or ethane as a combustion product during combustion. However, from the viewpoint of environmental safety, it is desirable to use a polymer material that contains few toxic substances such as hydrogen chloride, hydrogen cyanide, ammonia, and hydrogen sulfide as combustion products. Specifically, polyester, polyethylene, polypropylene, thermosetting acrylic resin, and the like are preferable.

高分子材料の塗布方法としては、溶射法(ガス溶射、プラズマ溶射など)、熱圧着法、溶着法などが挙げられる。高分子材料塗布装置1は、上記塗布方法の実施に適した装置とすればよい。   Examples of the coating method of the polymer material include a thermal spraying method (gas spraying, plasma spraying, etc.), a thermocompression bonding method, and a welding method. The polymer material coating apparatus 1 may be an apparatus suitable for carrying out the above coating method.

また、高分子材料の塗布厚み(付着厚み)は、過大であると溶接不具合を招き、過小であると酸化物生成抑制効果に乏しいため、10〜1000μmが好ましい。より好ましくは50〜500μmである。   Further, the coating thickness (adhesion thickness) of the polymer material is preferably 10 to 1000 μm because an excessively large thickness causes a welding failure, and an excessively small coating thickness has a poor effect on suppressing the formation of oxides. More preferably, it is 50-500 micrometers.

次に、素管エッジ部加熱起点12から溶接点13までの通管方向範囲の全域、或いは当該範囲内の、被溶接部に酸化物が生成し易い区域(この区域は予備調査により特定できる)をシールド範囲とし、溶接施工中、非酸化性ガスでシールドすることが好ましい。なお、シールドボックス3を設置することが望ましい。また、非酸化性ガスとしては、アルゴンガス、窒素ガスなどの不活性ガスが好ましい。非酸化性ガスの酸素濃度は、0.01〜10vol.%の範囲が好ましい。酸素濃度が0.01vol.%未満では、燃焼しないままの高分子材料が溶接部に残存し、溶接部の強度が低下するため、酸素濃度は0.01vol.%以上が好ましい。逆に10vol.%を超えると、溶接部に酸化物が生成し、溶接部の強度が低下するため10vol.%以下が好ましい。   Next, the entire range of the pipe passage direction from the raw tube edge heating starting point 12 to the welding point 13, or an area within the range where oxides are likely to be generated in the welded part (this area can be specified by preliminary investigation) It is preferable to shield with non-oxidizing gas during welding. It is desirable to install a shield box 3. Moreover, as the non-oxidizing gas, an inert gas such as argon gas or nitrogen gas is preferable. The oxygen concentration of the non-oxidizing gas is preferably in the range of 0.01 to 10 vol.%. If the oxygen concentration is less than 0.01 vol.%, The polymer material that remains unburned remains in the welded portion, and the strength of the welded portion is reduced. Therefore, the oxygen concentration is preferably 0.01 vol.% Or more. On the other hand, if it exceeds 10 vol.%, An oxide is generated in the welded portion, and the strength of the welded portion is lowered, so that 10 vol.% Or less is preferable.

なお、前記シールドボックス3内の非酸化性ガス流量は、過小であると酸素濃度が10vol.%を超え、電縫溶接部の溶接欠陥が増加する。また、過大であると燃焼しないままの高分子材料が溶接部に残存しやすくなる。よって、50〜3000l/minとするのが好ましい。   If the non-oxidizing gas flow rate in the shield box 3 is too small, the oxygen concentration exceeds 10 vol. On the other hand, if it is excessive, the polymer material that does not burn easily remains in the weld. Therefore, it is preferable to set it as 50-3000 l / min.

鋼帯を、アンコイラー、レベラー、ロール成形機、電縫溶接機、サイザーをこの順に配置して構成された造管設備に通して、外径152.4mm、肉厚6.4mmの低炭素低合金鋼の電縫鋼管を製造する工程において、電縫溶接時に図1に示した実施形態において表1に示す条件で造管し、高分子材料を両エッジ(被溶接部の突合せする両端部)に塗布して製造した鋼管(本発明例)、および、高分子材料を両エッジに塗布せず製造した鋼管(比較例)について、溶接部の欠陥面積率(酸化物および介在物等の面積率)の測定を行った。   The steel strip is passed through a pipe making facility in which an uncoiler, leveler, roll forming machine, electric seam welder, and sizer are arranged in this order, and a low carbon low alloy with an outer diameter of 152.4 mm and a wall thickness of 6.4 mm In the process of manufacturing an electric resistance welded steel pipe, pipe forming is performed under the conditions shown in Table 1 in the embodiment shown in FIG. Defect area ratio of welds (area ratio of oxides and inclusions, etc.) for steel pipes manufactured by coating (examples of the present invention) and steel pipes manufactured without applying polymer material to both edges (comparative examples) Was measured.

高分子材料は、目標塗布厚みを200μmとし、次の方法で塗布した。すなわち、加熱起点12前の両エッジ端面にガス溶射法(図2に概略図を示す。)により塗布した。ガス溶射はプロパンと酸素の燃焼炎を用いた。予め80℃に予熱された平均粒径:0.1mmの高分子材料の粉末を、搬送ガス(ここでは空気を使用した。)で搬送することにより供給量:50g/minにて供給し、プロパン流量:20l/min、プロパン圧力:0.4MPa、酸素流量:55l/min、酸素圧力:0.4MPaの条件にて溶射した。また、シールドガス(シールドに用いた非酸化性ガス)を用いたときのシールドガス流量は、800l/minとした。   The polymer material was applied by the following method with a target application thickness of 200 μm. That is, it applied by gas spraying method (schematic diagram is shown in FIG. 2) to both edge end faces before the heating starting point 12. For gas spraying, a propane and oxygen combustion flame was used. A polymer material powder pre-heated to 80 ° C. and having an average particle diameter of 0.1 mm is conveyed by a carrier gas (air is used here) to be supplied at a supply rate of 50 g / min. Thermal spraying was performed under the conditions of a flow rate: 20 l / min, a propane pressure: 0.4 MPa, an oxygen flow rate: 55 l / min, and an oxygen pressure: 0.4 MPa. The shield gas flow rate when the shield gas (non-oxidizing gas used for the shield) was used was 800 l / min.

ここで、溶接部の欠陥面積率とは、衝撃破壊試験による破面中の、劈開もしくは擬劈開領域以外のディンプル領域のうち、ディンプルの内側に酸化物等の異物を含む部分の面積率を意味する。この欠陥面積率は、次の方法にて求めた。すなわち、電縫溶接部(被溶接部が溶接結合したその結合界面であり管周方向にほぼ直交している)が破面となるようにノッチを設けたシャルピー試験により脆性破面率(肉眼判定)が100%になる試験温度域の上限付近の温度で破断させてなる破面を、走査電子顕微鏡(SEM)で、倍率500倍以上で少なくとも10視野観察し、破面内のディンプル領域から酸化物等の異物を含んだディンプルを選別して該酸化物等の異物を含んだディンプルの総面積を測定し、これの、視野総面積に対する百分率[=酸化物等の異物を含んだディンプルの総面積/視野総面積×100(%)]を欠陥面積率とした。尚、被溶接端面の開先形状は、ストレート形状とした。その結果を表1に示す。   Here, the defect area ratio of the welded portion means the area ratio of the portion including foreign matter such as oxide inside the dimple in the dimple region other than the cleavage or pseudo-cleavage region in the fracture surface by the impact fracture test. To do. This defect area ratio was determined by the following method. In other words, the brittle fracture surface ratio (visual judgment) was made by a Charpy test with a notch so that the seam welded part (the joint interface where the welded parts were welded and joined, which is substantially perpendicular to the pipe circumferential direction) is the fracture surface. ) Is observed with a scanning electron microscope (SEM) at least 10 fields of view at a magnification of 500 times and oxidized from the dimple region in the fracture surface. The total area of the dimples containing foreign substances such as oxide is measured by selecting the dimples containing foreign substances such as objects, and the percentage of the total area of the visual field [= the total number of dimples containing foreign substances such as oxides] Area / total field of view × 100 (%)] was defined as the defect area ratio. The groove shape of the welded end face was a straight shape. The results are shown in Table 1.

表1に示されるとおり、本発明例では、比較例と比べて溶接部の欠陥面積率が格段に低減し、優れた強度、靭性を有する溶接部が得られた。溶接部の欠陥面積率が5%以下、好ましくは2%以下であれば強度、靭性に優れる。   As shown in Table 1, in the example of the present invention, the defect area ratio of the welded portion was remarkably reduced as compared with the comparative example, and a welded portion having excellent strength and toughness was obtained. If the defect area ratio of the welded portion is 5% or less, preferably 2% or less, the strength and toughness are excellent.

Figure 2017177215
Figure 2017177215

1 高分子材料塗布装置
2 高分子材料
3 シールドボックス
10 素管(オープン管)
11 被溶接部(素管エッジ突合せ部)
12 素管エッジ部加熱起点
13 溶接点
15 電縫鋼管
16 スクイズロール
20 造管方向
1 Polymer Material Coating Device 2 Polymer Material 3 Shield Box 10 Elementary Tube (Open Tube)
11 Welded part (element tube edge butt part)
12 Element pipe edge heating starting point 13 Welding point 15 ERW steel pipe 16 Squeeze roll 20 Pipe making direction

Claims (8)

電縫鋼管の製造方法において、鋼帯を管状体に成形しつつ該管状体の周方向両端部を加熱し突合せて電縫溶接するにあたり、燃焼して還元性ガスを生成する高分子材料を、前記加熱前の管状体の周方向両端部に予め付着させた後、電縫溶接し、且つ、少なくとも電縫溶接中は前記管状体の周方向両端部の加熱起点から溶接点に至る加熱範囲を非酸化性ガスでシールドし、酸素濃度を0.01〜10vol.%の範囲にすることを特徴とする電縫鋼管の製造方法。   In the method for producing an electric resistance steel pipe, a polymer material that burns to generate a reducing gas when the steel strip is formed into a tubular body and both ends in the circumferential direction of the tubular body are heated and butt-welded to perform electric resistance welding. After preliminarily adhering to both ends in the circumferential direction of the tubular body before heating, and at least during the electric resistance welding, a heating range from the heating starting point of the both ends in the circumferential direction of the tubular body to the welding point is set. A method for producing an ERW steel pipe, characterized by shielding with a non-oxidizing gas and adjusting the oxygen concentration to a range of 0.01 to 10 vol.%. 前記還元性ガスが、メタン、エチレン、アセチレン、エタンのうちいずれか1つ以上を含むことを特徴とする請求項1に記載の電縫鋼管の製造方法。   2. The method for producing an ERW steel pipe according to claim 1, wherein the reducing gas contains one or more of methane, ethylene, acetylene, and ethane. 前記高分子材料が、ポリエステル、ポリエチレン、ポリプロピレン、熱硬化型アクリル樹脂のいずれかであることを特徴とする請求項2に記載の電縫鋼管の製造方法。   The method for producing an electric resistance welded steel pipe according to claim 2, wherein the polymer material is any one of polyester, polyethylene, polypropylene, and thermosetting acrylic resin. 前記高分子材料の付着量を、付着厚みで10〜1000μmとすることを特徴とする請求項1〜3のいずれか1項に記載の電縫鋼管の製造方法。   The method for producing an electric-welded steel pipe according to any one of claims 1 to 3, wherein an adhesion amount of the polymer material is 10 to 1000 µm in terms of adhesion thickness. シールドに用いる非酸化性ガスが不活性ガスであることを特徴とする請求項1〜4のいずれか1項に記載の電縫鋼管の製造方法。   The non-oxidizing gas used for a shield is an inert gas, The manufacturing method of the ERW steel pipe of any one of Claims 1-4 characterized by the above-mentioned. シールドに用いる非酸化性ガスはシールドボックス内に流すものとし、該シールドボックス内の非酸化性ガス流量を50〜3000l/minとすることを特徴とする請求項1〜5のいずれか1項に記載の電縫鋼管の製造方法。   The non-oxidizing gas used for the shield is made to flow in the shield box, and the non-oxidizing gas flow rate in the shield box is set to 50 to 3000 l / min. The manufacturing method of the electric resistance steel pipe of description. 前記管状体の電縫溶接直後の外径は、10〜700mmであることを特徴とする請求項1〜6のいずれか1項に記載の電縫鋼管の製造方法。   The outer diameter immediately after the electric resistance welding of the tubular body is 10 to 700 mm, The method for manufacturing the electric resistance steel pipe according to any one of claims 1 to 6. 前記鋼帯の板厚は、0.5〜30mmであることを特徴とする請求項1〜7のいずれか1項に記載の電縫鋼管の製造方法。   The thickness of the steel strip is 0.5 to 30 mm, and the method for producing an ERW steel pipe according to any one of claims 1 to 7.
JP2017002223A 2016-03-25 2017-01-11 ERW steel pipe manufacturing method Active JP6485463B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016061699 2016-03-25
JP2016061699 2016-03-25

Publications (2)

Publication Number Publication Date
JP2017177215A true JP2017177215A (en) 2017-10-05
JP6485463B2 JP6485463B2 (en) 2019-03-20

Family

ID=60004801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017002223A Active JP6485463B2 (en) 2016-03-25 2017-01-11 ERW steel pipe manufacturing method

Country Status (1)

Country Link
JP (1) JP6485463B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816780A (en) * 1981-07-24 1983-01-31 Sumitomo Metal Ind Ltd Production of welded pipe
JPS5823582A (en) * 1981-08-04 1983-02-12 Sumitomo Metal Ind Ltd Production for welded pipe
JPS59137186A (en) * 1983-01-28 1984-08-07 Sumitomo Metal Ind Ltd Production of welded pipe
JPH04305379A (en) * 1991-03-29 1992-10-28 Nippon Steel Corp Method for preventing weld defect of electro-resistance-welded tube
JP2013208637A (en) * 2012-03-30 2013-10-10 Nisshin Steel Co Ltd Seal box welding method of electric resistance welded tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816780A (en) * 1981-07-24 1983-01-31 Sumitomo Metal Ind Ltd Production of welded pipe
JPS5823582A (en) * 1981-08-04 1983-02-12 Sumitomo Metal Ind Ltd Production for welded pipe
JPS59137186A (en) * 1983-01-28 1984-08-07 Sumitomo Metal Ind Ltd Production of welded pipe
JPH04305379A (en) * 1991-03-29 1992-10-28 Nippon Steel Corp Method for preventing weld defect of electro-resistance-welded tube
JP2013208637A (en) * 2012-03-30 2013-10-10 Nisshin Steel Co Ltd Seal box welding method of electric resistance welded tube

Also Published As

Publication number Publication date
JP6485463B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
JP5509657B2 (en) Welded steel pipe joined by high-density energy beam and manufacturing method thereof
JP2004306084A (en) Composite welding method of laser welding and arc welding
CA2973830A1 (en) Electric-resistance-welded stainless clad steel pipe and method of manufacturing the same
WO2020017420A1 (en) Method for manufacturing joined structure of dissimilar materials, and joined structure of dissimilar materials
EP2703112B1 (en) Method for producing laser welded steel pipe
JP2011224655A (en) Method for manufacturing laser welded steel pipe
JP3702216B2 (en) Manufacturing method for inner and outer surface submerged arc welded steel pipes with excellent seam weld toughness
JP5493666B2 (en) ERW steel pipe manufacturing method
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
JP2020011276A (en) Dissimilar material joint structure manufacturing method and dissimilar material joint structure
JP6485463B2 (en) ERW steel pipe manufacturing method
CN105195866B (en) A kind of full-automatic root bead method of the pipe end of composite bimetal pipe
JP5031383B2 (en) Laser welding method for steel plate overlap
RU2688350C1 (en) Method of hybrid laser-arc welding with steel clad pipes deposition
JPH067934A (en) Method for seal-welding end of double tubes
JP2012187590A (en) Method for producing laser-welded steel pipe
Kam et al. Porosity reduction through a Ti particle based gap-paste in arc welding of zinc coated steel
JP7456559B1 (en) Stainless steel and copper joined body and its manufacturing method, and stainless steel and copper joining method
JP2014079805A (en) Manufacturing method of butt-welded steel tube excellent in processability, and butt-welded steel tube
JPS61270339A (en) Manufacture of weld tube superior in groove corrosion resistance
JP4586515B2 (en) Welded steel pipe with secondary workability comparable to that of the base metal in the welded part and method for producing the same
JP7341919B2 (en) Method for repairing weld bead cut portion of ERW steel pipe and method for manufacturing ERW steel pipe
JP2002103035A (en) Seam welding method of uo steel pipe
JPH0852513A (en) Manufacture of welded tube
JP2020151726A (en) Composite welding method of galvanized steel sheet and welded structure thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6485463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250