JPH067934A - Method for seal-welding end of double tubes - Google Patents

Method for seal-welding end of double tubes

Info

Publication number
JPH067934A
JPH067934A JP2574592A JP2574592A JPH067934A JP H067934 A JPH067934 A JP H067934A JP 2574592 A JP2574592 A JP 2574592A JP 2574592 A JP2574592 A JP 2574592A JP H067934 A JPH067934 A JP H067934A
Authority
JP
Japan
Prior art keywords
welding
electrode
mig
tig
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2574592A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Kitamura
征義 北村
Sadao Toshima
貞雄 都島
Yukihiko Horii
行彦 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2574592A priority Critical patent/JPH067934A/en
Publication of JPH067934A publication Critical patent/JPH067934A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To efficiently execute the formation of an excellent bead by executing a round welding on a primary layer by a TIG method and successively executing build-up welding on and after secondary layer by an MIG method. CONSTITUTION:The tube-end fitting boundary part 4 of the double tubes 3 mechanically fitting two kinds of the metallic tubes of the inside metallic tube 1 and the outside metallic tube 2 is subjected to a round welding on the primary layer by using a welding torch 7 for TIG method and an electrode 8 by the TIG method. Then, the build-up welding succeeding the secondary layer is successively executed to the surface part of the tube by using a welding torch 9 for MIG method and an electrode 10 by the MIG method. The welding electrode for TIG method is arranged at the downward slope by setting the electrode arrangement angle at 20-80 deg., and the welding electrode for MIG method is arranged at the downward slope to execute the welding by setting the electrode arrangement angle at 5-20 deg.. As a filler material, highly alloyed wire is used. By this method, the butting circular welding of the double tubes saving manpower can be executed with high reliability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は石油・天然ガス採掘用の
油井管や輸送用のラインパイプ、廃液処理プラントの配
管等の分野で使用される二重管の管端部のシール溶接方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seal welding method for pipe ends of double pipes used in fields such as oil well pipes for oil and natural gas mining, line pipes for transportation, and pipes for waste liquid treatment plants. It is a thing.

【0002】硫化水素などの腐食性ガスや強酸性・強ア
ルカリ性廃液等に曝される菅類では、製造コストを合理
的範囲内に抑えながら高い機械的強度と耐食性を確保す
るために、例えば高ニッケル合金製の内側金属管と低合
金鋼製の外側金属管を焼き嵌め法などによってメカニカ
ルに嵌合した、二重管の需要が高まりつつある。
[0002] Pipes exposed to corrosive gases such as hydrogen sulfide and strongly acidic and strongly alkaline waste liquids have high mechanical strength and corrosion resistance, for example, in order to keep production cost within a reasonable range. There is an increasing demand for a double pipe in which a nickel alloy inner metal pipe and a low alloy steel outer metal pipe are mechanically fitted by a shrink fitting method or the like.

【0003】[0003]

【従来の技術】二重管は施工現場で一連に接合すること
によって所要長さのパイプラインを形成するのである
が、メカニカルに嵌合された内側金属管と外側金属管の
境界部には僅かながら隙間が存在しているため、管端の
突き合わせ円周溶接時に隙間起因によるブロ−ホ−ル欠
陥が発生することがある。そのため、二重管は工場段階
で予め管端のシ−ル溶接を行ない、該溶接ビードに所要
の開先を施してから出荷されている。
2. Description of the Related Art Double pipes are formed by joining a series of pipes at a construction site to form a pipeline having a required length. However, the mechanically fitted boundary between the inner metal pipe and the outer metal pipe is small. However, since there is a gap, a blowhole defect may occur due to the gap at the time of butt circumferential welding of pipe ends. Therefore, double pipes are shipped after the pipe ends are pre-sealed at the factory stage and the weld beads are provided with the required groove.

【0004】管端シ−ル溶接には現在、シールドガス中
でタングステン電極と母材間にアークを発生させて、母
材と溶加材を溶融させるTIG(ティグ)法が採用され
ているが、TIG溶接は溶着速度が低いため、内管表面
から外管表面まで、即ち外管の全肉厚にわたって積層す
るには、表1に示したように非常に時間が掛っている。
このように管端処理ための溶接能率が悪いので、二重管
全体の生産性が著しく阻害されている。
At the time of pipe end seal welding, the TIG (Tig) method in which an arc is generated between a tungsten electrode and a base metal in a shield gas to melt the base metal and the filler metal is used. Since TIG welding has a low deposition rate, it takes a very long time as shown in Table 1 to stack from the inner pipe surface to the outer pipe surface, that is, over the entire thickness of the outer pipe.
Since the welding efficiency for pipe end treatment is poor, the productivity of the entire double pipe is significantly impaired.

【表1】 [Table 1]

【0005】一方、溶加材ともなる消耗電極ワイヤを定
速度送給し、シールドガス中で消耗電極ワイヤと母材間
にアークを発生させて、消耗電極ワイヤと母材を溶融さ
せるMIG(ミグ)法は、TIG溶接よりも高い溶着速
度を期待できるが、使用する溶接入力が大きくなって隙
間起因によるブロ−ホ−ル欠陥が初層に多発するため、
現在は二重管の管端シール溶接には採用されていない。
On the other hand, a consumable electrode wire, which also serves as a filler material, is fed at a constant speed, and an arc is generated between the consumable electrode wire and the base material in a shield gas to melt the consumable electrode wire and the base material. ) Method can be expected to have a higher deposition rate than TIG welding, but since the welding input used becomes large and blowhole defects due to gaps frequently occur in the first layer,
Currently, it is not used for pipe end seal welding of double pipes.

【0006】[0006]

【発明が解決しようとする課題】本発明は管端嵌合境界
部における溶接形態について各方面からの分析を行な
い、溶接諸条件等について種々の研究を重ねることによ
って得られたものであり、本発明の目的はTIG法とM
IG法の適用順序を特定することによって両溶接法の長
所を有効利用し、ブローホール欠陥の発生を的確に抑止
しながら良好なビードの形成を能率よく行なえる管端シ
ール溶接方法を提供することである。
SUMMARY OF THE INVENTION The present invention was obtained by conducting an analysis from various directions on the welding form at the pipe end fitting boundary and conducting various studies on various welding conditions. The object of the invention is the TIG method and the M
To provide a pipe end seal welding method that effectively utilizes the advantages of both welding methods by specifying the order of application of the IG method, and can effectively suppress formation of blowhole defects and efficiently form good beads. Is.

【0007】[0007]

【課題を解決するための手段】以下、図示の参照符号を
用いて説明すると、二種類の金属管1,2をメカニカル
に嵌合した二重管3の管端シール溶接を行う本発明方法
の要旨は、TIG法とMIG法を併用し、MIG法に先
行してTIG法を実施することである。すなわち、二重
管3の管端嵌合境界部4に対しTIG法で初層一周溶接
を実施し、第2層以降の積層溶接をMIG法で管表面部
まで連続して実施する。
A method of the present invention for performing pipe end seal welding of a double pipe 3 in which two types of metal pipes 1 and 2 are mechanically fitted will be described below with reference to the reference numerals shown in the drawings. The gist is to use the TIG method and the MIG method together and to implement the TIG method prior to the MIG method. That is, the first layer round welding is performed on the pipe end fitting boundary portion 4 of the double pipe 3 by the TIG method, and the laminated welding of the second and subsequent layers is continuously performed by the MIG method up to the pipe surface portion.

【0008】初層溶接によるビード5と第2層以降の積
層溶接による各ビード6を良好に形成するためには、二
重管3の管端の外側空間に配置されるTIG法の溶接電
極8とMIG法の溶接電極10は、通常は下り坂側の位
置、すなわち管回転方向Rにおいて見たとき管頂点Pよ
りも後方側に配置される。
In order to satisfactorily form the bead 5 by the first layer welding and each bead 6 by the layered welding of the second layer and thereafter, the welding electrode 8 of the TIG method arranged in the outer space of the tube end of the double tube 3 is formed. The welding electrode 10 of the MIG method is usually arranged at a position on the downhill side, that is, behind the pipe apex P when viewed in the pipe rotation direction R.

【0009】電極配置角とは溶接電極の狙い位置と管頂
点Pが管中心Oに対してなす角度のことであるが、TI
G法の溶接電極8については、望ましい電極配置角βは
20度〜80度の範囲内である。電極配置角βが20度
未満であるときには、溶接電極8がMIG法の溶接電極
10と干渉することになり、80度を越えるときにはビ
ード5の形状が劣化する。
The electrode arrangement angle is the angle between the target position of the welding electrode and the pipe vertex P with respect to the pipe center O.
For the G method welding electrode 8, a desirable electrode arrangement angle β is within a range of 20 degrees to 80 degrees. When the electrode arrangement angle β is less than 20 degrees, the welding electrode 8 interferes with the welding electrode 10 of the MIG method, and when it exceeds 80 degrees, the shape of the bead 5 deteriorates.

【0010】MIG法の溶接電極10については、望ま
しい電極配置角αは5度〜20度の範囲内である。電極
配置角αが5度未満であるときには、ビ−ドが山型にな
ったり、溶融金属が後方に流れ落ちたりする。電極配置
角αが20度を越えると溶融プ−ルヘッドが大きくなり
過ぎて、溶け込み不足や溶融金属の前方流れ落ちといっ
た問題が生じる。
For the MIG welding electrode 10, the preferred electrode placement angle α is in the range of 5 ° to 20 °. When the electrode arrangement angle α is less than 5 degrees, the beads become mountain-shaped or the molten metal flows backward. If the electrode arrangement angle α exceeds 20 degrees, the molten pool head becomes too large, causing problems such as insufficient melting and forward flow of molten metal.

【0011】TIG法で初層溶接を実施するときには、
典型的には高合金製の内側金属管1とビード5との融合
性を良くするために溶加材として高合金ワイヤ11を用
いる。また、MIG法で第2層以降の積層溶接を実施す
るときには、該ビード5と上乗せビード6との融合性を
良くするために溶接電極10として同種の高合金ワイヤ
を用いる。
When performing the first layer welding by the TIG method,
Typically, a high alloy wire 11 is used as a filler material in order to improve the fusion property between the high alloy inner metal tube 1 and the beads 5. Further, when the second layer and subsequent layers are welded by the MIG method, the same kind of high alloy wire is used as the welding electrode 10 in order to improve the fusion property between the bead 5 and the additional bead 6.

【0012】高能率化の面だけから見れば、初層から最
終層まで積層溶接を全てMIG法で実施することが考え
られるが、高合金ワイヤをMIG法による初層溶接に適
用した場合には、以下に示すようにブロ−ホ−ル欠陥の
発生抑制と良好なビ−ド形成を両立させることが困難で
あり、そのため本発明方法では初層溶接をTIG法で実
施する。
From the point of view of high efficiency, it is conceivable to carry out all the laminated welding from the first layer to the final layer by the MIG method, but when the high alloy wire is applied to the first layer welding by the MIG method, As described below, it is difficult to achieve both suppression of blowhole defect generation and good bead formation. Therefore, in the method of the present invention, the first layer welding is performed by the TIG method.

【0013】すなわち、MIG法で消耗電極として用い
る高合金ワイヤ(例えばINCO.625など)は低合金に比較
して電気抵抗が著しく高いため、ワイヤ突き出し部分で
のジュ−ル発熱分が大きく、ワイヤが高温に予熱され、
図6に示したように低合金ワイヤに比べ、同一溶接電流
でもワイヤ溶融効率が高くなり、少ない溶接入力でも多
量のワイヤが溶融する。その結果、ワイヤ溶着量当りの
入熱が少なくなり、熱不足によるビ−ド不良を起こし易
いため、良好なビ−ド形状を得るにはある程度以上溶接
入力を高める必要がある。
That is, since a high alloy wire (for example, INCO.625) used as a consumable electrode in the MIG method has a remarkably high electric resistance as compared with a low alloy, the amount of juule heat generated at the wire protruding portion is large, Is preheated to high temperature,
As shown in FIG. 6, as compared with the low alloy wire, the wire melting efficiency is higher even with the same welding current, and a large amount of wire is melted even with a small welding input. As a result, the heat input per wire welding amount is reduced, and a bead defect is likely to occur due to insufficient heat. Therefore, in order to obtain a good bead shape, it is necessary to increase the welding input to some extent.

【0014】しかしながら、溶接入力が大きくなるにつ
れて溶融プ−ル量が増え、プールも長くなり、また、低
合金鋼に比べて凝固温度が150℃程度低く、溶融金属
の滞留時間も長くなるので、ブロ−ホ−ルが生長し易い
環境が醸成されることになり、結局、ブロ−ホ−ル欠陥
発生の抑制と良好なビ−ドの形成という要請を同時に満
足させることは困難である。一方、TIG法の溶接で
は、溶加ワイヤと溶接入力を独立して制御できるので、
溶融プ−ルを小さくしてブロ−ホ−ル生成のない良好な
ビ−トを形成するのに適している。
However, as the welding input increases, the amount of molten pool increases, the pool becomes longer, the solidification temperature is about 150 ° C. lower than that of low alloy steel, and the residence time of the molten metal becomes longer. An environment in which the blowholes grow easily is cultivated, and it is difficult to satisfy the requirements of suppressing the generation of blowhole defects and forming good beads at the same time. On the other hand, in TIG welding, since the filler wire and welding input can be controlled independently,
It is suitable for reducing the melt pool to form a good beat without blowhole formation.

【0015】[0015]

【作用】図1のMIG法とTIG法の複合溶接装置にお
いて、水平に横倒し配置された二重管3は左右一対のタ
ーニングロール12,12に載置され、矢視R方向に回
転させられる。TIG法の溶接トーチ7の狙い位置には
ワイヤ送給器13から溶加材の高合金ワイヤ11が順次
送給され、MIG法の溶接トーチ9には溶加材と消耗電
極を兼ねる高合金ワイヤ10がワイヤ送給器14から所
定速度で送給される。
In the combined welding apparatus of the MIG method and the TIG method shown in FIG. 1, the double pipe 3 horizontally laid down is placed on the pair of left and right turning rolls 12, 12 and rotated in the arrow R direction. The high-alloy wire 11 of the filler material is sequentially fed from the wire feeder 13 to the target position of the welding torch 7 of the TIG method, and the high-alloy wire serving as the filler material and the consumable electrode is supplied to the welding torch 9 of the MIG method. 10 is fed from the wire feeder 14 at a predetermined speed.

【0016】MIG法の溶接トーチ9とTIG法の溶接
トーチ7を所要の電極配置角α,βに設定する。次に溶
接速度を設定し、タ−ニングロ−ル12を回転させると
同時に、高合金ワイヤ11を用いてTIG溶接のみを開
始し、管端嵌合境界部4を初層一周だけ溶接を行う。そ
して、TIG溶接を停止した後、タ−ニングロ−ル12
の回転速度を上昇させ、管端嵌合境界部をシ−ル溶接し
たTIG法のビ−ド5の上に高合金ワイヤ10を用いて
管表面までMIG法によって連続積層溶接を行う。
The welding torch 9 of the MIG method and the welding torch 7 of the TIG method are set to the required electrode arrangement angles α and β. Next, the welding speed is set, the turning roll 12 is rotated, and at the same time, only the TIG welding is started using the high alloy wire 11, and the pipe end fitting boundary portion 4 is welded only once around the first layer. Then, after the TIG welding is stopped, the turning roll 12
Of the TIG method in which the pipe end fitting boundary portion is sealed and welded, the high alloy wire 10 is used to perform continuous lamination welding to the pipe surface by the MIG method.

【0017】図5に示したように管表面部まで積層溶接
が実施された後、鎖線で例示したように施工現場での突
き合わせ円周溶接のための開先加工が、ビード5と複数
のビード6の集成体に対して施され、管端処理済みの二
重管として施工現場へ出荷される。
After the laminated welding is performed up to the pipe surface as shown in FIG. 5, the bead 5 and the plurality of beads are grooved for butt circumferential welding at the construction site as illustrated by the chain line. It is applied to the assembly of No. 6 and shipped to the construction site as a double pipe with pipe end treatment.

【0018】[0018]

【実施例】本発明方法が適用される二重管3の典型例
は、高合金製の内側金属管1と低合金鋼製の外側金属管
2を焼き嵌めしたものであり、内側金属管1と外側金属
管2の各端部の性状に応じて、二重管3の管端には図3
に示したようにシール溶接のための開先が施される。
EXAMPLE A typical example of a double pipe 3 to which the method of the present invention is applied is one in which a high alloy inner metal pipe 1 and a low alloy steel outer metal pipe 2 are shrink-fitted. Depending on the properties of each end of the outer metal pipe 2 and
A groove for seal welding is applied as shown in FIG.

【0019】MIG法の溶接電極10の電極配置角αと
TIG法の溶接電極8の電極配置角βは前記範囲内で選
定されるが、溶接電極10と溶接電極8はいずれも管表
面の狙い位置に立てた法線、すなわち溶接電極の狙い位
置と管中心Oを通る直線上にあることに限定されず、図
2に示したように一定の後退角γ,θの範囲内において
法線に対し傾けて配置することもできる。
The electrode arrangement angle α of the welding electrode 10 of the MIG method and the electrode arrangement angle β of the welding electrode 8 of the TIG method are selected within the above range, but both the welding electrode 10 and the welding electrode 8 aim at the pipe surface. It is not limited to the normal line standing at the position, that is, on the straight line passing through the target position of the welding electrode and the pipe center O, and as shown in FIG. 2, the normal line is set within the range of constant receding angles γ and θ. It can also be placed at an angle.

【0020】一周溶接して次層の積層を開始するときに
は、図4に示したように溶接電極10の狙い位置の高さ
をビ−ド5,6の厚さh分だけ高めて、溶接電極10を
構成するワイヤの突き出し長さLを一定にする。また、
開先壁15からワイヤ先端までの距離xが一定になるよ
うに開先角度に見合った分だけ開先壁15側に溶接電極
10を移動させる制御を行う。このような積層移行時に
おける電極の位置制御によって、MIGア−クを中断せ
ずに連続的に管表面部まで積層溶接することができ、溶
け込み不良欠陥発生の危険を回避できる。
When welding one round to start stacking the next layer, the height of the target position of the welding electrode 10 is increased by the thickness h of the beads 5 and 6 as shown in FIG. The protruding length L of the wire forming 10 is made constant. Also,
Control is performed to move the welding electrode 10 to the groove wall 15 side by an amount corresponding to the groove angle so that the distance x from the groove wall 15 to the tip of the wire becomes constant. By controlling the position of the electrode during the transition of stacking, it is possible to continuously stack and weld the pipe surface portion without interrupting the MIG arc, and avoid the risk of defective penetration.

【0021】低合金鋼(API X60) 製で外径が220mm、
肉厚が12mmの外側金属管2と高合金材(ALLOY 825) 製
で肉厚が2mmの内側金属管1とから成る二重管3を9本
用意し、各二重管3の管端に図3に示した角度の開先を
施した。TIG法のみを使用するもの(A) 、MIG法
だけを使用するもの(B)、TIG法とMIG法を併用
してMIG法の電極配置角を小さく設定するもの
(C)、TIG法とMIG法を併用してMIG法の電極
配置角を大きく設定するもの(D)を比較例として、各
管端に積層溶接を実施した。また、TIG法とMIG法
を併用してTIG法とMIG法の各電極配置角を種々変
更したもの(E,F,G,H,I)を本発明例として、
各管端に積層溶接を実施した。各比較例と本発明例の溶
接条件は表2に示した通りである。
Made of low alloy steel (API X60) with an outer diameter of 220 mm,
Nine double pipes 3 consisting of an outer metal pipe 2 having a wall thickness of 12 mm and an inner metal pipe 1 made of a high alloy material (ALLOY 825) and having a wall thickness of 2 mm are prepared, and at each pipe end of each double pipe 3. A groove having an angle shown in FIG. 3 was applied. One using only the TIG method (A), one using only the MIG method (B), one using both the TIG method and the MIG method to set the electrode arrangement angle of the MIG method small (C), the TIG method and the MIG As a comparative example, a method (D) in which the electrode arrangement angle of the MIG method is set to a large value by using the above-mentioned method is used as a comparative example, and laminated welding is performed at each pipe end. Further, a combination of the TIG method and the MIG method and variously changing the electrode arrangement angles of the TIG method and the MIG method (E, F, G, H, I) is given as an example of the present invention.
Laminate welding was performed on each tube end. The welding conditions of each comparative example and the present invention example are as shown in Table 2.

【表2】 [Table 2]

【0022】高合金ワイヤ10,11には、INCO.625(J
IS Z3334 YNiCrMo-3相当) の1.2mm径のものを使用し
た。TIG法のシ−ルドガスには純アルゴンガス(Ar)
を使用し、MIG法のシールドガスには炭酸ガスとアル
ゴンガスの混合ガス(20%CO2+80%Ar)を使用し、各シー
ルドガスの流量は20 1/minに設定した。溶接状況を観察
し、溶接後にビ−ドの外観検査と溶接部全周のX線検査
を行ない、ビ−ドの良否の判定とピットやブローホール
の有無を判定した。この結果を表3に示す。
For high alloy wires 10 and 11, INCO.625 (J
IS Z3334 YNiCrMo-3 equivalent) with 1.2 mm diameter was used. Pure argon gas (Ar) is used as the shield gas for the TIG method.
A mixed gas of carbon dioxide gas and argon gas (20% CO 2 + 80% Ar) was used as the shield gas for the MIG method, and the flow rate of each shield gas was set to 20 1 / min. After welding, the appearance of the beads and the X-ray inspection of the entire circumference of the welded portion were performed after the welding, and the quality of the beads was judged and the presence or absence of pits and blow holes was judged. The results are shown in Table 3.

【表3】 [Table 3]

【0023】比較例Aでは溶接ビ−ドは良好であるが、
溶接時間が長いので溶接能率の向上は期待できない。比
較例Bでは溶接能率は比較例Aの3倍以上に向上するけ
れども、初層にはピットが発生し、X線検査ではブロ−
ホ−ル欠陥が多数発見された。比較例CではMIG法の
電極配置角が小さ過ぎるため、溶融金属の後方への流れ
落ちなどが発生し、不安定なビ−ドになった。比較例D
ではMIG法の電極配置角が大き過ぎるため、溶融金属
の前方への流れ落ちが発生し、X線検査で溶け込み不足
による融合不良が発見された。
In Comparative Example A, the weld bead was good, but
Since the welding time is long, improvement in welding efficiency cannot be expected. In Comparative Example B, the welding efficiency was improved to more than 3 times that of Comparative Example A, but pits were generated in the first layer, and the X-ray inspection showed a blow.
Many hole defects were found. In Comparative Example C, since the electrode arrangement angle of the MIG method was too small, backward flow of the molten metal and the like occurred, resulting in an unstable bead. Comparative example D
However, since the electrode arrangement angle of the MIG method was too large, the molten metal flowed down forward, and an X-ray inspection discovered a fusion failure due to insufficient penetration.

【0024】一方、本発明例E,F,G,H及びIでは
ビ−ドはいずれも安定しており、アーク時間も14〜1
6分であり、溶接能率はTIG法だけによる従来方法よ
り2倍以上に向上している。
On the other hand, in the invention examples E, F, G, H and I, the beads were all stable and the arc time was 14 to 1 as well.
It is 6 minutes, and the welding efficiency is more than doubled as compared with the conventional method using only the TIG method.

【0025】[0025]

【発明の効果】以上のように本発明の二重管の管端シー
ル溶接方法では、管端嵌合境界部に対し初層一周溶接を
TIG法で実施し、第2層以降の積層溶接をMIG法で
管表面部まで連続して実施するものであり、TIG法と
MIG法の適用順序を特定することによって両溶接法の
長所が有効に発揮されるので、ブローホール欠陥の発生
を的確に抑止しながら良好なビードの形成を能率よく行
なうことができる。
As described above, in the pipe end seal welding method for a double pipe according to the present invention, the first layer one-round welding is carried out at the pipe end fitting boundary portion by the TIG method, and the second and subsequent layers are laminated. Since the MIG method is performed continuously up to the pipe surface, the advantages of both welding methods can be effectively exhibited by specifying the application order of the TIG method and the MIG method, so that the occurrence of blowhole defects can be accurately performed. Good bead formation can be performed efficiently while suppressing.

【0026】本発明方法では初層溶接にのみTIG法を
用いているので全体としての能率低下はさしたる問題に
はならず、溶加材や電極配置角、溶接電流等の溶接条件
を適宜選択することによって従来方法の2倍以上の溶接
能率で管端をシール溶接できるものであり、これによっ
て管端処理された二重管の生産性を大幅に向上させるこ
とができ、コストの相当な節減が可能である。
In the method of the present invention, since the TIG method is used only for the first layer welding, the overall reduction in efficiency does not pose a serious problem, and the welding conditions such as the filler material, the electrode arrangement angle, and the welding current are appropriately selected. As a result, the pipe end can be sealed and welded with a welding efficiency more than twice that of the conventional method, and this can greatly improve the productivity of the double pipe with the pipe end treated, and save a considerable cost. It is possible.

【0027】このように管端のシール溶接が万全になさ
れているため、施工現場での管端開先の点検補修作業は
一切不要となり、二重管の突き合わせ円周溶接を高い信
頼性のもとに省力化して行なうことができ、石油採掘や
輸送施設の構築等において有用性が高いものである。
As described above, since the pipe end seal welding is perfectly performed, no inspection and repair work of the pipe end groove is required at the construction site, and the double pipe butt circumferential welding is highly reliable. It can be carried out labor-saving and is highly useful in oil mining and construction of transportation facilities.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施に使用されるMIG法とTI
G法の複合溶接装置の模式図である。
FIG. 1 is a MIG method and TI used for carrying out the method of the present invention.
It is a schematic diagram of the compound welding equipment of G method.

【図2】MIG法とTIG法の各溶接電極が管表面に対
してとり得る後退角を示す模式図である。
FIG. 2 is a schematic diagram showing a receding angle that each welding electrode of the MIG method and the TIG method can take with respect to the pipe surface.

【図3】シール溶接のために開先された二重管の管端拡
大図である。
FIG. 3 is an enlarged view of a pipe end of a double pipe grooved for seal welding.

【図4】第2層まで積層溶接が実施された二重管の管端
拡大図である。
FIG. 4 is an enlarged view of a pipe end of a double pipe in which laminated welding is performed up to a second layer.

【図5】管表面部まで積層溶接が実施された二重管の管
端拡大図である。
FIG. 5 is an enlarged view of a pipe end of a double pipe in which laminated welding is performed up to a pipe surface portion.

【図6】MIG法における溶接電流とワイヤ溶着量との
関係を示すグラフである。
FIG. 6 is a graph showing a relationship between a welding current and a wire deposition amount in the MIG method.

【符号の説明】[Explanation of symbols]

1 内側金属管 2 外側金属管 3 二重管 4 管端嵌合境界部 5 ビード 6 ビード 7 TIG法の溶接トーチ 8 TIG法の溶接電極 9 MIG法の溶接トーチ 10 MIG法の溶接電極 11 高合金ワイヤ 12 ターニングロール 13 ワイヤ送給器 14 ワイヤ送給器 15 シール溶接用開先 L ワイヤ突き出し長さ O 管中心 P 管頂点 R 管回転方向 h ビード厚さ x 開先壁とワイヤ先端間の距離 α MIG法の電極配置角 β TIG法の電極配置角 1 inner metal pipe 2 outer metal pipe 3 double pipe 4 pipe end fitting boundary part 5 bead 6 bead 7 TIG welding torch 8 TIG welding electrode 9 MIG welding torch 10 MIG welding electrode 11 high alloy Wire 12 Turning roll 13 Wire feeder 14 Wire feeder 15 Seal welding groove L Wire protrusion length O Pipe center P Pipe apex R Pipe rotation direction h Bead thickness x Distance between groove wall and wire tip α Electrode arrangement angle of MIG method β TIG method electrode arrangement angle

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 二種類の金属管がメカニカルに嵌合され
た二重管の管端嵌合境界部に対しTIG法で初層一周溶
接を実施し、第2層以降の積層溶接をMIG法で管表面
部まで連続して実施する二重管の管端シール溶接方法。
1. A first-layer one-round welding is performed by a TIG method on a pipe end fitting boundary portion of a double tube in which two kinds of metal tubes are mechanically fitted, and a MIG method is used for a laminated welding of the second and subsequent layers. A pipe end seal welding method for double pipes that is continuously performed up to the pipe surface.
【請求項2】 電極配置角を20度〜80度にしてTI
G法の溶接電極を下り坂位置に配置し、電極配置角を5
度〜20度にしてMIG法の溶接電極を下り坂位置に配
置し、初層溶接と第2層以降の積層溶接を実施すること
を特徴とする請求項1に記載の管端シール溶接方法。
2. TI with an electrode arrangement angle of 20 to 80 degrees
Welding electrode of G method is arranged at the downhill position and the electrode arrangement angle is 5
The pipe end seal welding method according to claim 1, wherein the welding electrode of the MIG method is arranged at a downhill position at an angle of 20 to 20 degrees, and the initial layer welding and the laminated welding of the second and subsequent layers are performed.
【請求項3】 溶加材として高合金ワイヤを用いてTI
G法による初層溶接を実施し、同種の高合金ワイヤを用
いてMIG法による第2層以降の積層溶接を実施するこ
とを特徴とする請求項1に記載の管端シール溶接方法。
3. TI using a high alloy wire as a filler material
The pipe end seal welding method according to claim 1, wherein the first layer welding is performed by the G method, and the second layer and subsequent layers are welded by the MIG method using the same type of high alloy wire.
JP2574592A 1992-01-16 1992-01-16 Method for seal-welding end of double tubes Withdrawn JPH067934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2574592A JPH067934A (en) 1992-01-16 1992-01-16 Method for seal-welding end of double tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2574592A JPH067934A (en) 1992-01-16 1992-01-16 Method for seal-welding end of double tubes

Publications (1)

Publication Number Publication Date
JPH067934A true JPH067934A (en) 1994-01-18

Family

ID=12174366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2574592A Withdrawn JPH067934A (en) 1992-01-16 1992-01-16 Method for seal-welding end of double tubes

Country Status (1)

Country Link
JP (1) JPH067934A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1904258A1 (en) * 2005-07-20 2008-04-02 Tri Tool Inc. Configurable dual process welding head and method
JP2011501698A (en) * 2007-09-18 2011-01-13 エクソンモービル リサーチ アンド エンジニアリング カンパニー Weld metal compositions for joining steel structures in the oil and gas industry
CN103495795A (en) * 2013-10-10 2014-01-08 中国化学工程第三建设有限公司 Gas protection bottoming automatic welding process of carbon steel pipeline consumable electrode
JP2014014828A (en) * 2012-07-06 2014-01-30 Mitsubishi Electric Corp Welding method, and welding apparatus
CN103801796A (en) * 2012-11-06 2014-05-21 中国石油天然气集团公司 All-position automatic welding method for pipeline circumferential weld
US9062113B2 (en) 2003-06-27 2015-06-23 Amgen Fremont Inc. Antibodies directed to the deletion mutants of epidermal growth factor receptor and uses thereof
JP2015199074A (en) * 2014-04-04 2015-11-12 三菱電機株式会社 Welding method of compressor vessel and manufacturing method of compressor using the same
JP2017177111A (en) * 2016-03-28 2017-10-05 中国電力株式会社 Steel member welding method and welding material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9096672B2 (en) 2003-06-27 2015-08-04 Amgen Fremont Inc. Antibodies directed to the deletion mutants of epidermal growth factor receptor and uses thereof
US9062113B2 (en) 2003-06-27 2015-06-23 Amgen Fremont Inc. Antibodies directed to the deletion mutants of epidermal growth factor receptor and uses thereof
US9073998B2 (en) 2003-06-27 2015-07-07 Amgen Fremont Inc. Antibodies directed to the deletion mutants of epidermal growth factor receptor and uses thereof
US9085624B2 (en) 2003-06-27 2015-07-21 Amgen Fremont Inc. Antibodies directed to the deletion mutants of epidermal growth factor receptor and uses thereof
EP1904258A4 (en) * 2005-07-20 2009-08-05 Tri Tool Inc Configurable dual process welding head and method
EP1904258A1 (en) * 2005-07-20 2008-04-02 Tri Tool Inc. Configurable dual process welding head and method
NO340440B1 (en) * 2005-07-20 2017-04-24 Tri Tool Inc Configurable double process welding head, and associated process
JP2011501698A (en) * 2007-09-18 2011-01-13 エクソンモービル リサーチ アンド エンジニアリング カンパニー Weld metal compositions for joining steel structures in the oil and gas industry
JP2014014828A (en) * 2012-07-06 2014-01-30 Mitsubishi Electric Corp Welding method, and welding apparatus
CN103801796A (en) * 2012-11-06 2014-05-21 中国石油天然气集团公司 All-position automatic welding method for pipeline circumferential weld
CN103495795A (en) * 2013-10-10 2014-01-08 中国化学工程第三建设有限公司 Gas protection bottoming automatic welding process of carbon steel pipeline consumable electrode
JP2015199074A (en) * 2014-04-04 2015-11-12 三菱電機株式会社 Welding method of compressor vessel and manufacturing method of compressor using the same
JP2017177111A (en) * 2016-03-28 2017-10-05 中国電力株式会社 Steel member welding method and welding material

Similar Documents

Publication Publication Date Title
EP3213851B1 (en) A method of laying a pipeline, with pipe section connected together by internal and external welding
US4258242A (en) Welding process for production of a steel pipe
JP5236566B2 (en) Circumferential welding method for fixed steel pipes
EP2692476B1 (en) Method for producing laser-welded steel tube
US20080230528A1 (en) Method of electric arc joining with alternating current
JPH06339775A (en) Welding method of ni-ni alloy material
JP2004306084A (en) Composite welding method of laser welding and arc welding
JP2007283363A (en) Method of manufacturing uoe steel pipe
CN106903399A (en) The high strength pipe semiautomatic welding method of more than X80 grade of steels
CN104339123A (en) Bimetal composite pipe welding method
EP2703112B1 (en) Method for producing laser welded steel pipe
JPH067934A (en) Method for seal-welding end of double tubes
CN111014901A (en) Automatic self-melting TIG welding method for thin-wall stainless steel pipe
JPH08243754A (en) Inner face welding method of clad steel tube
JPH0623543A (en) Seal welding method of tube end of double tube
JPH0623553A (en) Manufacture of welded steel tube
US20020179583A1 (en) Highly ductile reduced imperfection weld for ductile iron and method for producing same
JP2001038472A (en) Welding method of stainless steel clad plate
JP2833279B2 (en) Steel pipe welding method
JPH08309527A (en) Production of clad welded steel pipe
JPH06285640A (en) Inner surface welding method for clad steel tube
JPS60154875A (en) Longitudinal seam welding of uoe steel pipe
JPH08276273A (en) Butt welding method for clad steel
JPS62286675A (en) Multi electrode gas shield arc welding method for strip steel
JPH11129068A (en) Circumferential welding for pipe line fixed pipe

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408