JPH0623543A - Seal welding method of tube end of double tube - Google Patents

Seal welding method of tube end of double tube

Info

Publication number
JPH0623543A
JPH0623543A JP2574692A JP2574692A JPH0623543A JP H0623543 A JPH0623543 A JP H0623543A JP 2574692 A JP2574692 A JP 2574692A JP 2574692 A JP2574692 A JP 2574692A JP H0623543 A JPH0623543 A JP H0623543A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
welding
electrode
method
tube
tig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2574692A
Other languages
Japanese (ja)
Inventor
Yukihiko Horii
Yukiyoshi Kitamura
Sadao Toshima
征義 北村
行彦 堀井
貞雄 都島
Original Assignee
Nippon Steel Corp
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE:To efficiently form an excellent bead while generation of defects of blow hole being correctly suppressed. CONSTITUTION:A welding electrode 8 of TIG method is arranged on the down- hill position by setting the electrode arrangement angle between 20-80 degrees, while a welding electrode 10 of MIG method is arranged on the down-hill position by setting the electrode arrangement angle between 5-20 degrees. The initial circumferential layer welding is executed by using the welding electrode 8 of TIG method for the boundary part 4 of the tube end insertion of a double tube 3, and the second and subsequent build-up welding are continuously executed to the tube surface part by using the welding electrode 8 of TIG method and the welding electrode 10 of MIG method.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は石油・天然ガス採掘用の油井管や輸送用のラインパイプ、廃液処理プラントの配管等の分野で使用される二重管の管端部のシール溶接方法に関するものである。 The present invention relates to oil and natural gas OCTG and transport line pipe for mining, it relates to a method of sealing weld tube end of the double tube used in the field of piping of the waste treatment plant it is intended.

【0002】硫化水素などの腐食性ガスや強酸性・強アルカリ性廃液等に曝される菅類では、製造コストを合理的範囲内に抑えながら高い機械的強度と耐食性を確保するために、例えば高ニッケル合金製の内側金属管と低合金鋼製の外側金属管を焼き嵌め法などによってメカニカルに嵌合した、二重管の需要が高まりつつある。 [0002] In the cans to be exposed to corrosive gas or strongly acidic, strongly alkaline waste liquid, such as hydrogen sulfide, in order to ensure a high mechanical strength and corrosion resistance while suppressing the manufacturing cost within a reasonable range, for example, high It fitted in the mechanical, such as by shrink fitting method inner metal tube and low alloy steel outer metal tube made of nickel alloy, there is a growing demand for the double tube.

【0003】 [0003]

【従来の技術】二重管は施工現場で一連に接合することによって所要長さのパイプラインを形成するのであるが、メカニカルに嵌合された内側金属管と外側金属管の境界部には僅かながら隙間が存在しているため、管端の突き合わせ円周溶接時に隙間起因によるブロ−ホ−ル欠陥が発生することがある。 Although BACKGROUND ART double tube is to form a pipeline of required length by joining a series at the construction site, only the boundary of the inner metal tube and an outer metal tube fitted in the mechanical due to the presence of gaps while, Bro by gaps caused during butt circumferential welding of pipe ends - e - sometimes Le defects occur. そのため、二重管は工場段階で予め管端のシ−ル溶接を行ない、該溶接ビードに所要の開先を施してから出荷されている。 Therefore, the double tube is preliminarily tube end of sheet factory stage - performs Le welding, the Shipping subjected to predetermined groove in the weld bead.

【0004】管端シ−ル溶接には現在、シールドガス中でタングステン電極と母材間にアークを発生させて、母材と溶加材を溶融させるTIG(ティグ)法が採用されているが、TIG溶接は溶着速度が低いため、内管表面から外管表面まで、即ち外管の全肉厚にわたって積層するには、表1に示したように非常に時間が掛っている。 [0004] Kantanshi - The Le welding current, to generate an arc between tungsten electrode and base material in the shielding gas, but TIG melting the base material and filler material (Tig) method is adopted since TIG welding is low welding speed, from the inner tube surface to the outer tube surface, i.e. the laminated over the entire wall thickness of the outer tube is hanging very time as shown in Table 1.
このように管端処理ための溶接能率が悪いので、二重管全体の生産性が著しく阻害されている。 Since the welding efficiency for pipe end processing is poor, the overall productivity of the double tube is markedly inhibited.

【表1】 [Table 1]

【0005】一方、溶加材ともなる消耗電極ワイヤーを定速度送給し、シールドガス中で消耗電極ワイヤと母材間にアークを発生させて、消耗電極ワイヤと母材を溶融させるMIG(ミグ)法は、TIG溶接よりも高い溶着速度を期待できるが、使用する溶接入力が大きくなって隙間起因によるブロ−ホ−ル欠陥が初層に多発するため、現在は二重管の管端シール溶接には採用されていない。 On the other hand, also consumable electrode wire to feed a constant speed with filler material feeds, in the shielding gas by generating an arc between the consumable electrode wire and the base material, MIG melting the consumable electrode wire and the base material (MIG ) method, can be expected a higher deposition rates than TIG welding, blow by welding input increases clearance due to use - e - for Le defects occur frequently in the first layer, now the tube end sealing of the double tube the welding not been adopted.

【0006】 [0006]

【発明が解決しようとする課題】本発明は管端嵌合境界部における溶接形態について各方面からの分析を行ない、溶接諸条件等について種々の研究を重ねることによって得られたものであり、本発明の目的はTIG法とM [0008] The present invention performs an analysis of the various quarters Welding form in the tube end fitting boundary has been obtained by overlapping various studies on the welding conditions and the like, the the purpose of the invention is a TIG method M
IG法の長所を有効利用し、ブローホール欠陥の発生を的確に抑止しながら良好なビードの形成を能率よく行なえる管端シール溶接方法を提供することである。 By effectively utilizing the advantages of IG method is to provide a properly suppressed while efficiently performed pipe end seal welding method of formation of a good bead occurrence of blowholes defects.

【0007】 [0007]

【課題を解決するための手段】以下、図示の参照符号を用いて説明すると、二種類の金属管1,2をメカニカルに嵌合した二重管3の管端シール溶接を行う本発明方法の要旨は、TIG法とMIG法を併用し、二重管3の管端嵌合境界部4に対しTIG法で初層一周溶接を実施し、第2層以降の積層溶接をTIG法とMIG法の併用によって管表面部まで連続して実施する。 Hereinafter SUMMARY OF THE INVENTION, referring to reference numerals shown in the figure, the present invention a method of performing two types of pipe end seal welding of the combined double pipe 3 fitted with metal pipes 1 and 2 to the mechanical Abstract is a combination of TIG method and MIG method, performed first layer around welding TIG method with respect to the pipe end fitting boundary 4 of the double tube 3, TIG method and MIG method lamination welding of the second and subsequent layers continuously carried out by the combination to the pipe surface portion.

【0008】TIG溶接による初層ビード5と第2層以降の積層溶接によるTIGビード6aおよびMIGビード6を良好に形成するためには、二重管3の管端の外側空間に配置されるTIG法の溶接電極8とMIG法の溶接電極10は、通常は下り坂側の位置、すなわち管回転方向Rにおいて見たとき管頂点Pよりも後方側に配置される。 In order to root pass bead 5 by TIG welding satisfactorily form a TIG bead 6a and MIG bead 6 by lamination welding of the second and subsequent layers is, TIG disposed outside the space of the double tube 3 of the tube end welding electrode 8 and the welding electrode 10 of the MIG method law, usually located downhill side, that is disposed on the rear side than the pipe apex P when viewed in the tube rotation direction R.

【0009】電極配置角とは、溶接電極の狙い位置と管頂点Pが管中心Oに対してなす角度のことであるが、T [0009] The electrode arrangement angle, but target position and the pipe apex P of the welding electrodes is that the angle formed with respect to the tube center O, T
IG法の溶接電極8については、望ましい電極配置角β Welding electrode 8 of the IG method is desirable electrode arrangement angle β
は20度〜80度の範囲内である。 Is in the range of 20 to 80 degrees. 電極配置角βが20 Electrode arrangement angle β is 20
度未満であるときには、溶接電極8がMIG法の溶接電極10と干渉することになり、80度を越えるときにはビード5の形状が劣化する。 When less than degrees, the welding electrodes 8 becomes interfere with the welding electrode 10 of the MIG method, the shape of the bead 5 is deteriorated when exceeding 80 degrees.

【0010】MIG法の溶接電極10については、望ましい電極配置角αは5度〜20度の範囲内である。 [0010] The welding electrodes 10 of the MIG method is the preferred electrode arrangement angle α is in the range of 5 degrees to 20 degrees. 電極配置角αが5度未満であるときには、ビ−ドが山型になったり、溶融金属が後方に流れ落ちたりする。 When the electrode arrangement angle α is less than 5 degrees, bi - de is or becomes a mountain-type, molten metal or flows down to the rear. 電極配置角αが20度を越えると溶融プ−ルヘッドが大きくなり過ぎて、溶け込み不足や溶融金属の前方流れ落ちといった問題が生じる。 And melt-flop electrode arrangement angle α exceeds 20 ° - heads or others becomes too large, problems such as falling down ahead of penetration shortage and the molten metal occurs.

【0011】TIG法による初層溶接は、高合金製の内側金属管1の溶接部耐食性を考慮し、溶加材として高合金ワイヤ11を用いて実施される。 [0011] The first layer welding by TIG method, considering weld corrosion resistance of the inner metal tube 1 made of high-alloy is carried out using a high-alloy wire 11 as filler. また、TIG法とM In addition, TIG method and M
IG法による第2層以降の積層溶接は、ビード5と第2 Lamination welding of the second and subsequent layers by IG method, bead 5 and the second
層ビード6aとの融合性を良くし、第3層以降のビード6および6aにおける金属組成上の一体性を確保するために同じ高合金ワイヤを用いて実施される。 To improve the fusion of the layers bead 6a, it is performed using the same high alloy wire in order to ensure the integrity of the metal composition in the third and subsequent layers of the bead 6 and 6a.

【0012】第2層以降ではTIG法とMIG法による溶接はMIG法の溶接速度で進行するため、TIG法の溶接については、通常の適用におけるTIG法の限界溶接速度を超えることになる。 [0012] Since the second layer and subsequent welding by TIG method and MIG method which proceeds at welding speed of MIG method, for welding TIG method, will exceed the limit welding speed of TIG methods in normal applications. そのため、TIG溶接のビード表面形状はやや劣化するが、それに引き続くMIG Therefore, although the bead surface shape of the TIG welding is somewhat deteriorated, MIG subsequent thereto
溶接において、このビード不安定部が再溶融されるので、欠陥として残ることはない。 In the welding, since the bead unstable portion is re-melted, it does not remain as a defect.

【0013】高能率化の面だけから見れば、初層から最終層まで積層溶接を全てMIG法で実施することが考えられるが、高合金ワイヤをMIG法による初層溶接に適用した場合には、以下に示すようにブロ−ホ−ル欠陥の発生抑制と良好なビ−ド形成を両立させることが困難であり、そのため本発明方法では初層溶接をTIG法のみで実施する。 [0013] Viewed from only the surface of the high efficiency, when it is conceivable to implement in all MIG method lamination welding from the first layer to the last layer, to which the high alloy wire in the first layer welding by MIG method , blow as follows - e - excellent bi and generation suppression Le defects - it is difficult to achieve both de formation, performed only by TIG method initial layer welding by this reason the present invention method.

【0014】すなわち、MIG法で消耗電極として用いる高合金ワイヤ(例えばINCO.625など)は低合金に比較して電気抵抗が著しく高いため、ワイヤ突き出し部分でのジュ−ル加熱分が大きく、図7に示したように低合金ワイヤに比べ、同一溶接電流でもワイヤ溶融効率が高くなり、少ない溶接入力でも多量のワイヤが溶融する。 [0014] That is, the high alloy wire (for example, INCO.625) used as a consumable electrode in MIG method for remarkably high electrical resistance compared to low alloy, Ju of the wire protruding portions - Le heating amount is large, FIG. 7 compared with the low-alloy wire as shown in, the wire melting efficiency is higher at the same welding current, a large amount of wire is melted in a small welding input. その結果、ワイヤ溶着量当りの入熱が少なくなり、熱不足によるビ−ド不良を起こし易いため、良好なビ−ド形状を得るにはある程度以上溶接入力を高める必要がある。 As a result, less heat input per wire deposition rate is bi by insufficient heat - for prone to de poor, good bi - to obtain a de shape it is necessary to increase the welding input above a certain level.

【0015】しかしながら、溶接入力が大きくなるにつれて溶融プ−ル量が増え、プールも長くなり、また、低合金鋼に比べて凝固温度が150℃程度低く、溶融金属の滞留時間も長くなるので、ブロ−ホ−ルが生長し易い環境が醸成されることになり、結局、ブロ−ホ−ル欠陥発生の抑制と良好なビ−ドの形成という要請を同時に満足させることは困難である。 [0015] However, melt-flop as welding input increases - increasing le volume pool becomes longer and, the solidification temperature than the low alloy steel is 0.99 ° C. about low, since a long residence time of the molten metal, Bro - e - le is that easy environment grown is building, eventually, blow - Ho - Le defect suppression and good bi - is difficult to satisfy a demand de formation simultaneously.

【0016】一方、TIG法の溶接では、溶加ワイヤと溶接入力を独立して制御できるので、溶融プ−ルを小さくしてブロ−ホ−ル生成のない良好なビ−トを形成するのに適している。 [0016] On the other hand, in the welding of TIG method, it is possible independently controlled filler wire and welding input, melt-flop - to form the door - blow to reduce the Le - Ho - Le generates no good bi It is suitable for. TIG法の溶接速度はMIG法の溶接速度よりも低いが、TIG法の溶接速度が適用されるのは、初層溶接の段階のみであるから、全体としての能率低下はさしたる問題とはならない。 Welding speed of TIG method is lower than the welding speed of MIG method, the welding speed of the TIG method is applied, since only the stage of root pass weld, not efficiency decreases as a whole and Sashitaru problem.

【0017】 [0017]

【作用】図1のMIG法とTIG法の複合溶接装置において、水平に横倒し配置された二重管3は左右一対のターニングロール12,12に載置され、矢視R方向に回転させられる。 [Action] In hybrid welding apparatus of MIG method and TIG method of FIG. 1, the double pipe 3 that is horizontally sideways positioned is mounted on a pair of left and right turning rolls 12 are rotated in the arrow R direction. TIG法の溶接トーチ7の狙い位置にはワイヤ送給器13から溶加材の高合金ワイヤ11が順次送給され、MIG法の溶接トーチ9には溶加材と消耗電極を兼ねる高合金ワイヤ10がワイヤ送給器14から所定速度で送給される。 The aiming position of the welding torch 7 of the TIG method is a high alloy wire 11 is successively fed to the filler from the wire feeder 13, the high alloy wire to the welding torch 9 of the MIG method is serving as a consumable electrode and filler metal 10 is fed from the wire feeder 14 at a predetermined speed.

【0018】MIG法の溶接トーチ9とTIG法の溶接トーチ7を所要の電極配置角α,βに設定する。 The desired electrode placement angle welding torch 9 and the welding torch 7 of TIG method MIG method alpha, is set to beta. 次に溶接速度を設定し、タ−ニングロ−ル12を回転させると同時に、高合金ワイヤ11を用いてTIG溶接のみを開始し、管端嵌合境界部4を初層一周だけ溶接を行う。 Then set the welding speed, motor - Ninguro - simultaneously rotating the Le 12, starts only TIG welding using a high-alloy wire 11, performs welding pipe end fitting boundary 4 only root pass around. そして、タ−ニングロ−ル12の回転速度を上昇させ、管端嵌合境界部をシ−ル溶接したTIG法のビ−ド5の上に高合金ワイヤ11,10を用いて管表面までTIG法とMIG法によって連続して積層溶接を行う。 Then, data - Ninguro - increases the rotational speed of the Le 12, the pipe end fitting boundary sheet - TIG until the tube surface using a high-alloy wire 11, 10 on the de 5 - Le welded in TIG method bi successively by law and MIG method performs multilayer welding.

【0019】第2層以降ではTIG法とMIG法による溶接はMIG法の溶接速度で進行するため、TIG法の溶接については、通常の適用におけるTIG法の限界溶接速度を超えることになる。 [0019] Since the second layer and subsequent welding by TIG method and MIG method which proceeds at welding speed of MIG method, the welding of the TIG method will exceed the limit welding speed of TIG methods in normal applications. そのため、TIG溶接のビード形状はやや劣化するが、それに引き続くMIG溶接でこのビード不安定部は再溶融されるので、欠陥として残ることはない。 Therefore, although degraded bead shape is somewhat TIG welding, the bead unstable portion in MIG welding subsequent to it because it is remelted and does not remain as a defect.

【0020】図6に示したように管表面部まで積層溶接が実施された後、鎖線で例示したように施工現場での突き合わせ円周溶接のための開先加工が、ビード5と複数のビード6および6aの集成体に対して施され、管端処理済みの二重管として施工現場へ出荷される。 [0020] After the lamination welding to the pipe surface portion as shown in FIG. 6 has been performed, the beveling for butt circumferential welding at construction sites as illustrated by a chain line, the bead 5 and a plurality of beads 6 and 6a is performed on the assemblage is shipped to the construction site as a tube end processed double pipe.

【0021】 [0021]

【実施例】本発明方法が適用される二重管3の典型例は、高合金製の内側金属管1と低合金鋼製の外側金属管2を焼き嵌めしたものであり、内側金属管1と外側金属管2の各端部の性状に応じて、二重管3の管端には図3 Typical examples of the double tube 3 EXAMPLES The invention method is applied is for a high alloy of the inner metal tube 1 and made of low alloy steel outer metal tube 2 and the shrink fitting, the inner metal tube 1 depending on the nature of the ends of the outer metal tube 2 and, on the pipe end of the double tube 3 Figure 3
に示したようにシール溶接のための開先が施される。 Groove for the seal welding is performed as shown in.

【0022】MIG法の溶接電極10の電極配置角αとTIG法の溶接電極8の電極配置角βは前記範囲内で選定されるが、溶接電極10と溶接電極8はいずれも管表面の狙い位置に立てた法線、すなわち溶接電極の狙い位置と管中心Oを通る直線上にあることに限定されず、図2に示したように一定の後退角γ,θの範囲内において法線に対し傾けて配置することもできる。 [0022] The aim of the electrode arrangement angle of the welding electrodes 8 of the electrode arrangement angle α and TIG method welding electrode 10 of the MIG method β is chosen within the range, the welding electrode 10 and the welding electrode 8 are both pipe surface normal to the position, i.e. not limited to be in the straight line passing through the target position and the tube center O of the welding electrode, the normal within the scope of certain receding angle gamma, theta, as shown in FIG. 2 It can also be arranged to be inclined against.

【0023】一周溶接して次層の積層を開始するときには、図4に示したようにTIG溶接の第2層ではビード5の厚さh 1分の分だけ、第3層溶接となるMIG溶接ではh 1と第2層TIGビード6aの厚さh 1の和の分だけ、被溶接面が上昇したものとして、それぞれの溶接電極8,10の狙い位置を高め、TIG溶接電極8およびMIG溶接電極10と被溶接面との距離を一定値に維持して第2、第3層溶接を開始する。 The round when welding to initiate a stack of the following layers, by the amount of thickness h 1 minute bead 5 in the second layer of the TIG welding, as shown in FIG. 4, MIG welding as the third layer welding in h 1 and minute only of the sum of the thickness h 1 of the second layer TIG bead 6a, as the welded surface rises, increasing the target position of the respective welding electrodes 8, 10, TIG welding electrodes 8 and MIG welding second, starting the third layer welding while maintaining the distance between the electrodes 10 to be welded surface at a constant value. 第4層以降の電極狙い位置は図5に示すように、TIGビード6aのビード厚さh 1とMIGビード6のビ−ド厚さhの和づつ高め、一定高さを維持する。 As electrodes aiming position of the fourth and subsequent layers are shown in Figure 5, TIG bead 6a of the bead thickness h 1 and MIG bead 6 bi - de enhanced sum increments of thickness h, to maintain a constant height. また、開先壁15からワイヤ先端までの距離xが一定になるように開先角度に見合った分だけ開先壁15側に溶接電極8と溶接電極10を移動させる制御を行う。 Further, it performs control distance x from Hirakisakikabe 15 wire to the tip is to move the welding electrode 8 and the welding electrode 10 only groove wall 15 side min commensurate with the included angle so as to be constant. このような積層移行時における電極の位置制御によって、TIGアークとMIGア−クを中断することなく、連続的に管表面部まで積層でき、溶け込み不良欠陥発生の危険を回避することができる。 The position control of the electrodes at the time of such a laminated migration, TIG arc and MIG A - without interrupting the click continuously be laminated to the pipe surface portion, it is possible to avoid the risk of penetration defects defects. なお、積層時のTIG溶接は必ずしも管表面部まで行う必要はなく、積層ビード高さと管表面までの距離との差がMIG法の一周溶接で十分積層可能となる層までで適宜溶接を停止してよい。 It is not necessary to perform up to TIG welding necessarily pipe surface portion at the time of stacking, to stop the appropriate welding to layer the difference between the distance to the stacking bead height and pipe surface is sufficient stackable in round welding MIG method it may be.

【0024】低合金鋼(API X60) 製で外径が220mm、 [0024] The outer diameter made of low-alloy steel (API X60) is 220mm,
肉厚が12mmの外側金属管2と高合金材(ALLOY 825) 製で肉厚が2mmの内側金属管1とから成る二重管3を9本用意し、各二重管3の管端に図3に示した角度の開先を施した。 The outer metal tube 2 and the high alloy material wall thickness 12 mm (ALLOY 825) wall thickness of the double pipe 3 were prepared nine consisting inner metal tube 1 Metropolitan of 2mm made, the tube ends of the double pipe 3 It was subjected to groove angle depicted in Fig. TIG法のみを使用するもの(A) 、MIG法だけを使用するもの(B)、TIG法とMIG法を併用してMIG法の電極配置角を小さく設定するもの(C)、TIG法とMIG法を併用してMIG法の電極配置角を大きく設定するもの(D)を比較例として、各管端に積層溶接を実施した。 Those using only TIG method (A), those that use only MIG method (B), in combination with TIG method and MIG method used to set small electrode arrangement angle of MIG method (C), TIG method and MIG Act as a comparative example in combination as to set a large electrode arrangement angle of MIG method to (D), was performed lamination welding to each tube end. また、TIG法とMIG法を併用してTIG法とMIG法の各電極配置角を種々変更したもの(E,F,G,H,I)を本発明例として、 Further, those having various respective electrode arrangement angle of TIG method and MIG method in combination TIG method and MIG method (E, F, G, H, I) as the present invention example,
各管端に積層溶接を実施した。 It was performed lamination welding to each tube end. 各比較例と本発明例の溶接条件は表2に示した通りである。 Welding conditions of the Comparative Examples and Invention Examples are as shown in Table 2. なお、表2中の標準溶接条件の溶接速度欄の斜線区分(/)の前側は初層溶接速度を示し、後側は積層溶接速度を示している。 Incidentally, the front side of the hatched section of the welding speed field of the standard welding conditions of Table 2 (/) represents the initial layer welding speed, the rear shows the lamination welding speed.

【表2】 [Table 2]

【0025】高合金ワイヤ10,11にはINCO.625(JIS [0025] The high-alloy wire 10,11 INCO.625 (JIS
Z3334 YNiCrMo-3相当) の1.2mm径のものを使用した。 Z3334 YNiCrMo-3 using the 1.2mm diameter equivalent) ones. TIG法のシ−ルドガスには純アルゴンガス(Ar) The TIG method sheet - the Rudogasu pure argon gas (Ar)
を使用し、MIG法のシールドガスには炭酸ガスとアルゴンガスの混合ガス(20%CO 2 +80%Ar)を使用し、各シールドガスの流量は20 1/minに設定した。 Using, for shielding gas MIG method using a mixed gas of carbon dioxide and argon gas (20% CO 2 + 80% Ar), the flow rate of the shielding gas was set to 20 1 / min. 溶接状況を観察し、溶接後にビ−ドの外観検査と溶接部全周のX線検査を行ない、ビ−ドの良否の判定とピットやブローホールの有無を判定した。 To observe the welding conditions, bi after welding - de performs appearance inspection and weld X-ray examination of the whole circumference of, bi - was determined determination and the pit and the presence or absence of blowholes in the quality of de. この結果を表3に示す。 The results are shown in Table 3.

【表3】 [Table 3]

【0026】比較例Aでは溶接ビ−ドは良好であるが、 [0026] Comparative Example A In welding bi - but de is good,
溶接時間が長いので溶接能率の向上は期待できない。 Since a long welding time improvement of welding efficiency can not be expected. 比較例Bでは溶接能率は比較例Aの3倍以上に向上するけれども、初層にはピットが発生し、X線検査ではブロ− Although welding efficiency in Comparative Example B is improved more than three times that of Comparative Example A, a pit is generated in the first layer, Bro in X-ray examination -
ホ−ル欠陥が多数発見された。 Ho - Le defect is found numerous. 比較例CではMIG法の電極配置角が小さ過ぎるため、溶融金属の後方への流れ落ちなどが発生し、不安定なビ−ドになった。 Since the electrode arrangement angle of Comparative Example C In MIG method is too small, such rundown rearward of the molten metal occurs, unstable bi - became de. 比較例D Comparative Example D
ではMIG法の電極配置角が大き過ぎるため、溶融金属の前方への流れ落ちが発生し、X線検査で溶け込み不足による融合不良が発見された。 In order electrode arrangement angle of the MIG method is too large, and rundown occurs forward of the molten metal, poor fusion due to lack penetration by X-ray examination is found.

【0027】一方、本発明例E,F,G,H及びIではビ−ドはいずれも安定しており、アーク時間も10〜1 On the other hand, the present invention Example E, F, G, the H and I bi - have both de stabilizes, even arcing time 1:10
2分であり、溶接能率はTIG法だけによる従来方法より3倍以上に向上している。 A 2 min, welding efficiency is improved more than three times than the conventional method by only TIG method.

【0028】 [0028]

【発明の効果】以上のように本発明の二重管の管端シール溶接方法では、管端嵌合境界部に対し初層一周溶接をTIG法で実施し、第2層以降の積層溶接をTIG法とMIG法で管表面部まで連続して実施するものであり、 The pipe end seal welding method of the double pipe the present invention as described above, according to the present invention, the initial layer around welded to the pipe end fitting boundary conducted in TIG method, the lamination welding of the second and subsequent layers are those carried out continuously by TIG method and MIG method to pipe surface portion,
TIG法とMIG法の長所が有効に発揮されるので、ブローホール欠陥の発生を的確に抑止しながら良好なビードの形成を能率よく行なうことができる。 Since the advantages of the TIG method and MIG method is effectively exhibited, it is possible to perform good efficiency a formation of a good bead while precisely suppressing the occurrence of blowholes defects.

【0029】本発明方法では、TIG法の溶接電極が電極配置角を20度〜80度にして下り坂位置に配置される一方、MIG法の溶接電極が電極配置角を5度〜20 [0029] In the method of the present invention, while the welding electrode of the TIG method is arranged in downhill position by the electrode arrangement angle 20 to 80 degrees, the welding electrode is electrode arrangement angle of the MIG method 5 degrees to 20
度にして下り坂位置に配置され、第2層以降の各層においてTIG溶接はMIG溶接に先行して実施されるので、TIG溶接はMIG溶接に対する予熱効果を有し、 Disposed downhill position by every so TIG welding in the second and subsequent layers of each layer is carried out prior to the MIG welding, TIG welding has a preheating effect for the MIG welding,
MIG溶接でのコールドラップなどの溶込み不良欠陥発生が抑制され、溶加材や溶接電流等の溶接条件を適宜選択することによって従来方法の3倍以上の溶接能率で管端のシール溶接を行えるものであり、これによって管端処理された二重管の生産性を大幅に向上させることができ、コストの相当な節減が可能である。 Penetration observed defects defects such as cold wraps in MIG welding is suppressed, enabling the seal weld of the tube end at least three times the welding efficiency of the conventional method by appropriately selecting the welding conditions such as welding filler and welding current is intended, whereby it is possible to greatly improve the productivity of the tube end treated double tube, it is possible considerable savings in costs.

【0030】このように管端のシール溶接が万全になされているため、施工現場での管端開先の点検補修作業は一切不要となり、二重管の突き合わせ円周溶接を高い信頼性のもとに省力化して行なうことができ、石油採掘や輸送施設の構築等において有用性が高いものである。 [0030] In order to seal welding of such a tube end have been made to all possible measures, inspection repair work of the pipe end beveling at the construction site is absolutely not required, and also the high reliability butt circumferential welding of the double pipe It can be performed in labor saving in bets, but highly useful in the construction or the like of oil drilling and transportation facilities.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明方法の実施に使用されるMIG法とTI [1] MIG method used in the practice of the present invention a method and TI
G法の複合溶接装置の模式図である。 It is a schematic diagram of a hybrid welding apparatus G method.

【図2】MIG法とTIG法の各溶接電極が管表面に対してとり得る後退角を示す模式図である。 [2] Each welding electrode of MIG method and TIG method is a schematic diagram showing the sweep angle which can be taken against the pipe surface.

【図3】シール溶接のために開先された二重管の管端拡大図である。 3 is a tube end expanded view of the double tube that is groove for the seal weld.

【図4】第2層まで積層溶接が実施された二重管の管端拡大図である。 [4] lamination welding to the second layer is a tube end expanded view of the double tube that is performed.

【図5】第4層まで積層溶接が実施された二重管の管端拡大図である。 [5] lamination welding to the fourth layer is a tube end expanded view of the double tube that is performed.

【図6】管表面部まで積層溶接が実施された二重管の管端拡大図である。 [6] lamination welding to the tube surface portion is a tube end expanded view of the double tube that is performed.

【図7】MIG法における溶接電流とワイヤ溶着量との関係を示すグラフである。 7 is a graph showing the relationship between the welding current and the wire welding capacity in the MIG process.

【符号の説明】 1 内側金属管 2 外側金属管 3 二重管 4 管端嵌合境界部 5 ビード 6 ビード 6a ビード 7 TIG法の溶接トーチ 8 TIG法の溶接電極 9 MIG法の溶接トーチ 10 MIG法の溶接電極 11 高合金ワイヤ 12 ターニングロール 13 ワイヤ送給器 14 ワイヤ送給器 15 シール溶接用開先 L ワイヤ突き出し長さ O 管中心 P 管頂点 R 管回転方向 h ビード厚さ x 開先壁とワイヤ先端間の距離 α MIG法の電極配置角 β TIG法の電極配置角 Welding torch 10 MIG of the Reference Numerals] 1 inner metal tube 2 outer metal tube 3 of the welding torch 8 TIG method of the double pipe 4 the pipe end fitting boundary portion 5 bead 6 bead 6a bead 7 TIG method welding electrodes 9 MIG method welding electrodes 11 of the law high alloy wire 12 turning roll 13 the wire feeder 14 wire feeder 15 seal weld prep groove L wire protruding length O tube center P tube vertex R tube rotation direction h bead thickness x Hirakisakikabe an electrode arrangement angle of the electrode arrangement angle beta TIG in Depth alpha MIG process between wire tip

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 5識別記号 庁内整理番号 FI 技術表示箇所 B23K 9/16 K 7920−4E ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 5 in identification symbol Agency Docket No. FI art display portion B23K 9/16 K 7920-4E

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 二種類の金属管がメカニカルに嵌合された二重管の管端嵌合境界部に対しTIG法で初層一周溶接を実施し、第2層以降の積層溶接をTIG法とMIG 1. A two metal tubes conduct first layer around welding TIG method with respect to the pipe end fitting boundary of the double tube fitted to a mechanical, TIG method lamination welding of the second and subsequent layers MIG and
    法で管表面部まで連続して実施する二重管の管端シール溶接方法。 The pipe end seal welding method of the double tube continuously carried out by law to the tube surface portion.
  2. 【請求項2】 電極配置角を20度〜80度にしてTI 2. With the electrode arrangement angle 20 to 80 degrees TI
    G法の溶接電極を下り坂位置に配置し、電極配置角を5 The welding electrode of Method G arranged in downhill position, the electrode arrangement angle 5
    度〜20度にしてMIG法の溶接電極を下り坂位置に配置して、各溶接を実施することを特徴とする請求項1に記載の管端シール溶接方法。 By placing the welding electrodes of the MIG method downhill position in the degree to 20 degrees, the pipe end seal welding method of claim 1, which comprises carrying out each weld.
  3. 【請求項3】 溶加材として高合金ワイヤを用いてTI 3. Using the high alloy wire as filler TI
    G法の溶接を実施し、同種の高合金ワイヤを用いてMI Performing welding G method, MI with high alloy wire of the same type
    G法の溶接を実施することを特徴とする請求項1に記載の管端シール溶接方法。 The pipe end seal welding method of claim 1, which comprises carrying out the welding of the G method.
  4. 【請求項4】 第2層以降のTIG法とMIG法の併用による積層溶接をMIG法の溶接速度で実施することを特徴とする請求項1に記載の管端シール溶接方法。 4. A pipe end sealing welding method according to claim 1, characterized in that the lamination welding of the combination of the second and subsequent layers of the TIG method and MIG method carried out at a welding speed of MIG process.
JP2574692A 1992-01-16 1992-01-16 Seal welding method of tube end of double tube Pending JPH0623543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2574692A JPH0623543A (en) 1992-01-16 1992-01-16 Seal welding method of tube end of double tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2574692A JPH0623543A (en) 1992-01-16 1992-01-16 Seal welding method of tube end of double tube

Publications (1)

Publication Number Publication Date
JPH0623543A true true JPH0623543A (en) 1994-02-01

Family

ID=12174395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2574692A Pending JPH0623543A (en) 1992-01-16 1992-01-16 Seal welding method of tube end of double tube

Country Status (1)

Country Link
JP (1) JPH0623543A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910364A (en) * 1996-07-10 1999-06-08 Asahi Intecc Co., Ltd. Guide wire and a method of making the same
JP2002219570A (en) * 2001-01-23 2002-08-06 Kayaba Ind Co Ltd Outer shell unit and welding method therefor
JP2010149148A (en) * 2008-12-25 2010-07-08 Komatsu Ltd Welding system, and method for controlling welding system
CN102166700A (en) * 2011-01-19 2011-08-31 深圳市瑞凌实业股份有限公司 Hydroelectric integrated double-gun welding control system
JP2014014828A (en) * 2012-07-06 2014-01-30 Mitsubishi Electric Corp Welding method, and welding apparatus
KR101469422B1 (en) * 2014-08-21 2014-12-04 이영임 Welding System for Pipes and Method Therewith

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910364A (en) * 1996-07-10 1999-06-08 Asahi Intecc Co., Ltd. Guide wire and a method of making the same
JP2002219570A (en) * 2001-01-23 2002-08-06 Kayaba Ind Co Ltd Outer shell unit and welding method therefor
JP4740463B2 (en) * 2001-01-23 2011-08-03 カヤバ工業株式会社 The outer shell unit and its welding method
JP2010149148A (en) * 2008-12-25 2010-07-08 Komatsu Ltd Welding system, and method for controlling welding system
CN102166700A (en) * 2011-01-19 2011-08-31 深圳市瑞凌实业股份有限公司 Hydroelectric integrated double-gun welding control system
JP2014014828A (en) * 2012-07-06 2014-01-30 Mitsubishi Electric Corp Welding method, and welding apparatus
KR101469422B1 (en) * 2014-08-21 2014-12-04 이영임 Welding System for Pipes and Method Therewith

Similar Documents

Publication Publication Date Title
US5591360A (en) Method of butt welding
US5233149A (en) Reprocessing weld and method
US4041274A (en) Maraging stainless steel welding electrode
US3560702A (en) Composite electrode for consumable electrode arc welding process
US5532454A (en) Method of joining metal parts by fusion welding
US4817859A (en) Method of joining nodular cast iron to steel by means of fusion welding
US5258600A (en) Process for welding thermally and/or mechanically treated metal conduits
US4162389A (en) Welding apparatus
US3967036A (en) Flux-coated arc welding electrode
US4258242A (en) Welding process for production of a steel pipe
US4314132A (en) Arc welding cupro nickel parts
US6781083B1 (en) Weld overlay system
US3440391A (en) Internal tube welding
JP2003164983A (en) Welding method for metallic member
US4386259A (en) Arc welding process using a consumable stranded wire electrode
JP2004306084A (en) Composite welding method of laser welding and arc welding
US6784402B2 (en) Steel wire for MAG welding and MAG welding method using the same
US20090224530A1 (en) Welded butt joints on tubes having dissimilar end preparations
CN101474703A (en) Seal welding method of shell type heat exchanger pipe sheet stainless steel composite layer and carbon steel tube
JP2002239725A (en) Gas-shielded arc welding for steel sheet
US5569396A (en) Method for making alloying additions to the weld overlay weld pool
CN101982282A (en) Welding technology for butt welding of composite boards
Radhakrishnan Welding technology and design
US3548489A (en) One-side back bead-forming butt-welding process using a thermosetting backing composite
CN102079003A (en) Automatic TIG gasket-free single-side welding and double-side molding process for aluminum alloy