JP3566862B2 - Plasma welding of small diameter pipes - Google Patents

Plasma welding of small diameter pipes Download PDF

Info

Publication number
JP3566862B2
JP3566862B2 JP29738298A JP29738298A JP3566862B2 JP 3566862 B2 JP3566862 B2 JP 3566862B2 JP 29738298 A JP29738298 A JP 29738298A JP 29738298 A JP29738298 A JP 29738298A JP 3566862 B2 JP3566862 B2 JP 3566862B2
Authority
JP
Japan
Prior art keywords
plasma
pipe
welding
welded
torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29738298A
Other languages
Japanese (ja)
Other versions
JP2000117448A (en
Inventor
康雄 木宮
晴次 橋本
雄己 栢森
康樹 楠
Original Assignee
日鐵住金溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵住金溶接工業株式会社 filed Critical 日鐵住金溶接工業株式会社
Priority to JP29738298A priority Critical patent/JP3566862B2/en
Publication of JP2000117448A publication Critical patent/JP2000117448A/en
Application granted granted Critical
Publication of JP3566862B2 publication Critical patent/JP3566862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
プラズマ溶接方法を利用した小径管の造管方法に関するもので、特に溶接速度が高速であり、大電流を用いるプラズマ溶接造管方法に関する。
【0002】
【従来の技術】
小径管の溶接造管にプラズマ溶接が使われていたが、小径管の生産性向上を図るためプラズマ溶接の電流を上げ、造管速度を上げていた。しかし、プラズマアーク(以下アークと称する)の方向制御ができず、またアークが不安定で、良好な溶接ビードが得られず造管速度の向上には限度があった。
【0003】
例えば、プラズマ溶接による溶接用フラックス入りワイヤの製造方法では、フープを成形ロールによりU字形からO字形に随時成形する。この成形途中でU字形フープの長手方向に沿った開口からフィーダーによりフラックスをフープU字形谷部に供給する。次いでU字フープをO字形のオープンシーム管に成形すると同時に、開口の相対するエッジ面をプラズマ溶接により接合し、引き続いて縮径する。さらに必要に応じて焼鈍した後、フラックスが充填された溶接管を所望の径に伸線し巻き取って製品とする。
【0004】
上記プラズマ溶接によるフラックス入りワイヤの製造において、プラズマ溶接する際にはプラズマトーチ(以下トーチと称する)を陰極にし、オープンシーム管を陽極にする方法が採用される。具体的なアースの取り方は、図6に示すようにプラズマ溶接電源1(以下電源と称する)から陰極のアースをトーチ6に接続し、陽極のアース線laは、架台15上のスクイズスタンド2に接続する。この方法では低電流の低速造管では問題ないが、大電流の高速造管では溶込み深さのばらつき、アンダーカット、ハンピング等のビード不良が発生した。本発明者らは鋭意調査した結果、下記の原因を考察した。
【0005】
スクイズロールスタンド2に陽極のアースを取ると、スクイズロール軸4、スクイズロール軸受3、スクイズロール5を介して溶接管Dからトーチ6に流れる電流Ia が主になる。しかしながら、架台15上にはトーチ6の上流側にエッジ間距離を溶接に適したように小さくしたオープンシーム管Cを形成させる成形スタンド8が有り、スクイズロールスタンド2から架台15、成形スタンド8、成形ロール軸10、軸受9、成形ロール11を介してオープンシーム管Cからトーチ6に流れる電流Ib も存在する。
【0006】
軸受には電気抵抗の大きいグリースが含まれ、接触状態のばらつきにより、電気抵抗のばらつきを生じるため、電流Iaと電流Ibは変動しやすい。この状態の電気等価回路を図7に示す。ここでR1 はスクイズロールスタンド、R2 はスクイズロール軸、R3 はスクイズロール軸受、R4 はスクイズロール、R5 は溶接管、R6 は架台、R7 は成形ロールスタンド、R8 は成形ロール軸、R9 は成形ロール軸受、R10は成形ロール、R11はオープンシーム管の各抵抗を示す。スクイズロールスタンド2はトーチ6の最短距離にあり、溶接管の抵抗R5 はオープンシーム管の抵抗R11よりかなり小さいため、電流Iaは電流Ibより大きくなる。また、軸受の抵抗R3 およびR9 は常時変動する可変抵抗と同じである。したがって、電流Iaと電流Ibは変動しやすい。
【0007】
一方、アークの方向は、被溶接管(オープンシーム管Cと溶接管Dを示す)に流れる電流の影響を大きく受ける。即ち、フレミングの左手の法則により、電流Iaが電流Ibよりも大きいと、アークは上流側に偏向され、電流Iaが電流Ibよりも小さいと、アークは下流側に偏向される。電流Iaと電流Ibが等しい場合は、偏向されないでトーチ6の方向に向く。
【0008】
溶接部の溶込み深さはアークの方向で異なり、被溶接管に直角に入れる場合が最も大きく、直角からのずれ角度が大きくなるほど溶込み深さは小さくなる。また、アークが上流側に偏向するとビード外観が滑らかになり、下流側に偏向するとアンダーカットやハンピングのビード不良が発生しやすい。大電流になると、アークが強くなるためその影響が顕著になる。以上の理由から大電流の高速造管では溶込み深さのばらつき、アンダーカット、ハンピング等のビード不良が発生する。
【0009】
【発明が解決しようとする課題】
そこで本発明は、高速溶接で大電流を用いるプラズマ溶接造管方法において、プラズマアーク方向のばらつきを防止するとともに、プラズマアーク方向を調節して、適切な溶込み深さ及びビード形状を容易に得ることができる小径管のプラズマ溶接造管方法を提供するものである。
【0010】
【課題を解決するための手段】
本発明の小径管のプラズマ溶接造管方法は、金属帯をU字状体に成形し、次いでオープンシーム管に成形した管状体の両エッジ面をプラズマ溶接する溶接造管方法において、プラズマ溶接電源を用いてプラズマトーチを陰極とし、被溶接管を陽極とするための後アースをプラズマトーチの下流側で被溶接管に直接接続する。
【0011】
この発明では、プラズマトーチより下流側の電流のほとんどは、軸受、スクイズロール軸、スクイズロールを経ずに、後アースから被溶接管を通ってプラズマトーチに至る。下流側電路の抵抗は、成形スタンドを経由する上流側電路の抵抗より更に小さくなるので、下流側電流も上流側電流より更に大きくなる。このために、プラズマアークは、より上流側に向かうようになる。また、下流側電流は軸受をほとんど通らないので、プラズマアークは、方向のばらつきがなくなり、安定する。
【0012】
上記プラズマ溶接造管方法において、プラズマ溶接電源の陽極を、プラズマトーチをはさんで被溶接管の上流側の前アースと、下流側の後アースの2点とし、前アースと後アース間にあるロールスタンドと架台との間を絶縁し、さらに前アースとプラズマ溶接電源間の回路に可変抵抗を挿入し、所要のプラズマアークが得られるように可変抵抗を調節するようにしてもよい。
【0013】
この発明では、可変抵抗によりプラズマアークの方向を細かく調節することができ、これより溶込み深さおよびビード形状を調節することができる。
【0014】
上記プラズマ溶接造管方法は、金属帯をU字状体に成形し、U字状体に粉粒体を供給した後、管状体に成形し管状体の両エッジ面をプラズマ溶接する粉粒体充填管の製造に利用することができる。粉粒体として、溶接用フラックス、製鋼添加材等が用いられる。
【0015】
【発明の実施の形態】
図1は本発明のプラズマ溶接方法を示す模式図である。成形ロール11によりエッジ間距離がプラズマ溶接するために十分小さく成形されたオープンシーム管Cは、トーチ6からのアーク7によりシーム部33(図5参照)を溶接され、溶接管Dになる。その直後にスクイズロール5により溶接部が冷却により固まって開かなくなるまで保持する。
【0016】
電源1から陰極のアースはトーチ6にとり、陽極のアースは、スクイズロール5の下流側の溶接管Dに直接接触する銅板製の押付けシューである後アース12と、成形ロール前のオープンシーム管Cに直接接触する銅板製の押付けシューである前アース13にとる。成形スタンド8及びスクイズスタンド2は、先に述べたように軸受3及び9を介しているため不安定であるのでそれぞれ絶縁板16で架台15から絶縁する。アーク7の方向が下流側になってビード不良が発生しないように電源1と前アース13間に可変抵抗器14を設けて前アース13側からの電流Ibを溶接管Dを流れる電流Iaよりも小さくする。可変抵抗器14は図3に示すように溶接管Dとほぼ同断面積、同材質の丸棒19を用いて、図にない電源から接続した固定端17と図にない前アースに接続した可動端18間の距離Lを変更することにより簡便に得られる。
【0017】
電気等価回路を図2に示す。
図1のトーチ6の下流側からの電流Iaは後アース12と溶接管Dの接触抵抗R20、後アース12とトーチ6間の溶接管Dの抵抗R21に反比例し、トーチ6の上流側のオープンシーム管Cを流れる電流Ibは前アース13とオープンシーム管Cの接触抵抗R22、前アース13とトーチ6間のオープンシーム管Cの抵抗R23、および可変抵抗R24に反比例する。
【0018】
なお、前アース13と後アース12の接触抵抗R22とR20については安定するように図にないスプリングにより十分な圧力でシューを押し付ける構造になっている。したがって、可変抵抗R24を調節することにより、プラズマアーク7の方向をビード不良が発生する下流側に向けることなく、任意の方向に安定させることができるので、溶込み深さとビード形状を調節可能となる。
【0019】
図4は、本発明を実施する装置の構成を示す模式図であり、図5は各工程におけるフープの成形状態を示す断面図である。フープAはアンコイラー21によりコイル状から巻き戻されて、洗浄装置22で汚れを除去し、成形ロール群23によりU形管Bに成形され、サイドロール24間でフラックス供給機25によりフラックス32を入れる。さらにフィンパスロール26、シームガイドロール27を経てプラズマ溶接装置28でプラズマ溶接される。プラズマ溶接装置28は、成形ロール11でシーム間距離が0.1mm程度のオープンシーム管Cを形成し、シーム部33をトーチ6でプラズマ溶接し、溶接管Dが形成され、スクイズロール3で溶接部の強度が十分になるまで保持する。その後、溶接管は冷却装置29で冷却され、絞りロール群30で管E内でフラックス32が管軸方向に移動しない十分な密度まで外径を縮径され、最後に巻取り機31でコイル状にする。この後は、図にない伸線機で外径約1mm程度に縮径する。その際、必要に応じて、焼鈍、酸洗、めっき等を行う。
【0020】
なお、本発明は外径8〜50mm程度の、普通鋼、ステンレス鋼等の鋼管の製造に適している。また、溶接電流は例えば100〜500A の大電流であり、溶接速度は1.5〜10m/min の高速度である。
【0021】
【実施例】
小径管のプラズマ溶接造管方法に本発明を適用した実施例を説明する。
実施例の溶接方法は図1に示す方法で行い、可変抵抗器は図3の方法で行った。また、比較例の溶接方法は図6の方法で行った。
詳細な条件を以下及び表1に示す。
実験条件
(1)使用フープ JIS Z−3141 SPCC 肉厚1.2mm、幅23.0mm
(2)溶接外径 8mm
(3)絞り外径 6mm
(4)フラックス 組成メタル系 充填率19%
(5)パイロットガス 成分 Ar+7%H2 流量 表1参照
(6)シールドガス 成分 Ar 流量 10 l/min
(7)トーチ前進角度 10°
(8)可変抵抗器 丸棒 材質市販SS41 寸法φ6mm
(9)造管後の伸線 φ1.2mmまで約10%/ パスの減面率でダイス伸線
【0022】
【表1】

Figure 0003566862
【0023】
実験No.1〜4は、本発明の実施例を示し、実験No.5〜7は比較例を示す。実験No.1は、溶接速度1.5m/min で後アースのみ使用し、成形スタンドおよびスクイズスタンドの絶縁はない場合である。実験No.2は、溶接速度1.5m/min 前アースの位置と後アースの位置をトーチから各20cmにし、成形スタンドおよびスクイズスタンドを架台から絶縁し、可変抵抗値Lを30cmにした場合である。実験No.3は、3.0m/min で前アースの位置を30cm、後アースの位置を20cmにし、成形スタンドおよびスクイズスタンドを絶縁し、可変抵抗値を70cmにした場合である。実験No.4は、実験No.3の前アース、後アースおよび可変抵抗値を変更した場合である。これらはいずれもハンピング、アンダーカット等のビード不良はなく、伸線しても断線しなかった。この結果からトーチとアース間の距離が変わっても可変抵抗器の距離Lを変更することにより溶接条件に合わせたアーク方向が容易に得られている。
【0024】
比較例の実験No.5は、陽極をスクイズスタンドにとった場合であるが、溶接速度が1.0m/min と低速で、低電流のため軸受などの影響をあまり受けず、ビード形状、伸線結果も良好であった。
【0025】
しかし、この方法では実験No.6に示すように1.5m/min になるとビード不良が発生し伸線中に断線する。また、実験No.7では陽極に前アースと後アースをトーチから各20cmに設けているが、成形スタンドとスクイズスタンドに架台からの絶縁が施されてないのでビード不良と伸線中の断線が発生した。
【0026】
【発明の効果】
以上のように本発明によれば、プラズマアークの方向が安定するので、溶込み不足、ビード不良が減少する。また、プラズマアーク方向が容易にかつ任意に選べるので、必要な溶込み深さおよびビード形状に応じて適正条件が簡単に得られることから、品質が安定し、不良率が減少し、溶接速度もアップできる小径管の製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明のプラズマ溶接方法を示す模式図である。
【図2】本発明の電気等価回路図である。
【図3】可変抵抗器の模式図である。
【図4】本発明を実施する装置の構成を示す模式図である。
【図5】各工程におけるフープの成型状態を示す断面図である。
【図6】従来のプラズマ溶接部の拡大模式図である。
【図7】従来の電気等価回路である。
【符号の説明】
1.プラズマ電源
2.スクイズロールスタンド
3.スクイズロール軸受
4.スクイズロール軸
5.スクイズロール
6.トーチ
7.プラズマアーク
8.成形スタンド
9.成形ロール軸受
10.成形ロール軸
11.成形ロール
12.後アース
13.前アース
14.可変抵抗器
15.架台
16.絶縁板
17.固定端
18.可動端
19.丸棒
21.アンコイラー
22.フープ洗浄装置
23.成形ロール群
24.サイドロール
25.フラックス供給機
26.フィンパスロール
27.シームガイドロール
28.プラズマ溶接装置
29.冷却装置
30.絞りロール群
31.巻き取り機
32.フラックス
33.シーム部
A.フープ
B.U形管
C.オープンシーム管
D.溶接管
E.縮径後の溶接管
R1 .スクイズロールスタンド
R2 .スクイズロール軸
R3 .スクイズロール軸受
R4 .スクイズロール
R5 .溶接管
R6 .架台
R7 .成形ロールスタンド
R8 .成形ロール軸
R9 .成形ロール軸受
R10.成形ロール
R11.オープンシーム管
R20.後アースと溶接管の接触抵抗
R21.後アースとトーチ間の溶接管の抵抗
R22.前アースとオープンシーム管の接触抵抗
R23.前アースとトーチ間のオープンシーム管の抵抗
R24.可変抵抗[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a small-diameter pipe using a plasma welding method, and particularly relates to a plasma welding method for producing a small-diameter pipe using a high current and a large current.
[0002]
[Prior art]
Plasma welding was used for welding small diameter pipes, but the plasma welding current was increased and the pipe forming speed was increased in order to improve the productivity of small diameter pipes. However, the direction of a plasma arc (hereinafter, referred to as an arc) cannot be controlled, and the arc is unstable, so that a good weld bead cannot be obtained, and there is a limit in improving the pipe forming speed.
[0003]
For example, in a method of manufacturing a flux-cored wire for welding by plasma welding, a hoop is formed as needed from a U-shape to an O-shape by a forming roll. During this molding, the flux is supplied to the hoop U-shaped valley by a feeder from an opening along the longitudinal direction of the U-shaped hoop. Next, the U-shaped hoop is formed into an O-shaped open seam tube, and at the same time, the opposite edge surfaces of the opening are joined by plasma welding and subsequently reduced in diameter. Further, if necessary, after annealing, the welded tube filled with the flux is drawn to a desired diameter and wound to obtain a product.
[0004]
In the production of the flux-cored wire by the plasma welding, a method of using a plasma torch (hereinafter referred to as a torch) as a cathode and an open seam tube as an anode when performing plasma welding is adopted. Specifically, as shown in FIG. 6, a ground of a cathode is connected to a torch 6 from a plasma welding power source 1 (hereinafter referred to as a power source), and a ground wire la of an anode is connected to a squeeze stand 2 on a gantry 15 as shown in FIG. Connect to. In this method, there is no problem in low-current pipe forming at a low current, but in high-speed pipe forming at a large current, irregularities in penetration depth, bead defects such as undercut and humping occurred. As a result of intensive investigations, the present inventors considered the following causes.
[0005]
When the anode is grounded to the squeeze roll stand 2, the current Ia flowing from the welding pipe D to the torch 6 via the squeeze roll shaft 4, the squeeze roll bearing 3, and the squeeze roll 5 becomes main. However, on the gantry 15, there is a forming stand 8 on the upstream side of the torch 6 for forming an open seam pipe C having a small edge-to-edge distance suitable for welding, and from the squeeze roll stand 2 to the gantry 15, the forming stand 8, There is also a current Ib flowing from the open seam tube C to the torch 6 via the forming roll shaft 10, the bearing 9, and the forming roll 11.
[0006]
Since the bearing contains grease having a large electric resistance, and the contact state varies, the electrical resistance varies, so that the current Ia and the current Ib are likely to fluctuate. FIG. 7 shows an electric equivalent circuit in this state. Here, R1 is a squeeze roll stand, R2 is a squeeze roll shaft, R3 is a squeeze roll bearing, R4 is a squeeze roll, R5 is a welding tube, R6 is a stand, R7 is a forming roll stand, R8 is a forming roll shaft, and R9 is a forming roll. A bearing, R10 indicates a forming roll, and R11 indicates each resistance of the open seam pipe. Since the squeeze roll stand 2 is located at the shortest distance from the torch 6 and the resistance R5 of the welded pipe is considerably smaller than the resistance R11 of the open seam pipe, the current Ia is larger than the current Ib. The resistances R3 and R9 of the bearing are the same as the variable resistance that constantly varies. Therefore, the current Ia and the current Ib tend to fluctuate.
[0007]
On the other hand, the direction of the arc is greatly affected by the current flowing through the pipes to be welded (showing the open seam pipe C and the welded pipe D). That is, according to Fleming's left-hand rule, when the current Ia is larger than the current Ib, the arc is deflected upstream, and when the current Ia is smaller than the current Ib, the arc is deflected downstream. When the current Ia is equal to the current Ib, the current Ia is directed toward the torch 6 without being deflected.
[0008]
The penetration depth of the welded portion differs depending on the direction of the arc, and is the largest when it is inserted into the pipe to be welded at a right angle. The penetration depth decreases as the angle of deviation from the right angle increases. When the arc is deflected to the upstream side, the bead appearance becomes smooth, and when the arc is deflected to the downstream side, a bead defect such as undercut or humping tends to occur. When the current becomes large, the arc becomes strong and the effect becomes remarkable. For the above-described reasons, in high-speed pipe forming with a large current, bead defects such as variation in penetration depth, undercut, and humping occur.
[0009]
[Problems to be solved by the invention]
In view of the above, the present invention provides a plasma welding tube forming method using a large current in high-speed welding, while preventing variations in the plasma arc direction and adjusting the plasma arc direction to easily obtain an appropriate penetration depth and bead shape. It is intended to provide a plasma welding pipe forming method for a small-diameter pipe which can be performed.
[0010]
[Means for Solving the Problems]
The plasma welding method for forming a small-diameter pipe according to the present invention is a method for forming a metal band into a U-shaped body, and then performing plasma welding on both edge surfaces of the tubular body formed into an open seam pipe. Is used to connect the plasma torch to the cathode and the rear ground for the anode of the welded pipe directly to the welded pipe downstream of the plasma torch.
[0011]
In the present invention, most of the current downstream of the plasma torch passes from the rear ground to the plasma torch through the pipe to be welded without passing through the bearing, the squeeze roll shaft, and the squeeze roll. Since the resistance of the downstream circuit is smaller than the resistance of the upstream circuit passing through the molding stand, the downstream current is also larger than the upstream current. For this reason, the plasma arc is directed more upstream. In addition, since the downstream current hardly passes through the bearing, the plasma arc is stable with no direction variation.
[0012]
In the above-described plasma welding tube forming method, the anode of the plasma welding power source is provided with two points, a front ground on the upstream side of the welded pipe and a rear ground on the downstream side with the plasma torch interposed therebetween, and is located between the front ground and the rear ground. It is also possible to insulate between the roll stand and the gantry, insert a variable resistor in the circuit between the front ground and the plasma welding power source, and adjust the variable resistor so as to obtain a required plasma arc.
[0013]
According to the present invention, the direction of the plasma arc can be finely adjusted by the variable resistor, whereby the penetration depth and the bead shape can be adjusted.
[0014]
The above-mentioned plasma welding pipe forming method comprises forming a metal band into a U-shaped body, supplying the U-shaped body with the powdered body, forming the metal body into a tubular body, and plasma-welding both edge surfaces of the tubular body. It can be used for the production of filling tubes. As the powder, a welding flux, a steelmaking additive, or the like is used.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic view showing the plasma welding method of the present invention. The open seam pipe C formed by the forming roll 11 so that the distance between edges is sufficiently small for plasma welding is welded to the seam portion 33 (see FIG. 5) by the arc 7 from the torch 6 to form a welded pipe D. Immediately thereafter, the squeeze roll 5 holds the welded portion until it is solidified by cooling and cannot be opened.
[0016]
The ground of the cathode from the power source 1 is taken to the torch 6, and the ground of the anode is made of a copper plate pressing shoe 12 directly contacting the welding pipe D on the downstream side of the squeeze roll 5, and the open seam pipe C before the forming roll. To the front ground 13 which is a pressing shoe made of a copper plate that directly contacts the ground. As described above, the molding stand 8 and the squeeze stand 2 are unstable due to the bearings 3 and 9 interposed therebetween. A variable resistor 14 is provided between the power supply 1 and the front ground 13 so that the direction of the arc 7 is on the downstream side and a bead failure does not occur, and the current Ib from the front ground 13 is made larger than the current Ia flowing through the welding pipe D. Make it smaller. As shown in FIG. 3, the variable resistor 14 has a fixed end 17 connected from a power source (not shown) and a movable end connected to a front ground (not shown) using a round bar 19 of substantially the same cross-sectional area and the same material as the welding pipe D, as shown in FIG. It is easily obtained by changing the distance L between the 18.
[0017]
FIG. 2 shows an electric equivalent circuit.
The current Ia from the downstream side of the torch 6 in FIG. 1 is inversely proportional to the contact resistance R20 between the rear ground 12 and the welding pipe D, and the resistance R21 of the welding pipe D between the rear ground 12 and the torch 6, and the upstream opening of the torch 6 The current Ib flowing through the seam tube C is inversely proportional to the contact resistance R22 between the front ground 13 and the open seam tube C, the resistance R23 of the open seam tube C between the front ground 13 and the torch 6, and the variable resistance R24.
[0018]
The contact resistances R22 and R20 of the front ground 13 and the rear ground 12 are configured to press the shoe with a sufficient pressure by a spring (not shown) so as to be stable. Therefore, by adjusting the variable resistor R24, it is possible to stabilize the plasma arc 7 in an arbitrary direction without directing the direction of the plasma arc to the downstream side where the bead failure occurs, so that the penetration depth and the bead shape can be adjusted. Become.
[0019]
FIG. 4 is a schematic view showing a configuration of an apparatus for carrying out the present invention, and FIG. 5 is a cross-sectional view showing a state of forming a hoop in each step. The hoop A is unwound from the coil shape by the uncoiler 21, the dirt is removed by the washing device 22, the U-shaped tube B is formed by the forming roll group 23, and the flux 32 is put between the side rolls 24 by the flux supply device 25. . Further, plasma welding is performed by a plasma welding device 28 via a fin pass roll 26 and a seam guide roll 27. The plasma welding apparatus 28 forms an open seam pipe C having a seam distance of about 0.1 mm with the forming roll 11, plasma-welds the seam portion 33 with the torch 6, forms a weld pipe D, and welds with the squeeze roll 3. Hold until the strength of the part is sufficient. Thereafter, the welded pipe is cooled by the cooling device 29, the outer diameter is reduced by the squeezing roll group 30 to a sufficient density so that the flux 32 does not move in the pipe axial direction in the pipe E, and finally the coiled shape is formed by the winding machine 31. To Thereafter, the outer diameter is reduced to about 1 mm by a wire drawing machine (not shown). At that time, annealing, pickling, plating, and the like are performed as necessary.
[0020]
The present invention is suitable for manufacturing steel pipes having an outer diameter of about 8 to 50 mm, such as ordinary steel and stainless steel. The welding current is a large current of, for example, 100 to 500 A, and the welding speed is a high speed of 1.5 to 10 m / min.
[0021]
【Example】
An embodiment in which the present invention is applied to a small-diameter pipe plasma welding pipe forming method will be described.
The welding method of the example was performed by the method shown in FIG. 1, and the variable resistor was performed by the method of FIG. The welding method of the comparative example was performed by the method shown in FIG.
Detailed conditions are shown below and in Table 1.
Experimental conditions (1) Hoop used JIS Z-3141 SPCC 1.2 mm thick and 23.0 mm wide
(2) Outer diameter of welding 8mm
(3) Diameter 6mm
(4) Flux composition metal type Filling rate 19%
(5) Pilot gas component Ar + 7% H2 flow rate See Table 1 (6) Shield gas component Ar flow rate 10 l / min
(7) Torch advance angle 10 °
(8) Variable resistor round bar Material SS41 on the market Dimension φ6mm
(9) Wire drawing after pipe forming Die wire drawing with φ10 mm at approximately 10% / pass reduction rate
[Table 1]
Figure 0003566862
[0023]
Experiment No. 1 to 4 show Examples of the present invention. 5 to 7 show comparative examples. Experiment No. 1 is a case where only the rear ground is used at a welding speed of 1.5 m / min and there is no insulation of the forming stand and the squeeze stand. Experiment No. No. 2 is a case where the position of the front ground and the position of the rear ground are each set to 20 cm from the torch, the forming stand and the squeeze stand are insulated from the gantry, and the variable resistance value L is set to 30 cm. Experiment No. No. 3 is a case where the front ground position was set to 30 cm and the rear ground position was set to 20 cm at 3.0 m / min, the forming stand and the squeeze stand were insulated, and the variable resistance value was set to 70 cm. Experiment No. Experiment No. 4 is Experiment No. 4. 3 is a case where the front ground, the rear ground, and the variable resistance value are changed. All of these did not have bead defects such as humping and undercut, and did not break even when drawn. From this result, even if the distance between the torch and the ground changes, the arc direction according to the welding conditions can be easily obtained by changing the distance L of the variable resistor.
[0024]
Experiment No. of the comparative example. No. 5 shows a case where the anode was taken on a squeeze stand. The welding speed was as low as 1.0 m / min, and the current was low, so it was not much affected by bearings and the like, and the bead shape and wire drawing results were good. Was.
[0025]
However, in this method, experiment No. As shown in FIG. 6, when the speed becomes 1.5 m / min, a bead failure occurs and the wire breaks during wire drawing. Experiment No. In No. 7, the front ground and the rear ground were provided on the anode at 20 cm from the torch, respectively. However, since the molding stand and the squeeze stand were not insulated from the gantry, bead failure and disconnection during wire drawing occurred.
[0026]
【The invention's effect】
As described above, according to the present invention, since the direction of the plasma arc is stabilized, insufficient penetration and bead failure are reduced. In addition, since the plasma arc direction can be selected easily and arbitrarily, appropriate conditions can be easily obtained according to the necessary penetration depth and bead shape, so that the quality is stable, the defect rate is reduced, and the welding speed is also reduced. It is possible to provide a method of manufacturing a small-diameter pipe that can be increased.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a plasma welding method of the present invention.
FIG. 2 is an electric equivalent circuit diagram of the present invention.
FIG. 3 is a schematic diagram of a variable resistor.
FIG. 4 is a schematic diagram showing a configuration of an apparatus for implementing the present invention.
FIG. 5 is a cross-sectional view showing a hoop molding state in each step.
FIG. 6 is an enlarged schematic view of a conventional plasma weld.
FIG. 7 is a conventional electric equivalent circuit.
[Explanation of symbols]
1. 1. Plasma power supply 2. Squeeze roll stand 3. Squeeze roll bearing 4. Squeeze roll shaft Squeeze roll6. Torch 7. Plasma arc8. Forming stand 9. Formed roll bearing 10. Forming roll shaft 11. Forming roll 12. Rear ground 13. Front ground 14. Variable resistor 15. Stand 16. Insulating plate 17. Fixed end 18. Movable end 19. Round bar 21. Uncoiler 22. Hoop cleaning device 23. Forming roll group 24. Side roll 25. Flux feeder 26. Fin path roll 27. Seam guide roll 28. Plasma welding device 29. Cooling device 30. Squeezing roll group 31. Winding machine 32. Flux 33. Seam part A. Hoop B. U-shaped tube C. Open seam tube D. Welded pipe E. Welded pipes R1. Squeeze roll stand R2. Squeeze roll axes R3. Squeeze roll bearing R4. Squeeze roll R5. Welded pipe R6. Stand R7. Forming roll stand R8. Forming roll axis R9. Formed roll bearing R10. Forming roll R11. Open seam tube R20. Contact resistance between the rear ground and the welded pipe R21. Resistance of weld pipe between rear ground and torch R22. Contact resistance between front ground and open seam tube R23. Open seam tube resistance between front ground and torch R24. Variable resistance

Claims (4)

金属帯をU字状体に成形し、次いでオープンシーム管に成形した管状体の両エッジ面をプラズマ溶接する溶接造管方法において、プラズマ溶接電源を用いてプラズマトーチを陰極とし、被溶接管を陽極とするための後アースをプラズマトーチの下流側で被溶接管に直接接続することを特徴とする小径管のプラズマ溶接造管方法。In a welding pipe forming method in which a metal band is formed into a U-shaped body, and then both edge surfaces of the tubular body formed into an open seam pipe are plasma-welded, a plasma torch is used as a cathode using a plasma welding power source, and a pipe to be welded is used. A method for producing a small-diameter pipe by plasma welding, wherein a rear earth for use as an anode is directly connected to a pipe to be welded downstream of a plasma torch. プラズマ溶接電源の陽極を、プラズマトーチをはさんで被溶接管の上流側の前アースと、下流側の後アースの2点とし、前アースと後アース間にあるロールスタンドと架台との間を絶縁し、さらに前アースとプラズマ溶接電源間の回路に可変抵抗を挿入し、所要のプラズマアークが得られるように可変抵抗を調節することを特徴とする請求項1記載の小径管のプラズマ溶接造管方法。The anode of the plasma welding power source has two points, a front ground on the upstream side of the pipe to be welded and a rear ground on the downstream side with a plasma torch in between. 2. The plasma welding method according to claim 1, wherein a variable resistor is inserted into a circuit between the front ground and the plasma welding power source, and the variable resistor is adjusted so as to obtain a required plasma arc. Tube method. 金属帯をU字状体に成形し、U字状体に粉粒体を供給した後、管状体に成形し管状体の両エッジ面をプラズマ溶接することを特徴とする請求項1または2記載の小径管のプラズマ溶接造管方法。3. The metal band is formed into a U-shaped body, and after supplying the granular material to the U-shaped body, the metal band is formed into a tubular body, and both edge surfaces of the tubular body are plasma-welded. Of small diameter pipe by plasma welding. 金属帯をU字状体に成形し、U字状体に充填する粉粒体が溶接用フラックスであることを特徴とする請求項1、2または3記載の小径管のプラズマ溶接造管方法。4. The method of claim 1, 2 or 3, wherein the metal strip is formed into a U-shaped body, and the powder to be filled in the U-shaped body is a welding flux.
JP29738298A 1998-10-19 1998-10-19 Plasma welding of small diameter pipes Expired - Lifetime JP3566862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29738298A JP3566862B2 (en) 1998-10-19 1998-10-19 Plasma welding of small diameter pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29738298A JP3566862B2 (en) 1998-10-19 1998-10-19 Plasma welding of small diameter pipes

Publications (2)

Publication Number Publication Date
JP2000117448A JP2000117448A (en) 2000-04-25
JP3566862B2 true JP3566862B2 (en) 2004-09-15

Family

ID=17845775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29738298A Expired - Lifetime JP3566862B2 (en) 1998-10-19 1998-10-19 Plasma welding of small diameter pipes

Country Status (1)

Country Link
JP (1) JP3566862B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4847079B2 (en) * 2005-09-06 2011-12-28 株式会社ダイヘン Arc welding start method
JP4946223B2 (en) * 2006-07-13 2012-06-06 Jfeスチール株式会社 Steel pipe manufacturing equipment line
CN101924278B (en) * 2010-04-02 2012-05-23 无锡华联精工机械有限公司 Grounding device of welding system
US9505092B2 (en) 2013-02-25 2016-11-29 Greenheck Fan Corporation Methods for fan assemblies and fan wheel assemblies
US10184488B2 (en) 2013-02-25 2019-01-22 Greenheck Fan Corporation Fan housing having flush mounted stator blades
US10125783B2 (en) 2013-02-25 2018-11-13 Greenheck Fan Corporation Fan assembly and fan wheel assemblies
MX363769B (en) 2013-02-25 2019-04-03 Greenheck Fan Corp Mixed flow fan assembly.

Also Published As

Publication number Publication date
JP2000117448A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
CA1144092A (en) Thick welded steel pipe of large diameter and production thereof
JP3566862B2 (en) Plasma welding of small diameter pipes
JP2006110629A (en) Weld wire electrode
US2618845A (en) Method of making tubes
US20180236610A1 (en) Bimetallic welding electrode
US2719900A (en) High speed-sheet metal inert-gas shielded arc-welding
JPH11226781A (en) Manufacture of flux cored wire for welding
KR102232132B1 (en) Consumable welding wire, preferably mig/mag, and relating manufacturing process
JPH04284974A (en) Gas shielded arc welding method at high speed
JP2666647B2 (en) Manufacturing method of welded pipe
JP4467139B2 (en) Metal flux cored wire for arc welding
JP3604720B2 (en) Manufacturing method of powder filled tube
JP2011200903A (en) Welding method of container and refrigeration cycle apparatus
JP3247236B2 (en) Manufacturing method of flux cored wire for arc welding
JP2856982B2 (en) Winding type flux cored wire with good arc stability
JPS61229496A (en) Production of flux cored wire
JPH0852513A (en) Manufacture of welded tube
JPH04333394A (en) Production of flux cored wire for welding
JP2732936B2 (en) Manufacturing method of powder filled tube
JPH01202391A (en) Flux cored wire having good wire feedability
JP2002153913A (en) Method and device for manufacturing tube filled up with granular body
JPH0663791A (en) Production of powder and granular material filled pipe
JPS60257923A (en) Method and device for simulation of pipe making
JPH06269978A (en) Flux-containing wire for stainless steel
JPH04270097A (en) Method for joining hoop material for flux cored wire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term