JP2011200903A - Welding method of container and refrigeration cycle apparatus - Google Patents

Welding method of container and refrigeration cycle apparatus Download PDF

Info

Publication number
JP2011200903A
JP2011200903A JP2010070153A JP2010070153A JP2011200903A JP 2011200903 A JP2011200903 A JP 2011200903A JP 2010070153 A JP2010070153 A JP 2010070153A JP 2010070153 A JP2010070153 A JP 2010070153A JP 2011200903 A JP2011200903 A JP 2011200903A
Authority
JP
Japan
Prior art keywords
welding
welded
cmt
joint
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010070153A
Other languages
Japanese (ja)
Inventor
Kenichi Nakamura
憲一 中村
Naoji Ajiki
直二 安食
Hiroaki Maehara
拓章 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010070153A priority Critical patent/JP2011200903A/en
Publication of JP2011200903A publication Critical patent/JP2011200903A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a welding method for achieving welding while securing airtightness, in which removal of spatters after welding is not required and also generation of strain in a weld zone is suppressed.SOLUTION: A container is manufactured by welding using CMT (Cold Metal Transfer) welding. First, wasted welding is implemented by starting CMT welding from a welding starting point 7a which is a position different from a weld zone to be welded, to the weld zone to be welded. After the weld zone to be welded is reached, regular welding is performed by CMT welding on a welding route 6 which is the weld zone to be continuously welded. With the starting point of the regular welding reached, overlapping welding (overlapped weld zone 9) is further continuously performed in the vicinity of the starting point of the regular welding. Thereafter, wasted welding is carried out to a position different from the weld zone to be welded, the position being a welding completion point 8a.

Description

本発明は容器の溶接方法及びこの溶接用法を用いて製作された容器を冷凍サイクルに用いた冷凍サイクル装置に関し、特に配管を接続するための管座を有する容器の溶接に適切なものである。   The present invention relates to a container welding method and a refrigeration cycle apparatus using a container manufactured by using this welding method in a refrigeration cycle, and is particularly suitable for welding a container having a tube seat for connecting pipes.

アーク放電現象による発熱を利用して母材と溶加材を溶融させて融合する溶接方法には、溶加材に溶接棒を用いる手溶接と、溶加材がワイヤとして自動で供給される半自動溶接が知られている。溶接棒を用いる方式としては、電極にタングステンを用いたTIG溶接、半自動溶接では不活性ガスを用いるMAG溶接、及び不活性ガスにアルゴンだけを用いるMIG溶接があり、一般的に使用されている。これらの溶接方法では、母材と溶加材を溶融するために使用する熱が大きく、溶接した製品に歪が発生したり、溶接作業中にスパッタと呼ばれる溶融した金属の粒が溶接部から飛散して製品に付着するなどの問題があった。このため、従来のこれらの溶接方法では、溶接後に歪を除去する作業や、スパッタを除去するために酸による洗浄作業が必要であった。更に、入熱が大きいことから、歪が発生したり、薄板の溶接を行うと母材が溶解して穴が開いてしまう問題もあった。   The welding method that fuses the base metal and filler metal by using the heat generated by the arc discharge phenomenon is manual welding using a welding rod as the filler material and semi-automatic where the filler material is automatically supplied as a wire Welding is known. As a method using a welding rod, TIG welding using tungsten as an electrode, MAG welding using an inert gas in semi-automatic welding, and MIG welding using only argon as an inert gas are generally used. In these welding methods, the heat used to melt the base metal and filler metal is large, distortion occurs in the welded product, and molten metal particles called spatter are scattered from the weld during the welding operation. Then there was a problem such as adhering to the product. For this reason, in these conventional welding methods, the operation | work which removes distortion after welding, and the washing | cleaning operation | work with an acid in order to remove a sputter | spatter were required. Further, since the heat input is large, there is a problem that distortion occurs, and when a thin plate is welded, the base material is melted and a hole is formed.

これらの問題を解決するために、特許文献1や特許文献2に記載されているように、前記MAG溶接やMIG溶接を発展させたコールドメタルトランスファー(Cold Metal Transfer)溶接(以下、CMT溶接という)という溶接方法が開発されている。これは、MAG溶接やMIG溶接におけるワイヤの供給に工夫を施し、ワイヤの送りと戻しを高速で繰り返すことにより、アークの発生を断続的にさせることを可能とした溶接方法である。   In order to solve these problems, as described in Patent Document 1 and Patent Document 2, Cold Metal Transfer welding (hereinafter referred to as CMT welding) in which the MAG welding and MIG welding are developed. A welding method has been developed. This is a welding method that makes it possible to intermittently generate arcs by devising the supply of wires in MAG welding and MIG welding and repeating the feeding and returning of the wires at high speed.

特表2008−531283号公報Special table 2008-531283 gazette 特表2008−542027号公報Special table 2008-542027 gazette

前述したCMT溶接によれば、溶接時の入熱を抑え、製品の歪を抑制することができる。しかし、溶融が少ない溶接方法であるため、溶接部の気密性を確保することが難しく、容器の溶接に適用することは困難であった。特に溶接開始点に巣(小さな穴でピンホールともいう)が発生することがあり、これを防止できない限り容器の溶接には適用できない。   According to the CMT welding described above, heat input during welding can be suppressed and distortion of the product can be suppressed. However, since it is a welding method with little melting, it is difficult to ensure the airtightness of the welded portion, and it is difficult to apply it to the welding of a container. In particular, a nest (also called a pinhole in a small hole) may occur at the welding start point, and it cannot be applied to container welding unless this can be prevented.

このため、内面に圧力を受ける容器を製作する場合、従来は、各部品の接合にガス溶接やアーク溶接が使用されている。これらの溶接方法では母材と溶接棒を溶解し一部を合金化することにより部品同士を接合しているが、母材を深く溶かす熱量が使用されるため、この熱による歪の発生が精度に影響する問題があった。   For this reason, when manufacturing a container which receives pressure on the inner surface, conventionally, gas welding or arc welding has been used for joining the parts. In these welding methods, the base metal and the welding rod are melted and part of them is alloyed to join the parts together. However, the amount of heat that melts the base metal deeply is used, so the generation of distortion due to this heat is accurate. There was a problem that affected.

一方、前述したCMT溶接は、溶接ワイヤと母材の表面をわずかに溶かすことが特徴で、入熱が少ないことから接合後の歪を小さくでき、溶接時間も短く、効率向上を期待できる。しかし、接合部にピンホール(巣)が発生し易く、気密性の確保が難しいため、容器、特に内面に圧力を受ける容器の製作に適用することが困難であった。   On the other hand, the CMT welding described above is characterized by slightly melting the surface of the welding wire and the base material, and since there is little heat input, distortion after joining can be reduced, welding time is shortened, and improvement in efficiency can be expected. However, since pinholes (nests) are likely to occur at the joint and it is difficult to ensure airtightness, it has been difficult to apply to the manufacture of containers, particularly containers that receive pressure on the inner surface.

本発明の目的は、気密性を確保した溶接が可能で、しかも溶接後にスパッタの除去を目的とした酸洗い工程を不要にできると共に溶接部に歪が発生することも抑制できる容器の溶接方法、及びこの溶接用法を用いて製作された容器を冷凍サイクルに用いた冷凍サイクル装置を得ることにある。   The object of the present invention is to weld a container that can be welded while ensuring airtightness, can eliminate the need for a pickling process for removing spatter after welding, and can suppress the occurrence of distortion in the welded portion, Another object of the present invention is to obtain a refrigeration cycle apparatus using a container manufactured by this welding method in a refrigeration cycle.

上記目的を達成するため、本発明は、容器の溶接方法において、前記容器はCMT(Cold Metal Transfer)溶接を用いた溶接により製作されるものであって、溶接すべき接合部とは異なる位置から溶接すべき接合部に向かってCMT溶接を開始することで捨て溶接を実施し、溶接すべき接合部に到達後、連続して溶接すべき接合部をCMT溶接で本溶接を実施し、前記本溶接の開始点に到達すると該本溶接の開始点付近を更に連続して重複溶接を実施し、その後連続して溶接すべき接合部とは異なる位置まで捨て溶接を実施することを特徴とする。   In order to achieve the above object, according to the present invention, in the container welding method, the container is manufactured by welding using CMT (Cold Metal Transfer) welding, and is from a position different from the joint to be welded. Abandon welding is performed by starting CMT welding toward the joint to be welded, and after reaching the joint to be welded, main welding is performed on the joint to be welded continuously by CMT welding. When the welding start point is reached, the overlap around the starting point of the main welding is further continuously performed, and then the welding is performed to a position different from the joint portion to be continuously welded.

本発明の他の特徴は、胴部と、該胴部の端部を塞ぐ鏡板を有し、前記鏡板に、配管を接続するための管座を溶接によって取り付けるようにした容器の溶接方法において、前記管座を鏡板に取り付けるための溶接はCMT溶接を用いた溶接により製作されるものであって、溶接すべき接合部とは異なる位置から溶接すべき接合部に向かってCMT溶接を開始することで捨て溶接を実施し、溶接すべき接合部に到達後、連続して溶接すべき接合部である管座の周囲をCMT溶接で本溶接を実施し、前記本溶接の開始点に到達すると該本溶接の開始点付近を更に連続して重複溶接を実施し、その後連続して溶接すべき接合部とは異なる位置まで捨て溶接を実施することにある。   Another feature of the present invention is a container welding method having a barrel and an end plate that closes an end of the barrel, and a tube seat for connecting a pipe to the end plate by welding. The weld for attaching the tube seat to the end plate is manufactured by welding using CMT welding, and CMT welding is started from a position different from the joint to be welded toward the joint to be welded. After reaching the joint to be welded, perform the main welding by CMT welding around the pipe seat, which is the joint to be welded continuously, and reach the starting point of the main welding. The purpose of this is to carry out the overlapping welding in the vicinity of the starting point of the main welding more continuously and then discard the welding to a position different from the joint to be welded continuously.

本発明の更に他の特徴は、上記の何れかの方法で製作された容器を、冷凍サイクルを構成するアキュームレータまたはレシーバとして使用していることを特徴とする冷凍サイクル装置にある。   Still another feature of the present invention resides in a refrigeration cycle apparatus in which the container produced by any of the above methods is used as an accumulator or a receiver constituting the refrigeration cycle.

本発明によれば、気密性を確保したCMT溶接が可能となり、溶接後にスパッタの除去を目的とした酸洗い工程を不要にできると共に、溶接部に歪が発生することも抑制できる容器の溶接方法、及びこの溶接用法を用いて製作された容器を冷凍サイクルに用いた冷凍サイクル装置を得ることができる。   According to the present invention, a container welding method that enables CMT welding that ensures airtightness, eliminates the need for a pickling process for the purpose of removing spatters after welding, and suppresses the occurrence of distortion in the welded portion. In addition, a refrigeration cycle apparatus using a container manufactured using this welding method in a refrigeration cycle can be obtained.

冷凍サイクル装置に用いられる容器の例を示す斜視図。The perspective view which shows the example of the container used for a refrigerating-cycle apparatus. 図1のB部拡大図で、従来の容器の溶接方法を説明する図。FIG. 2B is an enlarged view of a portion B in FIG. 1 illustrating a conventional method for welding a container. 図2の溶接方法を説明する溶接ビードの図。The figure of the weld bead explaining the welding method of FIG. 図1のB部拡大図で、本発明の容器の溶接方法の実施例1を説明する図。The B section enlarged view of FIG. 1, The figure explaining Example 1 of the welding method of the container of this invention. 実施例1における溶接方法を説明する溶接ビードの図。The figure of the weld bead explaining the welding method in Example 1. FIG. 本発明の実施例2を説明する図で、(a)は図4を上方からみた部分平面図、(b)は(a)図の正面図。5A and 5B are diagrams illustrating a second embodiment of the present invention, in which FIG. 4A is a partial plan view of FIG. 4 viewed from above, and FIG. 5B is a front view of FIG. 本発明の実施例2における他の例を説明する図で、図6の(a)図に相当する図。It is a figure explaining the other example in Example 2 of this invention, and is a figure equivalent to the (a) figure of FIG. 本発明の実施例2における溶接経路の一例を説明する溶接ビードの図。The figure of the weld bead explaining an example of the welding course in Example 2 of the present invention. 本発明の実施例2における溶接経路の他の例を説明する溶接ビードの図。The figure of the weld bead explaining the other example of the welding course in Example 2 of the present invention. 本発明の実施例2における溶接経路の更に他の例を説明する溶接ビードの図。The figure of the weld bead explaining the further another example of the welding path in Example 2 of the present invention. 本発明の実施例2における溶接経路の更に他の例を説明する溶接ビードの図。The figure of the weld bead explaining the further another example of the welding path in Example 2 of the present invention. 本発明の実施例2における溶接経路の更に他の例を説明する溶接ビードの図。The figure of the weld bead explaining the further another example of the welding path in Example 2 of the present invention.

以下、本発明の実施例を図面に基づき説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施例を説明する前に、従来の溶接方法を図1〜図3により説明する。
図1は、空気調和機や冷凍装置などの冷凍サイクルに使用されているアキュームレータやレシーバなどの容器Aを示す図である。これらの容器Aは内面に圧力を受け、また冷媒配管と接続するための管座4を有している。前記容器Aは、胴部1と、該胴部1の上部を塞ぐ鏡板2と、前記胴部1の下部を塞ぐ鏡板3により構成され、内部はガスや液体が溜まる圧力空間となっている。この容器Aを冷凍サイクルで使用する場合、冷媒を流出入させるために、冷媒配管を接続する必要があり、冷凍保安規則関係例示基準により、配管接続のための管座4が必要となる場合がある。
Prior to describing an embodiment of the present invention, a conventional welding method will be described with reference to FIGS.
FIG. 1 is a view showing a container A such as an accumulator or a receiver used in a refrigeration cycle such as an air conditioner or a refrigeration apparatus. These containers A have a seat 4 for receiving pressure on the inner surface and connecting to the refrigerant pipe. The container A is composed of a body 1, an end plate 2 that closes the upper portion of the body 1, and an end plate 3 that closes the lower portion of the body 1, and the inside is a pressure space in which gas and liquid accumulate. When this container A is used in a refrigeration cycle, it is necessary to connect a refrigerant pipe in order to allow the refrigerant to flow in and out, and the pipe seat 4 for the pipe connection may be required according to the refrigeration safety regulation example related standard. is there.

図2は図1のB部拡大図で、容器A上部の鏡板2と、これに設けられた管座4の部分を拡大して示す図である。通常、前記容器Aの素材としては鉄材が用いられ、管座4に接続される配管5は銅材である。鉄材同士の接合はMAG溶接が使用されることが多く、MAG溶接は溶接時の入熱が大きく、スパッタの発生や溶接部に歪が発生し易い。このため、溶接後にスパッタの除去を目的として酸洗い工程が必要となり、製作工数低減の妨げとなっている。   FIG. 2 is an enlarged view of part B in FIG. 1, and is an enlarged view showing the end plate 2 on the upper part of the container A and the tube seat 4 provided on the end plate 2. Usually, an iron material is used as the material of the container A, and the pipe 5 connected to the tube seat 4 is a copper material. MAG welding is often used to join iron materials, and MAG welding has a large heat input during welding, and spatter is easily generated and distortion is easily generated in the welded portion. For this reason, a pickling process is required for the purpose of removing spatters after welding, which hinders reduction in the number of manufacturing steps.

また、MAG溶接では溶接開始点7から溶接を開始し、管座4と鏡板2の接続境界線を一周回る溶接経路6を溶接した後、前記溶接開始点7を通過して溶接終了点8までを重複溶接する。9は前記溶接開始点7と前記溶接終了点8の間の溶接重複部である。   In MAG welding, welding is started from the welding start point 7, the welding path 6 that goes around the connection boundary between the tube seat 4 and the end plate 2 is welded, and then passes through the welding start point 7 to the welding end point 8. Overlap welding. Reference numeral 9 denotes a weld overlap between the welding start point 7 and the welding end point 8.

図3は、前記溶接重複部9付近の溶接ビード6aを示す図で、溶接重複部9を設けることにより、溶接開始点7付近を補強し、溶接強度や気密性を確保している。   FIG. 3 is a view showing the weld bead 6a in the vicinity of the weld overlap portion 9. By providing the weld overlap portion 9, the vicinity of the welding start point 7 is reinforced to ensure the welding strength and airtightness.

これに対し本発明では、前記MAG溶接に代えてCMT溶接を行うもので、このCMT溶接は、従来のMAG溶接で発生しやすい歪を抑えることができる代わりに、母材の表面は僅かにしか融解しないという特性を持つ。このため、従来と同じ溶接経路6で溶接し、溶接重複部9も従来と同様の溶接とした場合、接続強度は確保できるものの、微小な巣(ピンホール)が発生してしまうことが判明した。   On the other hand, in the present invention, CMT welding is performed instead of the MAG welding, and this CMT welding can suppress the distortion that easily occurs in the conventional MAG welding, but the surface of the base material is only slightly. It does not melt. For this reason, when welding was performed in the same welding path 6 as in the prior art and the weld overlap portion 9 was also welded in the same manner as in the prior art, it was found that although a connection strength could be ensured, a minute nest (pinhole) would occur. .

そこで、本発明の実施例では図4及び図5に示すような溶接経路とすることで、CMT溶接を採用しながら溶接部に微小な巣が発生するのを防止したものである。
即ち、本実施例では、CMT溶接で問題となる図2で示した従来の溶接開始点7を、図4に示す溶接開始点7aのように、溶接経路6に対して、例えば法線方向に任意の一定距離ずらして溶接を開始する。このように溶接開始点をずらすことで、従来のように気密確保が必要な部位(気密性を確保しながら本来溶接すべき接合部)から直接溶接を開始するのではなく、気密確保が必要な部位以外の溶接開始点7aから溶接を開始する、いわゆる捨て溶接を実施する。これによって、溶接品質が不安定になり易い溶接開始点を、気密確保が必要な部位とはせず、前述したように、溶接経路6に対して法線方向から溶接を開始することができるから、本来溶接すべき接合部(気密確保が必要な部位)を溶接する(本溶接する)時には安定した溶接が可能となる。
Therefore, in the embodiment of the present invention, a welding path as shown in FIGS. 4 and 5 is used to prevent the formation of minute nests in the welded portion while employing CMT welding.
That is, in this embodiment, the conventional welding start point 7 shown in FIG. 2 which is a problem in CMT welding is, for example, in the normal direction with respect to the welding path 6 as in the welding start point 7a shown in FIG. Welding is started at an arbitrary fixed distance. By shifting the welding start point in this way, it is necessary to ensure airtightness instead of starting welding directly from a part that needs to be airtightly secured (joint part that should be welded while ensuring airtightness) as in the past. So-called discard welding, in which welding is started from a welding start point 7a other than the part, is performed. As a result, welding can be started from the normal direction with respect to the welding path 6 as described above without setting the welding start point where the welding quality is likely to be unstable as a portion that needs to ensure airtightness. In addition, stable welding is possible when welding (main welding) a joint portion (a portion that needs to be airtight) that should be welded.

しかも、本実施例では、本来溶接すべき接合部を、その部分の溶接をする直前に、法線方向から加熱することもできるので、本来溶接すべき接合部の溶接時には母材の溶融も容易となる。従って、気密確保が必要な部位の溶接を、CMT溶接により、微小な巣などを発生させることなく安定した溶接が可能となり、気密性を確保した強度の高い容器を製作することができる。   In addition, in the present embodiment, since the joint portion to be originally welded can be heated from the normal direction immediately before welding the portion, it is easy to melt the base material when welding the joint portion to be originally welded. It becomes. Therefore, stable welding can be performed without generating a fine nest by performing CMT welding on a portion that needs to ensure airtightness, and a high-strength container that secures airtightness can be manufactured.

また、CMT溶接を採用しているので、スパッタの発生も防止でき、溶接後にスパッタの除去を目的とした酸洗い工程が不要となるから製作工数を低減することもでき、更に溶接部に歪が発生することも防止できる効果がある。   In addition, since CMT welding is adopted, spatter can be prevented and a pickling process for removing spatter after welding is not required, so that the number of manufacturing steps can be reduced, and further, the welded portion is distorted. There is an effect that can also be prevented.

次に、図4に示すように、本来溶接すべき接合部を一周本溶接し、図4,図5に示すように、重複溶接部9を確保した後、その重複溶接部9から更に溶接ワイヤを補充して、管座4表面に沿った方向(溶接経路6の法線方向)の溶接終了点8aまで捨て溶接を実施し(図4参照)、溶接を終了する。   Next, as shown in FIG. 4, the joint part to be originally welded is welded once, and as shown in FIGS. 4 and 5, after securing the overlapping welded part 9, a welding wire is further removed from the overlapping welded part 9. , And abandoned welding is carried out to the welding end point 8a in the direction along the surface of the tube seat 4 (normal direction of the welding path 6) (see FIG. 4), and the welding is completed.

以上述べたように、本実施例によれば、管座周囲の本来溶接すべき接合部の溶接経路6に対して法線方向の鏡板2上からCMT溶接を開始する(捨て溶接をする)ので、本来溶接すべき接合部までCMT溶接が進んだ時にはCMT溶接を安定した状態とすることができる。また、前記溶接開始点から本来溶接すべき接合部まで捨て溶接をすることにより、本来溶接すべき接合部を予熱してから、その溶接すべき接合部の本溶接を行うので母材の溶融を容易にすることができる。更に、溶接すべき接合部である管座の周囲をCMT溶接で本溶接を実施し、溶接の重複部を確保した後、溶接経路の法線方向である管座4表面に沿ってCMT溶接をして捨て溶接し、溶接終了点8aで溶接を終了させるので、ピンホールが発生しやすい個所の溶接ビードを厚く形成できる。これらの理由により、本実施例によれば、管座周囲の本来溶接すべき接合部の溶接をCMT溶接により、ピンホール(巣)を発生させることなく、機密性を確保した溶接が可能となる。   As described above, according to this embodiment, CMT welding is started from the end plate 2 in the normal direction with respect to the weld path 6 of the joint portion to be originally welded around the pipe seat (discard welding). The CMT welding can be stabilized when the CMT welding has progressed to the joint to be originally welded. Also, by discarding the weld from the welding start point to the joint to be originally welded, the joint to be originally welded is preheated, and then the main weld of the joint to be welded is performed, so that the base metal is melted. Can be easily. Further, after performing the main welding by CMT welding around the tube seat, which is a joint to be welded, after securing the overlapping portion of the welding, the CMT welding is performed along the surface of the tube seat 4 which is the normal direction of the welding path. Then, the welding is discarded, and the welding is terminated at the welding end point 8a. Therefore, a thick weld bead can be formed where a pinhole is likely to occur. For these reasons, according to the present embodiment, welding of the joint portion to be originally welded around the tube seat can be performed with CMT welding to ensure confidentiality without generating a pinhole (nest). .

なお、上記実施例では、溶接開始点7a及び溶接終了点8aを溶接経路6の法線方向としたが、溶接経路6における溶接ビード幅以上に離れた位置であれば、その位置を溶接開始点7aまたは溶接終了点8aとすることができるので、前記溶接開始点7aまたは溶接終了点8aは、必ずしも溶接経路6の法線方向でなくても良い。   In the above embodiment, the welding start point 7a and the welding end point 8a are set to the normal direction of the welding path 6. However, if the welding start point 7a and the welding end point 8a are separated from the weld bead width in the welding path 6, the positions are set to the welding start point. 7a or the welding end point 8a, the welding start point 7a or the welding end point 8a may not necessarily be in the normal direction of the welding path 6.

本発明の容器の溶接方法の実施例2を図6〜図12により説明する。これらの図において図1〜図5と同一符号を付した部分は同一或いは相当する部分を示し、また説明をしていない部分については前述した実施例1と同様である。
実施例1では溶接開始点7a及び溶接終了点8aを、溶接経路6に対して法線方向にずらした例について説明したが、この実施例2では、溶接経路6に対して法線方向以外の部分に前記溶接開始点7a及び溶接終了点8aを設定したものである。
A second embodiment of the container welding method of the present invention will be described with reference to FIGS. In these drawings, the portions denoted by the same reference numerals as those in FIGS. 1 to 5 indicate the same or corresponding portions, and the portions not described are the same as those in the first embodiment.
In the first embodiment, the example in which the welding start point 7a and the welding end point 8a are shifted in the normal direction with respect to the welding path 6 has been described. However, in the second embodiment, the welding path 6 has a direction other than the normal direction. The welding start point 7a and the welding end point 8a are set in the portion.

まず図6に示す例は、気密確保して本来溶接すべき接合部である管座周囲の溶接経路6に対して、捨て溶接となる溶接経路の溶接開始点7aを、前記溶接経路6の略接線方向とし、前記捨て溶接は、当該溶接開始点7aから前記溶接経路6の溶接方向とほぼ同じ方向に行う。その後、管座4の本来の接合部は前記溶接経路6に沿って溶接し、前記管座4の周囲を一周した後、重複接合部9を確保し、その後連続して、重複接合部9に更に溶接ワイヤを補充して鏡板2の表面に沿って前記溶接経路6の略接線方向に捨て溶接をし、溶接終了点8aに移動して溶接を終了する。   First, in the example shown in FIG. 6, a welding start point 7 a of a welding path that is abandoned welding with respect to the welding path 6 around the tube seat, which is a joint portion to be originally welded while ensuring airtightness, is an abbreviation of the welding path 6. The tangential direction is used, and the discard welding is performed in substantially the same direction as the welding direction of the welding path 6 from the welding start point 7a. After that, the original joint portion of the tube seat 4 is welded along the welding path 6, and after making a round of the circumference of the tube seat 4, the overlapping joint portion 9 is secured, and subsequently, continuously to the overlapping joint portion 9. Further, the welding wire is replenished, the welding is discarded along the surface of the end plate 2 in the substantially tangential direction of the welding path 6, and the welding is finished by moving to the welding end point 8a.

図7に示す例は、気密確保して本来溶接すべき接合部である管座周囲の溶接経路6に対して、捨て溶接となる溶接経路の溶接開始点7aを、前記溶接経路6の略接線方向とする点では図6に示した例と同様であるが、前記捨て溶接は、当該溶接開始点7aから前記溶接経路6の溶接方向とは逆方向に行う点が異なる。また、管座4の本来の接合部を前記溶接経路6に沿って溶接し、重複接合部9を確保する部分までは図6に示した例と同様であるが、その後、鏡板2の表面に沿って前記溶接経路6の溶接方向とは逆方向に捨て溶接をして溶接終了点8aに移動させ、溶接を終了する点が異なっている。   In the example shown in FIG. 7, the welding start point 7 a of the welding path that is abandoned welding with respect to the welding path 6 around the tube seat, which is a joint part that should be originally welded with airtightness, is substantially tangent to the welding path 6. Although the direction is the same as the example shown in FIG. 6, the discard welding is different from the welding start point 7 a in the direction opposite to the welding direction of the welding path 6. Further, the original joint portion of the tube seat 4 is welded along the welding path 6 and the portion to ensure the overlapping joint portion 9 is the same as the example shown in FIG. Aside from this, the welding direction is discarded in the direction opposite to the welding direction of the welding path 6 and moved to the welding end point 8a to complete the welding.

次に、本実施例における溶接経路の種々の例を図8〜図12に示す溶接ビードの図により説明する。前記捨て溶接は、溶接経路6の略接線方向に行うよりも、前記溶接経路6に対し、約30度〜150度の範囲で行うようにすると良い。即ち、捨て溶接の方向が前記溶接経路6の接線方向に近づくほど、本来溶接すべき接合部と重なる部分が増えるので、捨て溶接の距離を長く取る必要があるためである。   Next, various examples of the welding path in the present embodiment will be described with reference to the weld bead diagrams shown in FIGS. The abandoned welding may be performed in a range of about 30 to 150 degrees with respect to the welding path 6 rather than in a substantially tangential direction of the welding path 6. That is, as the direction of the discard welding approaches the tangential direction of the welding path 6, the portion that overlaps with the joint portion to be originally welded increases, so it is necessary to increase the distance of the discard welding.

図8に示す例は、溶接開始点7aを溶接経路6の接線方向に対し30度の方向の鏡板2上に設定し、溶接終了点8aは溶接経路6の接線方向に対し30度の方向の管座4上に設定したものである。なお、図8において、10は溶接ビード6aの幅である。   In the example shown in FIG. 8, the welding start point 7 a is set on the end plate 2 in the direction of 30 degrees with respect to the tangential direction of the welding path 6, and the welding end point 8 a is in the direction of 30 degrees with respect to the tangential direction of the welding path 6. It is set on the tube seat 4. In FIG. 8, 10 is the width of the weld bead 6a.

図9に示す例は、溶接開始点7aを溶接経路6の接線方向に対し150度の方向の鏡板2上に設定し、溶接終了点8aは溶接経路6の接線方向に対し150度の方向の管座4上に設定したものである。   In the example shown in FIG. 9, the welding start point 7 a is set on the end plate 2 in the direction of 150 degrees with respect to the tangential direction of the welding path 6, and the welding end point 8 a is in the direction of 150 degrees with respect to the tangential direction of the welding path 6. It is set on the tube seat 4.

図10に示す例は、溶接開始点7aを溶接経路6の接線方向に対し30度の方向の鏡板2上に設定し、溶接終了点8aは溶接経路6の接線方向に対し30度の方向の鏡板2上に設定したものである。   In the example shown in FIG. 10, the welding start point 7 a is set on the end plate 2 in the direction of 30 degrees with respect to the tangential direction of the welding path 6, and the welding end point 8 a is in the direction of 30 degrees with respect to the tangential direction of the welding path 6. This is set on the end plate 2.

図11に示す例は、溶接開始点7aを溶接経路6の接線方向に対し150度の方向の鏡板2上に設定し、溶接終了点8aは溶接経路6の接線方向に対し150度の方向の鏡板2上に設定したものである。   In the example shown in FIG. 11, the welding start point 7 a is set on the end plate 2 in the direction of 150 degrees with respect to the tangential direction of the welding path 6, and the welding end point 8 a is in the direction of 150 degrees with respect to the tangential direction of the welding path 6. This is set on the end plate 2.

図12に示す例は、溶接開始点7aを溶接経路6と同方向で溶接経路6における溶接ビード幅10以上に離れた位置とし、また溶接終了点8aも溶接経路6と同方向で溶接経路6における溶接ビード幅10以上に離れた位置としたものである。このように、溶接ビードの幅10以上に溶接経路6から離れた位置であれば、前記溶接開始点7a或いは前記溶接終了点8aの位置とすることは可能である。   In the example shown in FIG. 12, the welding start point 7 a is positioned in the same direction as the welding path 6 and is separated by a weld bead width 10 or more in the welding path 6, and the welding end point 8 a is also in the same direction as the welding path 6. The welding bead width is 10 or more. Thus, if it is a position away from the welding path 6 more than the width 10 of the weld bead, it is possible to set it as the position of the welding start point 7a or the welding end point 8a.

また、溶接ビードの形状は溶接の電流、ワイヤの供給速度などでもある程度の調整は可能ではあるが、本実施例に示す溶接方法を採用することにより、溶融部が浅いCMT溶接でも重複溶接部9の気密性を充分確保することが可能となる。   Further, the shape of the weld bead can be adjusted to some extent by the welding current, the wire supply speed, etc., but by adopting the welding method shown in the present embodiment, even in the CMT welding where the melted part is shallow, the overlapping welded part 9 It is possible to ensure sufficient airtightness.

更に、上記実施例では、管座周りの溶接経路6を左周りとした例について説明したが、上述した溶接開始点と溶接終了点を逆にして、前記溶接経路6を右回りとしても良く、その場合でも同様の効果を得ることができる。   Furthermore, in the above embodiment, the example in which the welding path 6 around the pipe seat is set to the left is described, but the welding start point and the welding end point described above may be reversed, and the welding path 6 may be clockwise. Even in that case, the same effect can be obtained.

以上説明したように、本実施例によれば、容器をCMT溶接する場合でも、溶接開始点付近に発生し易い巣(ピンホール)の発生を抑えることが可能な容器の溶接方法を得ることができる。また、CMT溶接により、冷凍サイクル装置などに使用される内圧の掛かる圧力容器(アキュームレータやレシーバなど)を製作することが可能となり、スパッタ除去を目的とした酸洗い工程などの後処理も不要となるから、製作の加工工数を減らして製造原価を図ることもできる。更に、CMT溶接により容器を製作できるため、溶接部の歪の小さい容器を得ることができる効果もある。   As described above, according to this embodiment, it is possible to obtain a container welding method capable of suppressing the occurrence of a nest (pinhole) that is likely to occur near the welding start point even when the container is CMT welded. it can. In addition, CMT welding makes it possible to manufacture pressure vessels (accumulators, receivers, etc.) with internal pressure that are used in refrigeration cycle devices and the like, and post-processing such as pickling for the purpose of removing spatter is not required. Therefore, manufacturing costs can be reduced by reducing the number of manufacturing steps. Furthermore, since the container can be manufactured by CMT welding, there is an effect that a container with a small distortion of the welded portion can be obtained.

A 容器
1 胴部
2 鏡板(配管接続側)
3 鏡板
4 管座
5 配管
6 溶接経路(6a…溶接ビード)
7,7a 溶接開始点
8,8a 溶接終了点
9 重複溶接部
10 溶接ビードの幅。
A Container 1 Body 2 End plate (Pipe connection side)
3 End plate 4 Tube seat 5 Piping 6 Welding path (6a ... Weld bead)
7, 7a Weld start point 8, 8a Weld end point 9 Overlap weld 10 Width of weld bead.

Claims (6)

容器の溶接方法において、
前記容器はCMT(Cold Metal Transfer)溶接を用いた溶接により製作されるものであって、
溶接すべき接合部とは異なる位置から溶接すべき接合部に向かってCMT溶接を開始することで捨て溶接を実施し、
溶接すべき接合部に到達後、連続して溶接すべき接合部をCMT溶接で本溶接を実施し、
前記本溶接の開始点に到達すると該本溶接の開始点付近を更に連続して重複溶接を実施し、
その後連続して溶接すべき接合部とは異なる位置まで捨て溶接を実施する
ことを特徴とする容器の溶接方法。
In the container welding method,
The container is manufactured by welding using CMT (Cold Metal Transfer) welding,
Abandon welding is performed by starting CMT welding from the position different from the joint to be welded toward the joint to be welded,
After arriving at the joint to be welded, CMT welding is performed for the joint to be welded continuously,
When the starting point of the main welding is reached, the vicinity of the starting point of the main welding is further continuously performed,
Thereafter, the welding is carried out by discarding to a position different from the joint portion to be continuously welded.
請求項1において、溶接すべき接合部の溶接経路の接線方向に対して、30度〜150度の範囲に前記捨て溶接を実施することを特徴とする容器の溶接方法。   The container welding method according to claim 1, wherein the discard welding is performed in a range of 30 to 150 degrees with respect to a tangential direction of a welding path of a joint portion to be welded. 胴部と、該胴部の端部を塞ぐ鏡板を有し、前記鏡板に、配管を接続するための管座を溶接によって取り付けるようにした容器の溶接方法において、
前記管座を鏡板に取り付けるための溶接はCMT(Cold Metal Transfer)溶接を用いた溶接により製作されるものであって、
溶接すべき接合部とは異なる位置から溶接すべき接合部に向かってCMT溶接を開始することで捨て溶接を実施し、
溶接すべき接合部に到達後、連続して溶接すべき接合部である管座の周囲をCMT溶接で本溶接を実施し、
前記本溶接の開始点に到達すると該本溶接の開始点付近を更に連続して重複溶接を実施し、
その後連続して溶接すべき接合部とは異なる位置まで捨て溶接を実施する
ことを特徴とする容器の溶接方法。
In the welding method of the container, which has a body part and an end plate closing the end part of the body part, and a tube seat for connecting a pipe is attached to the end panel by welding,
The weld for attaching the tube seat to the end plate is manufactured by welding using CMT (Cold Metal Transfer) welding,
Abandon welding is performed by starting CMT welding from the position different from the joint to be welded toward the joint to be welded,
After reaching the joint to be welded, CMT welding is performed around the pipe seat, which is the joint to be welded continuously.
When the starting point of the main welding is reached, the vicinity of the starting point of the main welding is further continuously performed,
Thereafter, the welding is carried out by discarding to a position different from the joint portion to be continuously welded.
請求項3において、溶接すべき接合部の溶接経路の接線方向に対して、30度〜150度の範囲に前記捨て溶接を実施すると共に、前記CMT溶接を開始する溶接開始点は前記鏡板上とし、前記CMT溶接を終了させる溶接終了点は前記管座上或いは前記鏡板上の何れかであることを特徴とする容器の溶接方法。   The welding start point for starting the CMT welding is set on the end plate, and the discard welding is performed in a range of 30 to 150 degrees with respect to the tangential direction of the welding path of the joint to be welded. The welding end point for terminating the CMT welding is either on the tube seat or on the end plate. 請求項4において、前記溶接開始点は前記溶接経路の法線方向の前記鏡板上とし、前記溶接終了点は、前記溶接終了点は前記溶接経路の法線方向の前記管座上としたことを特徴とする容器の溶接方法。   5. The welding start point according to claim 4, wherein the welding start point is on the end plate in the normal direction of the welding path, and the welding end point is on the pipe seat in the normal direction of the welding path. A welding method for a container. 請求項3〜5の何れかの方法で製作された容器を、冷凍サイクルを構成するアキュームレータまたはレシーバとして使用していることを特徴とする冷凍サイクル装置。   A refrigeration cycle apparatus using the container produced by the method according to any one of claims 3 to 5 as an accumulator or a receiver constituting a refrigeration cycle.
JP2010070153A 2010-03-25 2010-03-25 Welding method of container and refrigeration cycle apparatus Withdrawn JP2011200903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070153A JP2011200903A (en) 2010-03-25 2010-03-25 Welding method of container and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070153A JP2011200903A (en) 2010-03-25 2010-03-25 Welding method of container and refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
JP2011200903A true JP2011200903A (en) 2011-10-13

Family

ID=44878184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070153A Withdrawn JP2011200903A (en) 2010-03-25 2010-03-25 Welding method of container and refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP2011200903A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024019A (en) * 2016-07-19 2018-02-15 シーメンス エナジー インコーポレイテッド Process and apparatus for welding workpiece having heat sensitive material
EP3252319B1 (en) * 2016-06-03 2021-03-03 Ognibene Power S.P.A. Method of assembling a piston-cylinder group through low temperature welding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3252319B1 (en) * 2016-06-03 2021-03-03 Ognibene Power S.P.A. Method of assembling a piston-cylinder group through low temperature welding
JP2018024019A (en) * 2016-07-19 2018-02-15 シーメンス エナジー インコーポレイテッド Process and apparatus for welding workpiece having heat sensitive material
US11161191B2 (en) 2016-07-19 2021-11-02 Siemens Energy, Inc. Process and apparatus for welding workpiece having heat sensitive material

Similar Documents

Publication Publication Date Title
JP5999293B1 (en) Resistance spot welding method and resistance spot welding joint manufacturing method
WO2014018194A1 (en) A hybrid welding system and method of welding with use of wire feeding device located between laser and electric arc welder
CN106825874B (en) A kind of submerged-arc welding single face welding and double face shaping technique
CN102151959A (en) High-speed welding production process and device for thin-walled steel tubes
CN101489710B (en) Welding method and welded product
JP2017024082A (en) Flux cored wire and method and apparatus for manufacturing the same
JP6439882B2 (en) Vertical narrow groove gas shielded arc welding method
US7423232B2 (en) Method for resistance welding/brazing a tube to a member
JP2011200903A (en) Welding method of container and refrigeration cycle apparatus
CN105364272A (en) Carbon steel tube welding process
JP2016107305A (en) Tack weld construction method of metal cask weld structure and metal cask with heat transfer fin
JP2008200750A (en) One side arc spot welding method
KR20120029650A (en) Welding method of steel piping component
CN106001952A (en) Method for compound welding of aluminum alloy through plasma arc-TIG
JP2001038472A (en) Welding method of stainless steel clad plate
KR101906370B1 (en) Wide gap butt welding method
KR20190073219A (en) The overlay welding method of submarine through-hole
CN108213658B (en) Backing welding method
Eder The CMT process-News and its advantages in industry
JP6617443B2 (en) Welding method for metal parts
JP2013086113A (en) Seam welding method of uoe steel pipe
CN103170711A (en) Manual handle-swinging welding method of TIG welding
JP3742265B2 (en) Manufacturing method of exhaust pipe assembly for vehicle
CN106808069A (en) Carbon steel tubing welding procedure
CN106914670B (en) A kind of Steel Thin-Wall leak hole method for welding

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604