JPH04332826A - 流体・構造連成振動解析方法 - Google Patents

流体・構造連成振動解析方法

Info

Publication number
JPH04332826A
JPH04332826A JP3104140A JP10414091A JPH04332826A JP H04332826 A JPH04332826 A JP H04332826A JP 3104140 A JP3104140 A JP 3104140A JP 10414091 A JP10414091 A JP 10414091A JP H04332826 A JPH04332826 A JP H04332826A
Authority
JP
Japan
Prior art keywords
fluid
mode
natural
mass
coupled vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3104140A
Other languages
English (en)
Inventor
Masayuki Kasahara
雅之 笠原
Hiroshi Ishii
博 石井
Yukishi Takagi
高木 亨之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3104140A priority Critical patent/JPH04332826A/ja
Publication of JPH04332826A publication Critical patent/JPH04332826A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、ポンプ水車、ガスター
ビンなど流体機械をはじめとする構造物と流体とが連成
して振動する場合の固有振動数及び固有モードを予測す
るのに好適な流体・構造連成振動解析方法に関するもの
である。
【0002】
【従来の技術】ポンプ水車やガスタービンなどの流体機
械では、構造物と流体との連成振動時における固有振動
数及び振動応答を高精度に予測する解析技術の確立が重
要な課題である。流体と構造物との連成振動時には、構
造物はその加速度に比例した力や速度に比例した力など
を流体力として受ける。前者の力による効果は付加質量
効果、後者の力による効果は付加減衰効果と呼ばれてい
る。
【0003】流体の付加質量効果を定量的に評価し、連
成振動時の固有振動数及び固有モードを予測する解析方
法としては、流体と構造物の方程式をまとめて解く方法
(O.C.Zienkiewicz(U.K.,Uni
versity of Wales),R.E.New
ton(U.S.A.):Coupled Vibra
tions of a Structure Subm
erged in a Compressible F
luid:International Sympos
ium Finite Element Techni
ques)や、圧縮性流体の場合の振動モードを非圧縮
性流体の振動モードの級数の形で表す方法(高柳:内蔵
液体の圧縮性を考慮した容器の連成振動解析:機論,5
3−487,C(昭62−3))が知られている。
【0004】例えば、流体と構造物の方程式をまとめて
解く方法は、構造物の方程式
【0005】
【数1】
【0006】と、流体の方程式
【0007】
【数2】
【0008】を
【0009】
【数3】
【0010】のように系全体の方程式として表し、この
式の固有値解析を行って連成振動時の固有振動数及び固
有モードを求めるものである。
【0011】また、圧縮性流体の場合の振動モードを非
圧縮性流体の振動モードの級数の形で表す方法は以下の
ような方法である。
【0012】非圧縮性流体では、第(2)式でQ=0だ
から
【0013】
【数4】
【0014】第(1)式、第(4)式より
【0015】
【数5】
【0016】第(4)式、第(5)式より、r次までの
固有振動数及び固有モードを求める。
【0017】
【数6】
【0018】ここで、圧縮性流体の場合の連成振動時の
固有モードを次のように仮定する。
【0019】
【数7】
【0020】第(7)式を第(2)式に代入し変形する
と、次のようになる。
【0021】
【数8】
【0022】この固有値問題を解くことにより、連成時
の固有振動数及び固有モードを求めるものである。
【0023】
【発明が解決しようとする課題】上記従来技術は、流体
と構造物の方程式を系全体の方程式としてまとめて表し
、その固有値解析を行うことにより連成振動時の固有振
動数及び固有モードを求めようとするものであった。 しかし、この解析方法を用いた解析ソフトでは、固有値
解析を行う際のマトリックスサイズが大きくなり、これ
にともなって計算機の記憶容量も多く必要となる。この
ような問題点のために、上記解析方法は流体機械等の複
雑な構造物では節点数が多くなるために適用できない場
合が多い。
【0024】本発明の目的は、上記のようにマトリック
スサイズが大きくなるという問題点を解決し、流体機械
等の複雑な構造物に対しても適用できる流体・構造連成
振動解析方法を提供することにある。
【0025】
【課題を解決するための手段】上記目的は、流体と構造
物の連成振動時の固有振動数及び固有モードを、流体の
付加質量を考慮して求める流体・構造連成振動解析方法
において、前記構造物の固有振動数及び固有モードに対
応する流体の付加質量を求め、その求められた付加質量
を前記構造物の質量に付加し、その質量が付加された構
造物の固有振動数及び固有モードを求める演算をし、求
められた固有振動数及び固有モードに対し前記演算を繰
り返し行うことによって連成時の固有振動数及び固有モ
ードを求めることによって達成される。
【0026】
【作用】流体と構造物の方程式を別々に取扱い、構造物
の必要な振動モードのみに注目し、モード座標系におい
て、その振動モードに対応した流体の付加質量を計算し
、非連成時のモードを初期値として流体と構造の方程式
を交互に反復して計算することにより、連成解を求めて
いく解析方法であり、マトリックスサイズを縮小し、流
体機械等複雑で節点数の大きい構造物への適用を可能に
する。
【0027】
【実施例】以下、本発明の一実施例を図面を用いて説明
する。
【0028】図1は、本発明の一実施例に係わる流体・
構造連成振動解析ソフトの構成図である。
【0029】図1において、プリプロセッサ1は、解析
の対象である流体・構造連成振動系をメッシュ分割し、
有限要素法による計算のためのモデルを作成するもので
ある。
【0030】構造解析プログラム2は、流体・構造連成
振動系のうちの構造物の部分について、解析に必要なマ
トリックスを作成したり、固有値解析を行ったりするプ
ログラムであり、流体と構造物とが連成しない場合の構
造物の固有振動数及び固有モードを必要な数だけ計算し
、出力するものである。構造解析プログラム2としては
、一般に使われている構造解析プログラムを用いること
ができる。流体解析プログラム3は、流体・構造連成振
動系のうちの流体の部分について、必要なマトリックス
を作成したり、固有値解析を行ったりするプログラムで
あり、また、構造と流体とを連成させる役割をする連成
マトリックスの作成も行う。連成解析プログラム4は、
本発明の流体・構造連成振動解析方法を用いて構成され
、構造解析プログラム2の出力結果である非連成時の構
造物の固有振動数及び固有モードを用いて構造物の方程
式をモード座標系に変換してマトリックスの縮小を行い
、各モードに対応した付加質量を、流体解析プログラム
3の結果を用いて計算する。さらに、本付加質量を構造
物の各モード質量に加えあわせ、モード座標系での固有
値解析を行い、固有振動数及び固有モードの計算を行う
。得られた固有振動数及び固有モードを構造物の新たな
固有振動数及び固有モードとして、再び各モードに対応
した付加質量を計算する。以上の手順を繰り返し、連成
固有振動数及び固有モードに収束するまで行う。収束の
判定は、例えば固有振動数及び固有モードの変化が、規
定した値以下になったところで反復計算を終了するよう
にすればよい。計算結果は、ポストプロセッサ4へ出力
する。ポストプロセッサ4は、連成時の固有モードの表
示等を行うものである。  図2は、本解析方法のアル
ゴリズムを示した概念図である。本解析方法では、構造
物と流体の支配方程式を、流体と構造物が同じ加速度で
運動するという境界条件のもとに交互に反復させながら
解き、非連成時の構造物の固有振動数及び固有モードを
初期値として付加質量、固有振動数、固有モードの修正
を行い連成固有振動数及び固有モードの収束解を求めて
いく。
【0031】以下、解析の流れについて説明する。構造
物及び流体の支配方程式は有限要素法により離散化すれ
ば連成マトリックスLを介して次式のようにかける。
【0032】
【数1】
【0033】
【数2】
【0034】非連成時の構造物の必要とする次数の固有
振動数ω=ω1・・・ωr及び固有モードφ=φ1・・
・φrを用いて第(1)式をモード座標系に変換する。
【0035】
【数9】
【0036】一方、第(2)式より圧力を構造の各モー
ド加速度に対する次式のような伝達関数の和の形で表わ
す。
【0037】
【数10】
【0038】第(10)式を第(9)式に代入してモー
ド付加質量を求める。
【0039】
【数11】
【0040】本付加質量を構造物のオリジナルのモード
付加質量に加えると次式のようになる。
【0041】
【数12】
【0042】第(12)式より新たな固有振動数ω’=
ω1’・・・ωr’及び固有モード φ’=φ’1・・
・φr’が求まる。求められた固有モードを用いてz=
φ’z’により新たなモード座標系に変換すれば次式と
なる。
【0043】
【数13】
【0044】これにより構造の固有モードφは付加質量
を考慮した固有モードφφ’に変換される。本モードを
新たな構造のモードとして以上の一連の計算を行い、最
終的には直交したモードが得られるまで繰返し収束計算
を行う。本解析方法によれば必要なモードのみに着目し
ているため、従来はできなかった大次元の構造物への適
用が可能になる。
【0045】次に、本解析方法を用いて行った解析の実
施例について示す。図3はポンプ水車のランナと上カバ
ーをモデル化した二重円板モデルであり、このモデルに
対して本解析方法を用いて行った解析結果を図4に示す
。図4は二円板の間隔を変化させたときの各モードの固
有振動数の低下の様子を示している。二円板の間隔を小
さくしていくと固有振動数が大きく低下していくという
実測で見られるようなことを本解析方法によって確認す
ることができる。
【0046】
【発明の効果】本発明によれば、構造物の必要とするモ
ードだけに注目しているため、マトリックスサイズの縮
小を図ることができ、流体と構造物との連成振動時の固
有振動数及び固有モードを予測する、複雑で節点数の多
い構造物にも適用できる解析方法を提供することができ
る。
【図面の簡単な説明】
【図1】流体・構造連成振動解析方法を用いたソフト構
成例
【図2】本発明の流体・構造連成振動解析方法の特徴で
あるアルゴリズムを示した概念図
【図3】本解析方法を用いて解析を行った二重円板モデ

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】流体と構造物の連成振動時の固有振動数及
    び固有モードを、流体の付加質量を考慮して求める流体
    ・構造連成振動解析方法において、前記構造物の固有振
    動数及び固有モードに対応する流体の付加質量を求め、
    その求められた付加質量を前記構造物の質量に付加し、
    その質量が付加された構造物の固有振動数及び固有モー
    ドを求める演算をし、求められた固有振動数及び固有モ
    ードに対し前記演算を繰り返し行うことによって連成時
    の固有振動数及び固有モードを求めることを特徴とする
    流体・構造連成振動解析方法
JP3104140A 1991-05-09 1991-05-09 流体・構造連成振動解析方法 Pending JPH04332826A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3104140A JPH04332826A (ja) 1991-05-09 1991-05-09 流体・構造連成振動解析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3104140A JPH04332826A (ja) 1991-05-09 1991-05-09 流体・構造連成振動解析方法

Publications (1)

Publication Number Publication Date
JPH04332826A true JPH04332826A (ja) 1992-11-19

Family

ID=14372794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3104140A Pending JPH04332826A (ja) 1991-05-09 1991-05-09 流体・構造連成振動解析方法

Country Status (1)

Country Link
JP (1) JPH04332826A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502868A (ja) * 2001-09-13 2005-01-27 ゼネラル・エレクトリック・カンパニイ モデルに基づいてシュラウデッド・ベローズの剛性を求めるための方法及び装置
JP2008128742A (ja) * 2006-11-17 2008-06-05 Toyota Central R&D Labs Inc 回転構造体の振動解析装置および振動解析方法
JP2012021927A (ja) * 2010-07-16 2012-02-02 Ihi Corp 液体と接触する構造体の応答量推定方法と装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502868A (ja) * 2001-09-13 2005-01-27 ゼネラル・エレクトリック・カンパニイ モデルに基づいてシュラウデッド・ベローズの剛性を求めるための方法及び装置
JP4869554B2 (ja) * 2001-09-13 2012-02-08 ゼネラル・エレクトリック・カンパニイ モデルに基づいてシュラウデッド・ベローズの剛性を求めるための方法及び装置
JP2008128742A (ja) * 2006-11-17 2008-06-05 Toyota Central R&D Labs Inc 回転構造体の振動解析装置および振動解析方法
JP2012021927A (ja) * 2010-07-16 2012-02-02 Ihi Corp 液体と接触する構造体の応答量推定方法と装置

Similar Documents

Publication Publication Date Title
Belytschko et al. A coupled finite element-element-free Galerkin method
Wang et al. A novel dynamic reliability-based topology optimization (DRBTO) framework for continuum structures via interval-process collocation and the first-passage theories
Kuran et al. A modal superposition method for non-linear structures
Abbiati et al. A computational framework for fast‐time hybrid simulation based on partitioned time integration and state‐space modeling
Tran et al. Temporal and null‐space filter for the material point method
US20130173239A1 (en) Generating device for calculation data, generating method for calculation data, and generating program for calculation data
Chen et al. Dynamic fracture analysis of the soil-structure interaction system using the scaled boundary finite element method
Nunez‐Ramirez et al. A partitioned approach for the coupling of SPH and FE methods for transient nonlinear FSI problems with incompatible time‐steps
JP2007188164A (ja) 音響構造連成最適設計解析方法とその最適設計システム、およびその解析プログラム、ならびにその解析プログラムを記録した記録媒体
Franci Lagrangian finite element method with nodal integration for fluid–solid interaction
Chang A dual family of dissipative structure-dependent integration methods for structural nonlinear dynamics
Yuan et al. Stabilized smoothed particle finite element method for coupled large deformation problems in geotechnics
Wolf et al. Dynamic‐stiffness matrix in time domain of unbounded medium by infinitesimal finite element cell method
Li et al. Model reduction for constrained mechanical systems via spectral submanifolds
Zheng et al. Fully implicit, stabilised, three-field material point method for dynamic coupled problems
Berzins Nonlinear stability and time step selection for the MPM method
Costa et al. A multi-resolution approach to hydraulic fracture simulation
JPH04332826A (ja) 流体・構造連成振動解析方法
JP3618235B2 (ja) 振動試験装置
She et al. Effects of centrifugal stiffening and spin softening on nonlinear modal characteristics of cyclic blades with impact–friction coupling
Cunefare et al. An improved state-space method for coupled fluid–structure interaction analysis
JPH04218732A (ja) 構造設計システムおよび方法
JPH07270227A (ja) 流体・構造連成振動解析方法
Koutras et al. A novel co-simulation approach for mechanical systems
Zhang et al. A novel technique to predict harmonic response of Particle-damping structure based on ANSYS® secondary development technology