JPH04332637A - High temperature heat resistant strength member - Google Patents

High temperature heat resistant strength member

Info

Publication number
JPH04332637A
JPH04332637A JP3104221A JP10422191A JPH04332637A JP H04332637 A JPH04332637 A JP H04332637A JP 3104221 A JP3104221 A JP 3104221A JP 10422191 A JP10422191 A JP 10422191A JP H04332637 A JPH04332637 A JP H04332637A
Authority
JP
Japan
Prior art keywords
sic
temperature heat
strength member
layer
resistant strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3104221A
Other languages
Japanese (ja)
Other versions
JP3060590B2 (en
Inventor
Kazuhisa Matsumoto
和久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP3104221A priority Critical patent/JP3060590B2/en
Publication of JPH04332637A publication Critical patent/JPH04332637A/en
Application granted granted Critical
Publication of JP3060590B2 publication Critical patent/JP3060590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide high temperature heat resistant strength member excellent in heat resistance, oxidation resistance and resistance to deterioration by hydrogen. CONSTITUTION:The high temperature heat resistant strength member concerned is produced by forming covering layer 2 on the surface of C/SiC composite material 1. The covering layer 2 is impregnated with SiC or Si3N4 by vapor phase deposition in layer, which is made of at least one kind of powder selected from the group consisting of ceramic and heat resistant metal and/or short fibers. The front surface side of the covering layer 2 is dense while its base material 1 side is porous. Thus, the porous covering layer acts as stress relaxation layer, resulting in producing the covering layer, in which a few cracks develop. The resultant member is excellent in oxidation resistance and resistance to deterioration by hydrogen.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は高温耐熱強度部材に係り
、特に、耐熱性、耐酸化性、耐水素劣化性に著しく優れ
た高温耐熱強度部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-temperature heat-resistant strength members, and more particularly to high-temperature heat-resistant strength members having outstanding heat resistance, oxidation resistance, and hydrogen deterioration resistance.

【0002】0002

【従来の技術】炭素繊維/炭素複合材料(以下「CCコ
ンポジット」と称す。)は、極めて優れた耐熱性を有す
る反面、耐酸化性が全くなく、また、水素劣化性もある
ことから、その利用分野が限定されるという欠点がある
。例えば、ロケットエンジンのノズルのような高温酸化
雰囲気にさらされる用途には不適である。また、炉心管
や熱処理用、焼結用セッタでは、不活性雰囲気中、特に
水素による炭素劣化の問題がある。更に、CCコンポジ
ットは、ガスや液の浸透性があるため、この点からも用
途が限定される。
[Prior Art] Although carbon fiber/carbon composite materials (hereinafter referred to as "CC composites") have extremely excellent heat resistance, they have no oxidation resistance and are also susceptible to hydrogen deterioration. The disadvantage is that the field of use is limited. For example, it is unsuitable for applications such as rocket engine nozzles that are exposed to high temperature oxidizing atmospheres. Furthermore, in furnace tubes, heat treatment, and sintering setters, there is a problem of carbon deterioration in an inert atmosphere, especially due to hydrogen. Furthermore, CC composites are permeable to gases and liquids, which also limits their uses.

【0003】このため、CCコンポジットの熱酸化性等
を向上させる目的で、従来、各種の表面処理方法が提案
されている。例えば、次の■〜■の方法がある。■  
Si蒸気又は溶融Siの含浸による表面の珪化。即ち、
表面にSiCを形成する。■  表面にCVD法により
SiCコーティングを施す。■  上記の処理後、クラ
ックをシールするために各種の溶融ガラス(例えば、硼
珪酸ガラス)を含浸する。
[0003] For this reason, various surface treatment methods have been proposed in the past for the purpose of improving the thermal oxidation properties of CC composites. For example, there are the following methods. ■
Silicification of the surface by impregnation with Si vapor or molten Si. That is,
Form SiC on the surface. ■ Apply SiC coating to the surface by CVD method. ■ After the above treatment, impregnate with various types of molten glass (for example, borosilicate glass) to seal the cracks.

【0004】0004

【発明が解決しようとする課題】しかしながら、CCコ
ンポジットとSiCとでは熱膨張係数が大きく異なるこ
とから、前記■、■のように、表面にSiC層を形成し
たものでは、熱膨張差に起因するクラックが生じ、CC
コンポジットを十分に保護し得ない。■の処理を施すこ
とによりクラックをシールすることができるが、クラッ
クを根本的に解決することはできない。
[Problems to be Solved by the Invention] However, since the thermal expansion coefficients of CC composites and SiC are significantly different, as shown in (1) and (2) above, in the case of a material with a SiC layer formed on the surface, Cracks occur and CC
Composite cannot be adequately protected. Although cracks can be sealed by performing the treatment (2), they cannot be fundamentally solved.

【0005】本発明は上記従来の問題点を解決し、基材
表面に、クラック発生の少ないSiC又はSi3 N4
 層を形成し、その耐酸化性及び耐水素劣化性を改善し
た高温耐熱強度部材を提供することを目的とする。
The present invention solves the above-mentioned conventional problems and uses SiC or Si3 N4 with less cracking on the surface of the base material.
The object of the present invention is to provide a high-temperature heat-resistant strength member having improved oxidation resistance and hydrogen deterioration resistance by forming a layer thereon.

【0006】[0006]

【課題を解決するための手段】請求項1の高温耐熱強度
部材は、炭素繊維/SiC複合材料(以下「C/SiC
複合材料」と称す。)よりなる基材の表面に被覆層が形
成されてなる高温耐熱強度部材であって、該被覆層は、
セラミック及び耐熱金属よりなる群から選ばれる少なく
とも1種の粉末及び/又は短繊維を含み、該粉末及び/
又は繊維同志の間隙に、気相蒸着法によりSiC又はS
i3N4 を含浸してなり、該被覆層は、その表面側が
緻密質であり基材側が多孔質であることを特徴とする。
[Means for Solving the Problems] The high temperature heat resistant strength member according to claim 1 is a carbon fiber/SiC composite material (hereinafter referred to as "C/SiC
"composite materials". ) A high temperature heat resistant strength member comprising a coating layer formed on the surface of a base material, the coating layer comprising:
Containing at least one kind of powder and/or short fibers selected from the group consisting of ceramics and heat-resistant metals, the powder and/or short fibers are selected from the group consisting of ceramics and heat-resistant metals.
Or SiC or S is applied to the gaps between the fibers by vapor deposition method.
The coating layer is impregnated with i3N4 and is characterized in that its surface side is dense and its base side is porous.

【0007】請求項2の高温耐熱強度部材は、請求項1
の高温耐熱強度部材において、多孔質層を構成する粉末
及び/又は短繊維が酸化によりB2 O3 を生じさせ
るボロン含有物質よりなることを特徴とする。
[0007] The high temperature heat resistant strength member according to claim 2 is the high temperature heat resistant strength member according to claim 1.
The high-temperature heat-resistant strength member is characterized in that the powder and/or short fibers constituting the porous layer are made of a boron-containing substance that generates B2 O3 upon oxidation.

【0008】以下に本発明を図面を参照して詳細に説明
する。第1図は本発明の高温耐熱強度部材の一実施例を
示す模式的な断面図である。
The present invention will be explained in detail below with reference to the drawings. FIG. 1 is a schematic sectional view showing an embodiment of the high temperature heat resistant strength member of the present invention.

【0009】本発明において、基材となるC/SiC複
合材料1は、例えば、炭素繊維割合が35〜60体積%
、マトリックスであるSiCの割合が25〜40体積%
、空孔率が10〜30体積%のものが好ましい。
In the present invention, the C/SiC composite material 1 serving as the base material has a carbon fiber content of 35 to 60% by volume, for example.
, the proportion of SiC as a matrix is 25 to 40% by volume
, those with a porosity of 10 to 30% by volume are preferred.

【0010】このようなC/SiC複合材料は、例えば
、次のようにして製造することができる。■  炭素繊
維を少量の樹脂を用いて成形した後無機化して得られる
多孔質体(プレフォーム)の空孔内へ、CVD法等によ
りSiCを蒸着させる。■  焼結法。■  SiC繊
維用原料樹脂(ポリカルボシラン等)を用いて成形した
後無機化する操作を繰り返す。場合によって、更に空孔
内にCVD法等によりSiCを蒸着させる。
[0010] Such a C/SiC composite material can be manufactured, for example, as follows. (2) SiC is vapor-deposited into the pores of a porous body (preform) obtained by molding carbon fibers using a small amount of resin and then inorganicizing them using a CVD method or the like. ■ Sintering method. (2) Repeat the process of molding using a raw material resin for SiC fibers (polycarbosilane, etc.) and then mineralizing it. Depending on the case, SiC is further vapor-deposited into the holes by CVD or the like.

【0011】このようなC/SiC複合材料1の表面に
形成される被覆層2は、セラミック及び耐熱金属よりな
る群から選ばれる少なくとも1種の粉末及び/又は短繊
維を含み、該粉末及び/又は繊維同志の間隙に、気相蒸
着法によりSiC又はSi3N4 を含浸してなるベー
ス層3を有するものである。
[0011] The coating layer 2 formed on the surface of the C/SiC composite material 1 contains at least one kind of powder and/or short fibers selected from the group consisting of ceramics and heat-resistant metals. Alternatively, the base layer 3 is formed by impregnating the gaps between the fibers with SiC or Si3N4 by vapor phase deposition.

【0012】本発明において、該ベース層3の粉末及び
/又は繊維を構成するセラミック及び耐熱金属としては
、黒鉛、炭素、SiC、B4 C、AlN、TiB2 
、MoSi2 、TaN、WC、W2 C等のセラミッ
ク、及びW、Mo等の耐熱金属よりなる群から選ばれる
1種又は2種以上の粉末及び/又は短繊維が挙げられる
。なお、粉末の場合、その平均粒径は0.2〜100μ
m程度とするのが好ましい。また、短繊維の場合、その
平均繊維径は0.2〜30μm、平均繊維長さは20〜
200μmであることが好ましい。
In the present invention, the ceramic and heat-resistant metal constituting the powder and/or fiber of the base layer 3 include graphite, carbon, SiC, B4C, AlN, and TiB2.
, MoSi2, TaN, WC, W2C, and other ceramics; and W, Mo, and other heat-resistant metals. In addition, in the case of powder, the average particle size is 0.2 to 100μ
It is preferable to set it to about m. In addition, in the case of short fibers, the average fiber diameter is 0.2 to 30 μm, and the average fiber length is 20 to 30 μm.
Preferably, it is 200 μm.

【0013】本発明においては、特に、ベース層3を構
成する粉末及び/又は短繊維がボロン(B)元素を含む
物質よりなることが好ましい。即ち、Bを含む物質より
なる多孔質層であれば、万が一クラックが発生した場合
でも、含有されるBが酸素により酸化されてB2 O3
 となり(2B+2/3O2 →B2 O3 )、この
ものがガラス状となって、或いはこのものとSiC又は
Si3 N4 との酸化により生成した硼珪酸ガラスが
クラックをシールする。このため、C/SiC複合材料
の耐酸化性、耐水素劣化性はより確実に向上する。この
ようなことから、ベース層3を構成する物質はBを含有
することが好ましいが、Bの含有割合が過度に高いと耐
熱性が低下する。従って、本発明においては、多孔質層
のB含有率(SiC又はSi3 N4 含浸前の値)は
1〜30重量%であることが好ましい。なお、Bを含む
物質としては、ボロン、ボロンカーバイド(B4 C)
、ボロンナイトライド(BN)等が挙げられる。
In the present invention, it is particularly preferable that the powder and/or short fibers constituting the base layer 3 are made of a substance containing the boron (B) element. In other words, if the porous layer is made of a substance containing B, even if a crack occurs, the B contained in it will be oxidized by oxygen and become B2 O3.
(2B+2/3O2 → B2 O3), and this material becomes glassy, or borosilicate glass produced by oxidation of this material and SiC or Si3 N4 seals the crack. Therefore, the oxidation resistance and hydrogen deterioration resistance of the C/SiC composite material are more reliably improved. For this reason, it is preferable that the substance constituting the base layer 3 contains B, but if the content of B is too high, the heat resistance will decrease. Therefore, in the present invention, the B content (value before SiC or Si3 N4 impregnation) of the porous layer is preferably 1 to 30% by weight. In addition, as substances containing B, boron, boron carbide (B4C)
, boron nitride (BN), and the like.

【0014】本発明において、ベース層3の粉末及び/
又は短繊維同志の間の間隙が狭過ぎると十分なSiC又
はSi3 N4 の含浸がなされない。従って、含浸前
の粉末及び/又は短繊維の層の空孔率(SiC又はSi
3 N4 含浸前の値)は40〜99%であることが好
ましい。 また、被覆層2の厚さは薄過ぎると十分なクラック防止
効果が得られず、厚過ぎると基材表面までSiC又はS
i3 N4 が蒸着含浸できず、被覆層と基材との結合
が不十分になり、被覆層が脱落、剥離しやすくなる。従
って、ベース層3の厚さは0.05〜0.5mm程度が
好ましい。
[0014] In the present invention, the powder and/or
Alternatively, if the gap between the short fibers is too narrow, sufficient impregnation of SiC or Si3 N4 will not be achieved. Therefore, the porosity of the layer of powder and/or short fibers before impregnation (SiC or Si
3N4 value before impregnation) is preferably 40 to 99%. Furthermore, if the thickness of the coating layer 2 is too thin, a sufficient crack prevention effect cannot be obtained, and if it is too thick, it will reach the surface of the base material using SiC or S.
i3N4 cannot be vapor-deposited and impregnated, and the bond between the coating layer and the base material becomes insufficient, and the coating layer is likely to fall off or peel. Therefore, the thickness of the base layer 3 is preferably about 0.05 to 0.5 mm.

【0015】このような粉末及び/又は短繊維は、例え
ば、C/SiC複合材料表面へフェノール樹脂等の接着
剤をスプレーガン又はハケにて塗布した後、粉末及び/
又は短繊維をふりかけ、ハケ又はヘラで余分の粉末及び
/又は短繊維を除去し、次いで、接着剤を硬化させ、更
に無機化することにより容易にC/SiC複合材料に固
着させることができる(以下、この方法を「接着法」と
称す。)。
Such powder and/or short fibers can be prepared, for example, by applying an adhesive such as phenol resin to the surface of the C/SiC composite material using a spray gun or brush, and then applying the powder and/or short fibers to the surface of the C/SiC composite material.
Alternatively, it can be easily fixed to the C/SiC composite material by sprinkling short fibers, removing excess powder and/or short fibers with a brush or spatula, then curing the adhesive, and further mineralizing it ( (Hereinafter, this method will be referred to as the "adhesion method.")

【0016】本発明の高温耐熱強度部材では、このC/
SiC複合材料表面に固着された粉末及び/又は短繊維
同志の間隙に、CVD法又はCVI等の気相蒸着法によ
りSiC又はSi3 N4 を、被覆層表面側が緻密質
、基材側が多孔質となるように、含浸、蒸着させる。こ
こで、CVI法又はCVD法の好適なSiCの蒸着条件
の一例を下記表1に示す。
In the high temperature heat resistant strength member of the present invention, this C/
SiC or Si3 N4 is applied to the gaps between the powder and/or short fibers fixed to the surface of the SiC composite material by a vapor phase deposition method such as CVD or CVI, so that the coating layer surface side is dense and the base material side is porous. As in, impregnation and vapor deposition. Here, an example of suitable SiC deposition conditions for the CVI method or CVD method is shown in Table 1 below.

【0017】[0017]

【表1】[Table 1]

【0018】このような条件にてSiC又はSi3 N
4 を蒸着することにより、自ずと、表面側により多量
のSiC又はSi3 N4 が蒸着されて緻密質となり
、基材側により少量のSiC又はSi3 N4 が蒸着
されて多孔質となる、SiC又はSi3 N4 含有率
がその厚さ方向で表面側ほど高くなるように変化する被
覆層2が得られる。
Under these conditions, SiC or Si3N
4, naturally a larger amount of SiC or Si3 N4 is deposited on the surface side, making it dense, and a smaller amount of SiC or Si3 N4 is deposited on the base material side, making it porous. A coating layer 2 is obtained in which the ratio increases in the thickness direction toward the surface.

【0019】被覆層2のSiC又はSi3 N4 含浸
率は、少な過ぎるとSiC又はSi3 N4 による耐
酸化性等の改善効果が十分に得られず、多すぎてもそれ
以上の効果は得られず経済的ではない。従って、SiC
又はSi3 N4 は、被覆層中の体積%で1〜50%
となるように含浸させるのが好ましい。
If the SiC or Si3 N4 impregnation rate of the coating layer 2 is too low, the effect of improving oxidation resistance etc. by SiC or Si3 N4 will not be sufficiently obtained, and if it is too high, no further effect will be obtained and it is economical. Not the point. Therefore, SiC
Or Si3 N4 is 1 to 50% by volume in the coating layer
It is preferable to impregnate it so that it becomes.

【0020】本発明において、被覆層2は、更に、表面
にSiC又はSi3 N4 の気相蒸着膜5が形成され
たものであっても良い。このような気相蒸着膜5を形成
することにより、耐酸化性、耐水素劣化性はより一層向
上する。
In the present invention, the covering layer 2 may further have a vapor-deposited film 5 of SiC or Si3 N4 formed on its surface. By forming such a vapor-deposited film 5, the oxidation resistance and hydrogen deterioration resistance are further improved.

【0021】このような本発明の高温耐熱強度部材は、
次のような高温部材用途等に極めて有用である。 ■  ロケットエンジンのノズル等の高温部材■  炉
心管 ■  熱処理用、焼結用セッタ(被処理物を置く台)
[0021] Such a high temperature heat resistant strength member of the present invention is as follows:
It is extremely useful for the following high-temperature component applications. ■ High-temperature parts such as rocket engine nozzles ■ Furnace tubes ■ Setters for heat treatment and sintering (stands for placing objects to be treated)


0022】
[
0022

【作用】本発明の高温耐熱強度部材は、C/SiC複合
材料の表面に、セラミック及び耐熱金属よりなる群から
選ばれる少なくとも1種の粉末及び/又は短繊維で形成
された層が形成されており、かつ、この層の空孔が気相
蒸着法により生成したSiC又はSi3 N4 で、表
面側が緻密質、基材側が多孔質となるように含浸されて
いる。
[Function] The high-temperature heat-resistant strength member of the present invention has a layer made of at least one kind of powder and/or short fibers selected from the group consisting of ceramics and heat-resistant metals formed on the surface of the C/SiC composite material. In addition, the pores in this layer are impregnated with SiC or Si3 N4 produced by vapor phase deposition so that the surface side is dense and the base material side is porous.

【0023】このような、SiC又はSi3 N4 含
有率が傾斜し、空孔率が厚さ方向に徐々に変化する被覆
層は、基材のC/SiC複合材料に対して応力緩和層と
して作用するため、C/SiC複合材料とSiC又はS
i3 N4 との熱膨張係数の差に起因する被覆層のク
ラック発生は少なくなる。このため、C/SiC複合材
料は、SiC又はSi3N4 が含浸された被覆層によ
り、良好な耐酸化性、耐水素劣化性、ガス、液不透性が
与えられる。なお、C/SiC複合材料は、CCコンポ
ジットに比べて表面被覆層とのなじみが良く、クラック
が発生し難く、本発明に有効である。
[0023] Such a coating layer in which the SiC or Si3N4 content is graded and the porosity gradually changes in the thickness direction acts as a stress relaxation layer for the C/SiC composite material of the base material. Therefore, C/SiC composite material and SiC or S
The occurrence of cracks in the coating layer due to the difference in thermal expansion coefficient between i3 and N4 is reduced. Therefore, the C/SiC composite material is provided with good oxidation resistance, hydrogen deterioration resistance, gas and liquid impermeability due to the coating layer impregnated with SiC or Si3N4. Note that the C/SiC composite material has better compatibility with the surface coating layer than the CC composite material, and is less likely to cause cracks, so it is effective in the present invention.

【0024】特に、被覆層を構成する物質がBを含む場
合には、万が一被覆層にクラックが入った場合において
も、Bのガラス化による目詰め作用で、基材の劣化は防
止される。
In particular, when the substance constituting the coating layer contains B, even if a crack occurs in the coating layer, the deterioration of the base material is prevented due to the plugging effect of the vitrification of B.

【0025】[0025]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。
[Examples] The present invention will be explained in more detail with reference to Examples below.

【0026】実施例1、比較例1,2 炭素繊維含有率:40体積%、マトリックスSiC含有
率:40体積%、空孔率:20体積%のC/SiC複合
材料に、接着法にて、平均粒径2μmのSiC粉末を用
いて、厚さ0.3mm、空孔率70体積%の層を形成し
た。次いで、この多孔質層に前記表1のCVI法の条件
にて、SiCを含浸させた。SiCの含浸率は、得られ
る被覆層に対して30体積%とし、更に、表面に厚さ5
0μmのSiC蒸着膜を形成した。
Example 1, Comparative Examples 1 and 2 A C/SiC composite material having a carbon fiber content of 40 volume %, a matrix SiC content of 40 volume %, and a porosity of 20 volume % was bonded using an adhesive method. A layer having a thickness of 0.3 mm and a porosity of 70% by volume was formed using SiC powder with an average particle size of 2 μm. Next, this porous layer was impregnated with SiC under the conditions of the CVI method shown in Table 1 above. The impregnation rate of SiC is 30% by volume with respect to the resulting coating layer, and a layer with a thickness of 5% is added to the surface.
A 0 μm SiC vapor deposited film was formed.

【0027】得られた高温耐熱強度部材を大気中で13
00℃に100時間加熱したときの重量減少率を調べた
ところ、重量減少率は18%であった。一方、比較例1
として同一のC/SiC複合材料に、また、比較例2と
して、CCコンポジット(炭素含有率40体積%、マト
リックス炭素含有率35体積%、空孔率25体積%)に
、各々、直接50μm厚さのCVD−SiCコーティン
グ膜を形成したものについて同様に加熱試験を行なった
ところ、C/SiC複合材料中の炭素繊維とCCコンポ
ジットはほぼ完全に燃焼した。
[0027] The obtained high temperature heat resistant strength member was heated in the atmosphere for 13 minutes.
When the weight loss rate was examined when heated to 00°C for 100 hours, the weight loss rate was 18%. On the other hand, Comparative Example 1
and to the same C/SiC composite material as Comparative Example 2, and to a CC composite (carbon content 40 vol%, matrix carbon content 35 vol%, porosity 25 vol%), respectively, with a thickness of 50 μm. When a similar heating test was conducted on the CVD-SiC coating film formed thereon, the carbon fibers and the CC composite in the C/SiC composite material were almost completely combusted.

【0028】実施例2 実施例1で用いたと同様のC/SiC複合材料に、接着
法にて、平均粒径2μmのSiC粉末及び平均粒径3μ
mのB4 C粉末を用いて、厚さ0.3mm、B含有率
20重量%、空孔率70体積%の多孔質層を形成した。 次いで、この多孔質層に前記表1のCVI法の条件にて
、SiCを含浸させた。SiCの含浸率は、得られる被
覆層に対して30体積%とし、更に、表面に厚さ50μ
mのSiC蒸着膜を形成した。
Example 2 SiC powder with an average particle size of 2 μm and SiC powder with an average particle size of 3 μm were added to the same C/SiC composite material as used in Example 1 by an adhesive method.
A porous layer having a thickness of 0.3 mm, a B content of 20% by weight, and a porosity of 70% by volume was formed using B4C powder of 500 mL. Next, this porous layer was impregnated with SiC under the conditions of the CVI method shown in Table 1 above. The impregnation rate of SiC is 30% by volume with respect to the resulting coating layer, and a 50μ thick layer is added to the surface.
A SiC vapor deposited film of m was formed.

【0029】得られた高温耐熱強度部材を大気中で13
00℃に100時間加熱したときの重量減少率を調べた
ところ、重量減少率は6%であった。
[0029] The obtained high-temperature heat-resistant strength member was heated in the atmosphere for 13 minutes.
When the weight loss rate was examined when heated to 00°C for 100 hours, the weight loss rate was 6%.

【0030】[0030]

【発明の効果】以上詳述した通り、本発明の高温耐熱強
度部材によれば、耐熱性、耐酸化性、耐水素劣化性及び
ガス、液不透性が大幅に改善された高温耐熱強度部材が
提供される。特に、請求項2の高温耐熱強度部材であれ
ば、より優れた効果が奏される。
Effects of the Invention As detailed above, according to the high temperature heat resistant strength member of the present invention, the high temperature heat resistant strength member has significantly improved heat resistance, oxidation resistance, hydrogen deterioration resistance, and gas and liquid impermeability. is provided. In particular, the high temperature heat resistant strength member according to claim 2 provides more excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】第1図は本発明の高温耐熱強度部材の一実施例
を示す模式的な断面図である。
FIG. 1 is a schematic cross-sectional view showing one embodiment of the high temperature heat resistant strength member of the present invention.

【符号の説明】[Explanation of symbols]

1  C/SiC複合材料 2  被覆層 3  ベース層 1 C/SiC composite material 2 Coating layer 3 Base layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  炭素繊維/SiC複合材料よりなる基
材の表面に被覆層が形成されてなる高温耐熱強度部材で
あって、該被覆層は、セラミック及び耐熱金属よりなる
群から選ばれる少なくとも1種の粉末及び/又は短繊維
を含み、該粉末及び/又は繊維同志の間隙に、気相蒸着
法によりSiC又はSi3 N4 を含浸してなり、該
被覆層は、その表面側が緻密質であり基材側が多孔質で
あることを特徴とする高温耐熱強度部材。
1. A high-temperature heat-resistant strength member comprising a coating layer formed on the surface of a base material made of a carbon fiber/SiC composite material, the coating layer comprising at least one member selected from the group consisting of ceramics and heat-resistant metals. The coating layer contains seed powder and/or short fibers, and the gaps between the powder and/or fibers are impregnated with SiC or Si3 N4 by vapor phase deposition, and the surface side of the coating layer is dense and has a base layer. A high-temperature heat-resistant strength member characterized by having a porous material side.
【請求項2】  多孔質層を構成する粉末及び/又は短
繊維が酸化によりB2O3 を生じさせるボロン含有物
質よりなることを特徴とする請求項1に記載の高温耐熱
強度部材。
2. The high-temperature heat-resistant strength member according to claim 1, wherein the powder and/or short fibers constituting the porous layer are made of a boron-containing substance that generates B2O3 upon oxidation.
JP3104221A 1991-05-09 1991-05-09 High temperature heat resistant material Expired - Fee Related JP3060590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3104221A JP3060590B2 (en) 1991-05-09 1991-05-09 High temperature heat resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3104221A JP3060590B2 (en) 1991-05-09 1991-05-09 High temperature heat resistant material

Publications (2)

Publication Number Publication Date
JPH04332637A true JPH04332637A (en) 1992-11-19
JP3060590B2 JP3060590B2 (en) 2000-07-10

Family

ID=14374910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3104221A Expired - Fee Related JP3060590B2 (en) 1991-05-09 1991-05-09 High temperature heat resistant material

Country Status (1)

Country Link
JP (1) JP3060590B2 (en)

Also Published As

Publication number Publication date
JP3060590B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
JP4805539B2 (en) Protecting composite parts from oxidation
US5622751A (en) Method of protecting products of composite material against oxidizing and products protected thereby
EP0672630B1 (en) High temperature coating on ceramic substrate and process for its production without necessary curing
JPH02106337A (en) Composite material including fiber for reinforcing carbon and manufacture thereof
EP2548855A1 (en) Ceramic composite article having laminar ceramic matrix
JPH02217381A (en) Method for protecting product of carbon-containing composite material from oxidation,and product protected thereby
Zhi-Qiao et al. A multilayer coating of dense SiC alternated with porous Si–Mo for the oxidation protection of carbon/carbon silicon carbide composites
Li et al. Oxidation resistance of a gradient self-healing coating for carbon/carbon composites
CA1286549C (en) Refractory composite material and method of producing material
EP0907623A1 (en) Refractory composite materials protected against oxidising at high temperature, precursors of the said materials, their preparation
FR2747674A1 (en) PROTECTIVE COATING FOR WORKPIECES AND ITS MAKING PROCESS, WORKPIECES PRESENTING THIS PROTECTIVE COATING
JP4539014B2 (en) Oxidation resistant C / C composite and method for producing the same
HRP950604A2 (en) ANTI-OXIDATIVE, ABRASION-RESISTANT PROTECTIVE COATING FOR SiC BODIES
JPH04332637A (en) High temperature heat resistant strength member
JP2504341B2 (en) High temperature heat resistant member manufacturing method
JP3060589B2 (en) High temperature heat resistant material
JP2976368B2 (en) Heat and oxidation resistant carbon fiber reinforced carbon composite material
EP0674607B1 (en) Amorphous boron carbide coating
JPH04286636A (en) High temperature heat-resistant strength member
JPH11314985A (en) Heat resistant/oxidation resistant carbon fiber reinforced carbon material
JPH09278567A (en) Production of heat-resistant, oxidation-resistant carbon material
JP3031853B2 (en) Heat and oxidation resistant carbon materials
JPH06172033A (en) Surface-coated carbon-fiber reinforced composite material and its production
JPS6230681A (en) Non-gas-permeable ceramic sintered body and manufacture
JPH04243990A (en) Oxidation-resistant treatment of carbon fiber reinforced carbon material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000328

LAPS Cancellation because of no payment of annual fees