JPH04330993A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPH04330993A
JPH04330993A JP3100045A JP10004591A JPH04330993A JP H04330993 A JPH04330993 A JP H04330993A JP 3100045 A JP3100045 A JP 3100045A JP 10004591 A JP10004591 A JP 10004591A JP H04330993 A JPH04330993 A JP H04330993A
Authority
JP
Japan
Prior art keywords
tank
membrane
biological treatment
aerobic
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3100045A
Other languages
Japanese (ja)
Other versions
JP3266915B2 (en
Inventor
Katsumi Ishiguro
石黒 克己
Shigeki Sawada
沢田 繁樹
Kazuo Imai
和夫 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP10004591A priority Critical patent/JP3266915B2/en
Publication of JPH04330993A publication Critical patent/JPH04330993A/en
Application granted granted Critical
Publication of JP3266915B2 publication Critical patent/JP3266915B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To increase the flux permeated through a membrane and to improve efficiency by keeping the dissolved oxygen concn. in an aeration tank at a specified value in the waste water treatment by a combination of biological treatment and membrane separation. CONSTITUTION:An aerobic treating tank and an anaerobic biological treating tank are jointly used as a biological treating tank 1. In this case, the amt. of air to be injected is adjusted so that the dissolved oxygen concn. (Do) is controlled to >=1.0mg/1 in at least one tank among the aerobic biological treating tanks. Namely, the amt. of air is adjusted so that the Do in the biological treating tank 1 or in a circulating water tank 2 is adjusted to >=1mg/1 about 10min after the finish of the aerobic time zone.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は排水処理方法に係り、特
に、生物処理及び膜分離処理を組み合わせた排水処理方
法において、大きな膜透過流束を得ることができる排水
処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment method, and more particularly to a wastewater treatment method that combines biological treatment and membrane separation treatment and is capable of obtaining a large membrane permeation flux.

【0002】0002

【従来の技術】従来、排水の生物処理装置では、固液分
離手段として沈殿槽が用いられていたが、近年、固液分
離手段として膜分離装置を用いた生物処理装置が、汚泥
濃度を高く維持でき、高負荷で運転できるコンパクトな
排水処理装置として注目を集めている。
[Prior Art] Conventionally, biological treatment equipment for wastewater has used a sedimentation tank as a solid-liquid separation means, but in recent years, biological treatment equipment that uses a membrane separation device as a solid-liquid separation means has been used to increase sludge concentration. It is attracting attention as a compact wastewater treatment device that can be maintained and operated at high loads.

【0003】0003

【発明が解決しようとする課題】しかし、膜を用いた生
物処理の管理指標には、従来の沈殿槽を組み合わせた装
置のものを流用しており、膜分離への適合性が考慮され
ていなかった。その結果、なんらかの処理条件の変動に
より、膜による濾過性が非常に悪くなり、透過流束が非
常に小さくなるという現象がしばしば発生した。この現
象は、膜を洗浄したり、取り替えたりしても回復するこ
とはできず、対策が望まれていた。
[Problem to be solved by the invention] However, the management indicators for biological treatment using membranes are those of devices that combine conventional sedimentation tanks, and compatibility with membrane separation is not taken into account. Ta. As a result, due to some variation in processing conditions, the filtration performance of the membrane becomes very poor and the permeation flux often becomes very small. This phenomenon cannot be recovered even if the membrane is cleaned or replaced, and countermeasures have been desired.

【0004】本発明は上記従来の問題点を解決し、生物
処理及び膜分離処理を組み合わせた排水処理方法におい
て、膜による濾過性、透過流束を高く維持して、効率的
な排水処理を行なうことができる方法を提供することを
目的とする。
The present invention solves the above-mentioned conventional problems and provides efficient wastewater treatment by maintaining high membrane filtration performance and permeation flux in a wastewater treatment method that combines biological treatment and membrane separation treatment. The purpose is to provide a method that can be used.

【0005】[0005]

【課題を解決するための手段】本発明の排水処理方法は
、生物処理及び膜分離処理を組み合わせた排水処理方法
において、好気槽の溶存酸素濃度を1.0mg/l以上
に維持することを特徴とする。
[Means for Solving the Problems] The wastewater treatment method of the present invention is a wastewater treatment method that combines biological treatment and membrane separation treatment, in which the dissolved oxygen concentration in the aerobic tank is maintained at 1.0 mg/l or more. Features.

【0006】即ち、生物処理及び膜分離処理を組み合わ
せた排水処理方法において、膜の濾過性及び透過流束の
低下の原因は、主として生物処理槽内の汚泥中の溶存物
質にあり、このため、膜の洗浄、交替では改善効果が得
られない。本発明者らは、好気性生物処理槽内の汚泥中
の溶存物質に着目して研究した結果、好気性生物処理槽
内の溶存酸素濃度(DO)を高濃度に維持することによ
り、上記の現象を回避できることを見出し、本発明を達
成させた。
That is, in a wastewater treatment method that combines biological treatment and membrane separation treatment, the cause of the decrease in membrane filtration performance and permeation flux is mainly the dissolved substances in the sludge in the biological treatment tank. Cleaning or replacing the membrane does not provide any improvement. As a result of research focusing on dissolved substances in sludge in an aerobic biological treatment tank, the present inventors found that by maintaining the dissolved oxygen concentration (DO) in an aerobic biological treatment tank at a high concentration, the above-mentioned It was discovered that this phenomenon could be avoided, and the present invention was achieved.

【0007】以下に本発明を詳細に説明する。本発明に
おいて、生物処理槽として好気性生物処理槽と嫌気性生
物処理槽とを併用する場合には、好気槽である好気性生
物処理槽の少なくとも一槽について、DO1.0mg/
l以上となるように吹き込み空気量を調整する。また、
単一槽にて間欠的に嫌気、好気を繰り返す場合には、好
気時間帯の終了前10分程度のDOが1.0mg/l以
上となれば良い。この場合、好気時間帯においてDOが
1mg/l以上にならなくても、膜分離装置に至るまで
の系に水槽を設け、その水槽を好気槽とし、DOを1m
g/l以上とすれば良い。例えば、循環槽においてDO
を1mg/l以上となるようにすれば良い。
The present invention will be explained in detail below. In the present invention, when an aerobic biological treatment tank and an anaerobic biological treatment tank are used together as biological treatment tanks, at least one of the aerobic biological treatment tanks, which is an aerobic tank, has a DO of 1.0 mg/
Adjust the amount of air blown so that it is at least 1 liter. Also,
When anaerobic and aerobic operations are repeated intermittently in a single tank, the DO should be 1.0 mg/l or more for about 10 minutes before the end of the aerobic period. In this case, even if the DO does not exceed 1 mg/l during the aerobic period, a water tank is provided in the system up to the membrane separator, and that tank is used as an aerobic tank, and the DO is reduced to 1 m
It is sufficient if it is not less than g/l. For example, in a circulation tank, DO
What is necessary is to make it 1 mg/l or more.

【0008】以上に図面を参照して本発明をより詳細に
説明する。第1図、第2図及び第3図は本発明の実施に
好適な排水処理装置を示す系統図である。各図において
、1は生物処理槽、1Aは嫌気性生物処理槽、1Bは好
気性生物処理槽、2は循環槽、3は膜分離装置、3Aは
分離膜、4、4Aはポンプ、5はバルブを示し、11、
11A、12、13、14、15、15a、15b、1
6、17は配管を示す。
The present invention will now be described in more detail with reference to the drawings. FIG. 1, FIG. 2, and FIG. 3 are system diagrams showing a wastewater treatment apparatus suitable for carrying out the present invention. In each figure, 1 is a biological treatment tank, 1A is an anaerobic biological treatment tank, 1B is an aerobic biological treatment tank, 2 is a circulation tank, 3 is a membrane separation device, 3A is a separation membrane, 4 and 4A are pumps, and 5 is a showing the valve; 11;
11A, 12, 13, 14, 15, 15a, 15b, 1
6 and 17 indicate piping.

【0009】第1図に示す装置では、原水を配管11よ
り生物処理槽1に供給し、生物処理液を配管12より抜
き出し、循環槽2、ポンプ4を有する配管13を経て膜
分離装置3に供給し、濃縮水を配管15、15aを経て
生物処理装置1に、また、配管15、15bを経て循環
槽2に返送する。一方、透過水は配管14より処理水と
して取り出す。循環槽2の汚泥は必要に応じて配管16
より抜き出す。このような装置において、間欠曝気を行
なって、生物処理装置1内で間欠的に嫌気、好気を繰り
返して処理する場合には、前述の如く、少なくとも好気
時間帯の終了前10分程度において生物処理槽1内、又
は、循環水槽2内のDOが1mg/l以上となるように
空気の吹き込み量を調整する。
In the apparatus shown in FIG. 1, raw water is supplied to a biological treatment tank 1 through a pipe 11, and the biological treatment liquid is extracted from a pipe 12, and then passed through a circulation tank 2 and a pipe 13 having a pump 4 to a membrane separation device 3. The concentrated water is returned to the biological treatment apparatus 1 via the pipes 15 and 15a, and to the circulation tank 2 via the pipes 15 and 15b. On the other hand, the permeated water is taken out from the pipe 14 as treated water. The sludge in the circulation tank 2 is transferred to the pipe 16 as necessary.
Extract more. In such a device, when performing intermittent aeration to repeatedly perform anaerobic and aerobic treatment in the biological treatment device 1, as described above, at least 10 minutes before the end of the aerobic period, The amount of air blown is adjusted so that the DO in the biological treatment tank 1 or the circulating water tank 2 becomes 1 mg/l or more.

【0010】第2図に示す装置では、原水を配管11よ
りまず嫌気性生物処理槽1Aに供給し、次いで、配管1
1Aを経て好気性生物処理槽1Bに供給し、処理液をポ
ンプ4を有する配管13を経て膜分離装置3に供給し、
濃縮水を配管15、15aを経て嫌気性生物処理槽1A
に、また、配管15、15bを経て好気性生物処理槽1
Bに返送する。一方、透過水は配管14より処理水とし
て取り出す。なお、好気性生物処理槽1Bの汚泥は必要
に応じて配管16より抜き出し、一部はポンプ4A有す
る配管17より嫌気性生物処理槽1Aに返送する。この
ような装置においては、好気性生物処理槽1B内のDO
が1mg/l以上となるように、空気の吹き込み量を調
整する。
In the apparatus shown in FIG. 2, raw water is first supplied to the anaerobic biological treatment tank 1A through the pipe 11, and then the raw water is supplied to the anaerobic biological treatment tank 1A through the pipe 11.
1A to the aerobic biological treatment tank 1B, and the treated liquid is supplied to the membrane separation device 3 via piping 13 having a pump 4,
Concentrated water is passed through pipes 15 and 15a to anaerobic biological treatment tank 1A.
In addition, the aerobic biological treatment tank 1 is connected via the pipes 15 and 15b.
Return it to B. On the other hand, the permeated water is taken out from the pipe 14 as treated water. Note that the sludge in the aerobic biological treatment tank 1B is extracted from the pipe 16 as necessary, and a portion is returned to the anaerobic biological treatment tank 1A through the pipe 17 having the pump 4A. In such a device, the DO in the aerobic biological treatment tank 1B
Adjust the amount of air blown so that it is 1 mg/l or more.

【0011】第3図に示す装置では、原水を配管11よ
り好気性生物処理槽1Bに供給し、処理液をポンプ4を
有する配管13を経て膜分離装置3に供給し、濃縮水を
配管15を経て好気性生物処理槽1Bに返送する。一方
、透過水は配管14より処理水として取り出す。このよ
うな装置においても、好気性生物処理槽1B内のDOが
1mg/l以上となるように、空気の吹き込み量を調整
する。
In the apparatus shown in FIG. 3, raw water is supplied to the aerobic biological treatment tank 1B through a pipe 11, treated liquid is supplied to the membrane separation device 3 through a pipe 13 having a pump 4, and concentrated water is supplied to the membrane separation device 3 through a pipe 15. It is returned to the aerobic biological treatment tank 1B. On the other hand, the permeated water is taken out from the pipe 14 as treated water. Even in such a device, the amount of air blown is adjusted so that the DO in the aerobic biological treatment tank 1B is 1 mg/l or more.

【0012】なお、本発明において分離膜としては、M
F(精密濾過)膜、UF(限外濾過)膜、RO(逆浸透
)膜など、いずれをも使用可能である。また、第3図の
実施例においても、汚泥は必要に応じて配管16より抜
き出す。
[0012] In the present invention, as the separation membrane, M
Any of F (microfiltration) membranes, UF (ultrafiltration) membranes, RO (reverse osmosis) membranes, etc. can be used. Also in the embodiment shown in FIG. 3, sludge is extracted from the pipe 16 as needed.

【0013】[0013]

【作用】従来の沈殿槽を用いる方法では、活性汚泥は好
気性に維持すればBOD分解が進むが、溶存物質は沈澱
池より絶えず流出し反応槽内に濃縮することはない。し
かし、膜を組み合わせる場合には、MF膜のように孔径
の大きいものを用いても、膜面上にゲル状物質が形成さ
れ、高分子量の溶存物質が濃縮することになる。
[Operation] In the conventional method using a settling tank, BOD decomposition proceeds if the activated sludge is kept aerobically, but dissolved substances constantly flow out of the settling tank and are not concentrated in the reaction tank. However, when combining membranes, even if a membrane with a large pore diameter is used, such as an MF membrane, a gel-like substance will be formed on the membrane surface and high molecular weight dissolved substances will be concentrated.

【0014】これに対して、本発明に従って、好気槽内
のDOを1.0mg/l以上に維持することにより、槽
内に生成する溶存物質のうち、特に高分子量のものの生
成を押えることができ、膜との組み合わせにおいても、
反応槽内の高分子物質の蓄積を防止できる。
On the other hand, according to the present invention, by maintaining the DO in the aerobic tank at 1.0 mg/l or more, it is possible to suppress the formation of particularly high molecular weight substances among the dissolved substances generated in the tank. and in combination with membranes,
Accumulation of polymeric substances in the reaction tank can be prevented.

【0015】即ち、好気槽内のDO濃度の変化に対する
溶存CODとの関係は、後掲の実施例1及び比較例1に
よれば、第4図及び第5図に示す通りであり、DOが1
mg/lよりも低下すると溶存CODが増加し(5/1
7〜6/16)、その後DOを増加させると溶存COD
が低下する(6/16〜7/16)ことが明らかである
。また、生物処理槽内のDOに対する溶存物質の分子量
分布の変化は第6図及び第7図に示す通りであり、DO
1mg/l以上の場合(第6図)は、DO0.5mg/
l程度の場合(第7図)に比べて、高分子溶質の蓄積が
押えられることが明らかである。
That is, the relationship between dissolved COD and changes in DO concentration in the aerobic tank is as shown in FIGS. is 1
Dissolved COD increases when it decreases below mg/l (5/1
7-6/16), then increasing DO increases dissolved COD
It is clear that the amount decreases (6/16 to 7/16). In addition, changes in the molecular weight distribution of dissolved substances with respect to DO in the biological treatment tank are shown in Figures 6 and 7.
If it is 1mg/l or more (Figure 6), DO0.5mg/l
It is clear that the accumulation of polymer solutes is suppressed compared to the case of about 1 (FIG. 7).

【0016】このようなことから、本発明の方法によれ
ば、膜分離処理において、膜面上のゲル状物質の層の発
達が押えられ、膜の濾過性及び膜の透過流束を高く維持
することができる。
For this reason, according to the method of the present invention, the development of a layer of gel-like substance on the membrane surface is suppressed during membrane separation treatment, and the filtration performance of the membrane and the permeation flux of the membrane are maintained high. can do.

【0017】[0017]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。 実施例1 第1図に示す処理装置により、下記処理条件にて合成下
水(ペプトン、グルコース基質、BOD:1000mg
/l、CODMn:800mg/l)の処理を行なった
。 処理条件 好気性生物処理槽:容量=250  l水温=30℃ MLSS=10000mg/l DO=1mg/l以上 循環槽:容量=100  l 膜分離装置:有効膜面積=2m2 膜の種類=分画5万のポリスルホンUF膜通水流速:1
m/s 合成下水:水量=1m3 /日 上記の如く、生物処理槽のDO濃度が1mg/l以上と
なるように吹込空気量を調整して運転を行なった結果、
膜透過流束は1.2m3 /m2 ・日(平均操作圧:
1.2kgf/cm2 )となり、また、生物処理槽内
の溶解性CODMn濃度は第4図及び第5図の4/27
〜5/17に示す通り、100〜300mg/lであっ
た。 比較例1 実施例1において、生物処理槽のDO濃度が1.0mg
/l未満となるように空気量を調整したところ、膜透過
水のCODやBODは実施例1の結果と同等であったに
もかかわらず、膜透過流束が低下し、通水流速及び水温
が同条件にて、膜透過流束は0.5m3 /m2 ・日
(平均操作圧1.2kg/cm2 )となった。なお、
生物処理槽内の溶解性成分について、GPC(ゲルパー
ミエーションクロマトグラフィー)分画(TSKゲルG
−4000PWを使用)を試みたところ、第7図に示す
如く、実施例1の場合(第6図)に比べて、高分子量に
位置するところのピークの上昇が認められた。また、比
較例1の実験の後、再度、実施例1の条件に戻したとこ
ろ、急激に溶解性CODMnは低下した(第4図、第5
図の6/16〜7/16)。ただし、膜透過流束の回復
は認められなかったので薬品洗浄(NaClO:500
mg/l−asCl2 )を実施したところ、膜透過流
束は、1.2m3 /m2 ・日まで回復した。
[Examples] The present invention will be explained in more detail with reference to Examples and Comparative Examples below. Example 1 Synthetic sewage (peptone, glucose substrate, BOD: 1000 mg
/l, CODMn: 800mg/l). Treatment conditions Aerobic biological treatment tank: Capacity = 250 l Water temperature = 30°C MLSS = 10000 mg/l DO = 1 mg/l or more Circulation tank: Capacity = 100 l Membrane separation device: Effective membrane area = 2 m2 Membrane type = Fraction 5 Ten thousand polysulfone UF membrane water flow rate: 1
m/s Synthetic sewage: Water volume = 1 m3 / day As described above, as a result of operation by adjusting the amount of blown air so that the DO concentration in the biological treatment tank was 1 mg/l or more,
Membrane permeation flux is 1.2m3/m2・day (average operating pressure:
1.2 kgf/cm2), and the soluble CODMn concentration in the biological treatment tank is 4/27 in Figures 4 and 5.
~5/17, it was 100 to 300 mg/l. Comparative Example 1 In Example 1, the DO concentration in the biological treatment tank was 1.0 mg.
When the air volume was adjusted to be less than /l, although the COD and BOD of the membrane permeated water were the same as the results of Example 1, the membrane permeation flux decreased and the water flow rate and water temperature decreased. Under the same conditions, the membrane permeation flux was 0.5 m3/m2·day (average operating pressure 1.2 kg/cm2). In addition,
Regarding the soluble components in the biological treatment tank, GPC (gel permeation chromatography) fractionation (TSK Gel G
-4000 PW), as shown in FIG. 7, an increase in the peaks located at high molecular weights was observed compared to the case of Example 1 (FIG. 6). Furthermore, after the experiment in Comparative Example 1, when the conditions were returned to those in Example 1, the soluble CODMn rapidly decreased (Figs. 4 and 5).
6/16 to 7/16 in the figure). However, since no recovery in membrane permeation flux was observed, chemical cleaning (NaClO: 500
mg/l-asCl2), the membrane permeation flux recovered to 1.2 m3/m2 ·day.

【0018】[0018]

【発明の効果】以上詳述した通り、本発明の排水処理方
法によれば、好気性生物処理及び膜分離処理を組み合わ
せた排水処理方法において、生物処理槽内の溶存有機成
分、特に高分子成分の生成及び蓄積を抑えると共に、分
離膜上のゲル層の発達を抑え、膜の濾過性及び膜の透過
流束を高く維持することが可能とされる。このため、排
水処理効率は大幅に向上し、高水質の処理水を効率的に
得ることが可能とされる。
[Effects of the Invention] As detailed above, according to the wastewater treatment method of the present invention, in a wastewater treatment method that combines aerobic biological treatment and membrane separation treatment, dissolved organic components, especially polymer components, in the biological treatment tank can be effectively treated. This makes it possible to suppress the generation and accumulation of , as well as to suppress the development of a gel layer on the separation membrane, thereby maintaining high membrane filtration performance and membrane permeation flux. Therefore, the efficiency of wastewater treatment is greatly improved, and it is possible to efficiently obtain treated water of high quality.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】第1図は本発明の実施に好適な排水処理装置の
一実施例を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a wastewater treatment device suitable for carrying out the present invention.

【図2】第2図は本発明の実施に好適な排水処理装置の
他の実施例を示す系統図である。
FIG. 2 is a system diagram showing another embodiment of a wastewater treatment apparatus suitable for carrying out the present invention.

【図3】第3図は本発明の実施に好適な排水処理装置の
別の実施例を示す系統図である。
FIG. 3 is a system diagram showing another embodiment of a wastewater treatment device suitable for carrying out the present invention.

【図4】第4図はDO濃度の経時変化を示すグラフであ
る。
FIG. 4 is a graph showing changes in DO concentration over time.

【図5】第5図はCOD濃度の経時変化を示すグラフで
ある。
FIG. 5 is a graph showing changes in COD concentration over time.

【図6】第6図はDO≧1mg/lの場合の溶存物質の
分子量分布を示すグラフである。
FIG. 6 is a graph showing the molecular weight distribution of dissolved substances when DO≧1 mg/l.

【図7】第7図はDO≒0.5mg/lの場合の溶存物
質の分子量分布を示すグラフである。
FIG. 7 is a graph showing the molecular weight distribution of dissolved substances when DO≈0.5 mg/l.

【符号の説明】[Explanation of symbols]

1  生物処理槽 1A  嫌気性生物処理槽 1B  好気性生物処理槽 2  循環槽 3  膜分離装置 3A  分離膜 1 Biological treatment tank 1A Anaerobic biological treatment tank 1B Aerobic biological treatment tank 2 Circulation tank 3 Membrane separation device 3A Separation membrane

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  生物処理及び膜分離処理を組み合わせ
た排水処理方法において、好気槽の溶存酸素濃度を1.
0mg/l以上に維持することを特徴とする排水処理方
法。
Claim 1: In a wastewater treatment method combining biological treatment and membrane separation treatment, the dissolved oxygen concentration in the aerobic tank is set to 1.
A wastewater treatment method characterized by maintaining the concentration at 0 mg/l or more.
JP10004591A 1991-05-01 1991-05-01 Wastewater treatment method Expired - Lifetime JP3266915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10004591A JP3266915B2 (en) 1991-05-01 1991-05-01 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10004591A JP3266915B2 (en) 1991-05-01 1991-05-01 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH04330993A true JPH04330993A (en) 1992-11-18
JP3266915B2 JP3266915B2 (en) 2002-03-18

Family

ID=14263539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10004591A Expired - Lifetime JP3266915B2 (en) 1991-05-01 1991-05-01 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3266915B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288287A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Organic wastewater treatment method
JP2006082024A (en) * 2004-09-16 2006-03-30 Kurita Water Ind Ltd Biological treatment apparatus
JP2007185660A (en) * 2007-04-09 2007-07-26 Ebara Corp Method and apparatus for treating organic waste water
JP2009509756A (en) * 2005-10-06 2009-03-12 シーメンス・ウォーター・テクノロジーズ・コーポレーション Dynamic control of membrane bioreactor system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288287A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Organic wastewater treatment method
JP4552482B2 (en) * 2004-03-31 2010-09-29 栗田工業株式会社 Organic wastewater treatment method
JP2006082024A (en) * 2004-09-16 2006-03-30 Kurita Water Ind Ltd Biological treatment apparatus
JP4492268B2 (en) * 2004-09-16 2010-06-30 栗田工業株式会社 Biological treatment equipment
JP2009509756A (en) * 2005-10-06 2009-03-12 シーメンス・ウォーター・テクノロジーズ・コーポレーション Dynamic control of membrane bioreactor system
JP2007185660A (en) * 2007-04-09 2007-07-26 Ebara Corp Method and apparatus for treating organic waste water
JP4611334B2 (en) * 2007-04-09 2011-01-12 荏原エンジニアリングサービス株式会社 Organic wastewater treatment method and apparatus

Also Published As

Publication number Publication date
JP3266915B2 (en) 2002-03-18

Similar Documents

Publication Publication Date Title
Ueda et al. Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration
EP2537810B1 (en) Method for generating fresh water and method for desalinating sea water
Chmiel et al. Concepts for the treatment of spent process water in the food and beverage industries
JP2007244979A (en) Water treatment method and water treatment apparatus
Illueca-Muñoz et al. Study of different alternatives of tertiary treatments for wastewater reclamation to optimize the water quality for irrigation reuse
JPH10272495A (en) Treatment of organic waste water containing salts of high concentration
Ahn et al. Application of microfiltration with a novel fouling control method for reuse of wastewater from a large-scale resort complex
JPH05329477A (en) Membrane separation
EP1807361B1 (en) Anoxic biological reduction system and method
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JPH04330993A (en) Treatment of waste water
RU2480414C2 (en) Method of treating process water
KR20160121666A (en) Water treatment apparatus using forward osmosis membrane bioreactor and reverse osmosis process
JPH11239789A (en) Advanced method for water treatment
JP2005046748A (en) Treating method for organic wastewater
JP3150734B2 (en) Wastewater or sludge treatment method and apparatus
JPH0683835B2 (en) Membrane bioreactor treatment method
WO2016136957A1 (en) Method for treating water containing organic material, and device for treating water containing organic material
JPH0651199B2 (en) Organic wastewater treatment method
JPH0768259A (en) Membrane filtering method of polluted water
KR20200087397A (en) Treatment system of waste water using oxidation preprocess
JP3565083B2 (en) Method and apparatus for treating human wastewater
JPH11347587A (en) Apparatus for treating sewage
JP2002035554A (en) Method for treating water and its apparatus
Lozier Two approaches to indirect potable reuse using membrane technology

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10