JPH04329855A - Production of zirconium alloy - Google Patents

Production of zirconium alloy

Info

Publication number
JPH04329855A
JPH04329855A JP14647391A JP14647391A JPH04329855A JP H04329855 A JPH04329855 A JP H04329855A JP 14647391 A JP14647391 A JP 14647391A JP 14647391 A JP14647391 A JP 14647391A JP H04329855 A JPH04329855 A JP H04329855A
Authority
JP
Japan
Prior art keywords
zirconium alloy
cold working
corrosion resistance
creep deformation
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14647391A
Other languages
Japanese (ja)
Inventor
Mitsuo Kanehara
原 光 男 金
Katsuhiro Abe
部 勝 洋 安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14647391A priority Critical patent/JPH04329855A/en
Publication of JPH04329855A publication Critical patent/JPH04329855A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture a zirconium alloy improved in creep deformation resistance and having high strength and high corrosion resistance by subjecting an (alpha+beta) type zirconium alloy to soln. treatment, thereafter, subjecting it to cold working at a specified draft and executing aging treatment. CONSTITUTION:An (alpha+beta) type zirconium alloy, i.e., a Zr-2.5wt.% Nb alloy is subjected to soln. treatment, is thereafter cold-worked at 1 to <5% cold draft and is then subjected to aging treatment. In this way, the zirconium alloy remarkably improved in creep deformation resistance without deteriorating its mechanical strength and corrosion resistance can be obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は型ジルコニウム合金の製
造方法に関し、さらに詳しくは、(α+β)型ジルコニ
ウム合金製圧力管および燃料被覆管等の原子炉用炉芯部
材として使用することができる溶体化処理後、時効処理
を行って使用する(α+β)型ジルコニウム合金の製造
方法に関するものである。
[Industrial Application Field] The present invention relates to a method for manufacturing a type zirconium alloy, and more specifically, a solution that can be used as a core member for a nuclear reactor such as a pressure tube or a fuel cladding tube made of an (α+β) type zirconium alloy. The present invention relates to a method for manufacturing an (α+β) type zirconium alloy that is used after being subjected to aging treatment after chemical treatment.

【0002】0002

【従来技術】一般に、(α+β)型ジルコニウム合金は
、優れた耐蝕性を有しており、かつ、中性子吸収断面積
が小さいという特性に、さらに、加工性にも優れている
こということは、従来よりよく知られているところであ
る。
[Prior Art] In general, (α+β) type zirconium alloys have excellent corrosion resistance and a small neutron absorption cross section, and are also excellent in workability. This is something that has been well known for some time.

【0003】また、(α+β)型ジルコニウム合金は、
原子炉用炉芯部材として広く使用されているα型ジルコ
ニウム合金、即ち、ジルカロイ−2およびジルカロイ−
4と比較して、機械的強度が高いことから、特に、高強
度が要求されている重水型原子炉の炉芯部材の、圧力管
材料等に使用されている。
[0003] Furthermore, the (α+β) type zirconium alloy is
α-type zirconium alloys, namely Zircaloy-2 and Zircaloy-2, are widely used as core members for nuclear reactors.
Since it has higher mechanical strength than No. 4, it is particularly used as pressure pipe material for core members of heavy water reactors, which require high strength.

【0004】このような(α+β)型ジルコニウム合金
は、基となるジルコニウムにβ安定化元素であるNbを
約2.6wt%含有させたZr−2.5wt%Nbで示
される。
Such an (α+β) type zirconium alloy is represented by Zr-2.5wt%Nb, which is a base zirconium containing about 2.6wt% of Nb, which is a β-stabilizing element.

【0005】そして、現在、Zr−2.5wt%Nb合
金製重水型原子炉用圧力管を製造する場合には、図1に
示すような工程により行われている。
[0005]Currently, when manufacturing a pressure tube for a heavy water nuclear reactor made of a Zr-2.5wt%Nb alloy, a process as shown in FIG. 1 is carried out.

【0006】図1の製造工程の内で、機械的強度を支配
するとされている工程は、溶体化処理工程の温度を高く
することにより、強度が向上することはよく知られてい
ることである。
It is well known that in the manufacturing process shown in FIG. 1, the strength is improved by increasing the temperature of the solution treatment process, which is said to control the mechanical strength. .

【0007】また、溶体化処理後の冷間加工および時効
処理は耐蝕性に影響を与える工程であり、冷間加工率を
10〜20%と大きくとり、また、時効処理温度を高く
することにより、耐蝕性が向上することもよく知られて
いる。
[0007] Furthermore, cold working and aging treatment after solution treatment are processes that affect corrosion resistance. It is also well known that corrosion resistance is improved.

【0008】上記のようにして製造されたZr−2.5
wt%Nb合金は、機械的強度が向上すると共に、ノジ
ュラー腐蝕等の局部腐蝕の発生することはないものと考
えられている。
Zr-2.5 produced as described above
It is thought that the wt% Nb alloy has improved mechanical strength and does not cause localized corrosion such as nodular corrosion.

【0009】しかし、重水型原子炉用圧力管等の高圧下
において使用される炉芯部材としての用途に対しては、
高い耐蝕性および高い機械的強度を有しているだけでは
不充分である。
However, for use as reactor core members used under high pressure such as pressure pipes for heavy water reactors,
It is not sufficient to have high corrosion resistance and high mechanical strength.

【0010】即ち、上記に説明した圧力管等の炉芯部材
は、その使用中に常に150気圧程度の内圧が負荷され
ているので、クリープ変形を起こすことがある。この変
形が原子燃料の高燃焼度化および運転期間の長期化の障
害になることから、耐クリープ変形性を向上させること
は不可欠の事とされている。
That is, since the furnace core members such as the pressure tubes described above are constantly loaded with an internal pressure of about 150 atmospheres during use, creep deformation may occur. Since this deformation becomes an obstacle to increasing the burnup of nuclear fuel and prolonging its operating period, it is considered essential to improve the creep deformation resistance.

【0011】この耐クリープ変形性を向上させることは
、機械的強度および耐蝕性を劣化させることなく、換言
すれば、高強度、高耐蝕性および高耐クリープ変形性を
兼ね備えることも必要条件である。
[0011] Improving this creep deformation resistance is a necessary condition without deteriorating mechanical strength and corrosion resistance, in other words, it is also necessary to have high strength, high corrosion resistance, and high creep deformation resistance. .

【0012】しかしながら、β安定化元素を含有する(
α+β)型Zr−2.5wt%Nb合金については、高
強度、高耐蝕性を保持し、かつ、高耐クリープ変形性を
向上させるための技術に関する文献および提案等につい
ては殆ど存在していないのが現状である。
However, the β-stabilizing element (
Regarding the α+β) type Zr-2.5wt%Nb alloy, there are almost no documents or proposals regarding techniques for maintaining high strength, high corrosion resistance, and improving high creep deformation resistance. is the current situation.

【0013】[0013]

【発明が解決しようとする課題】本発明は上記に説明し
た従来の重水型原子炉用圧力管等の炉芯部材に使用され
る(α+β)型Zr−2.5wt%Nb合金の種々の問
題点に鑑み、本発明者が鋭意研究を行い、検討を重ねた
結果、(α+β)型ジルコニウム合金の製造において、
耐蝕性、機械的強度を劣化させることなく、耐クリープ
変形性を向上させるために、溶体化処理後の冷間加工率
を厳密に制御することが重要であることを知見し、ジル
コニウム合金の製造方法を開発したのである。
[Problems to be Solved by the Invention] The present invention solves various problems of the (α+β) type Zr-2.5wt%Nb alloy used in reactor core members such as pressure pipes for conventional heavy water nuclear reactors as explained above. In view of this, the present inventor conducted intensive research and as a result of repeated consideration, in the production of (α + β) type zirconium alloy,
We discovered that it is important to strictly control the cold working rate after solution treatment in order to improve creep deformation resistance without deteriorating corrosion resistance and mechanical strength, and we started manufacturing zirconium alloys. He developed a method.

【0014】[0014]

【課題を解決するための手段】本発明に係るジルコニウ
ム合金の製造方法の特徴とするところは、(α+β)型
ジルコニウム合金に対して溶体化処理を行った後、1%
〜5%未満の冷間加工を行い、次いで、時効処理を行う
ことにある。
[Means for Solving the Problems] The feature of the method for producing a zirconium alloy according to the present invention is that after solution treatment is performed on an (α+β) type zirconium alloy, 1%
~5% cold working and then aging treatment.

【0015】本発明に係るジルコニウム合金の製造方法
について、以下詳細に説明する。
The method for producing a zirconium alloy according to the present invention will be explained in detail below.

【0016】(α+β)型ジルコニウム合金、即ち、Z
r−2.5wt%Nb合金は図1に示すように、溶体化
処理後、時効処理を行う前に、冷間加工が行われる。こ
の冷間加工は、溶体化処理により過飽和に固溶している
β安定元素であるNbの時効処理による析出を促進する
効果のあることはよく知られている。このような析出が
起こるとマトリックスの歪が小さくなり、これが耐蝕性
を向上させるのである。
(α+β) type zirconium alloy, that is, Z
As shown in FIG. 1, the r-2.5 wt% Nb alloy is subjected to cold working after solution treatment and before aging treatment. It is well known that this cold working has the effect of accelerating the precipitation of Nb, which is a β-stable element, which has been dissolved in supersaturated solid solution during the solution treatment due to the aging treatment. When such precipitation occurs, the strain in the matrix is reduced, which improves corrosion resistance.

【0017】図2に冷間加工と耐蝕性との関係について
示してあり、この図2から1%の冷間加工を行うことに
より耐蝕性が向上し、20%までは変化のないことがわ
かる。  この図2は、400℃、105kgf/cm
2の水蒸気中で72時間の腐蝕試験を行い、腐蝕増量(
mg/dm2)を評価したものである。
[0017] Figure 2 shows the relationship between cold working and corrosion resistance, and it can be seen from Figure 2 that the corrosion resistance improves with 1% cold working and remains unchanged up to 20%. . This figure 2 shows the temperature at 400℃ and 105kgf/cm.
A corrosion test was conducted for 72 hours in water vapor of No. 2, and the corrosion increase (
mg/dm2).

【0018】これは、従来の冷間加工率によって耐蝕性
のあまり変化しないジルカロイ−2およびジルカロイ−
4等のα型ジルコニウム合金とは、全く相違している(
α+β)型ジルコニウム合金特有の挙動であり、即ち、
従来の(α+β)ジルコニウム合金においては、冷間加
工率が大となる程、耐蝕性が向上するため冷間加工率を
10〜20%と高く設定しているものである。
This is because the corrosion resistance of Zircaloy-2 and Zircaloy-2 does not change much depending on the conventional cold working rate.
It is completely different from α-type zirconium alloys such as No. 4 (
This is a behavior peculiar to α+β) type zirconium alloys, that is,
In conventional (α+β) zirconium alloys, the cold working rate is set as high as 10 to 20% because the corrosion resistance improves as the cold working rate increases.

【0019】しかして、本発明に係るジルコニウム合金
の製造方法において、冷間加工率を1〜5%未満に限定
するものであり、冷間加工率が1%未満では時効処理を
行ってもNbの析出が起こらず優れた耐蝕性を期待する
ことができず、また、冷間加工率を1%以上とすること
により、Nbの析出が促進されて耐蝕性が向上する。従
って、冷間加工率は1%以上で充分に耐蝕性を向上させ
ることができる。
However, in the method for producing a zirconium alloy according to the present invention, the cold working rate is limited to less than 1% to less than 5%, and if the cold working rate is less than 1%, Nb will not be produced even after aging treatment. Since precipitation of Nb does not occur, excellent corrosion resistance cannot be expected, and by setting the cold working rate to 1% or more, precipitation of Nb is promoted and corrosion resistance is improved. Therefore, the corrosion resistance can be sufficiently improved with a cold working ratio of 1% or more.

【0020】また、冷間加工率を5%未満とすることに
ついて説明すると、図3に示すように、冷間加工率とク
リープ変形との関係から設定される。即ち、図3よりク
リープ変形は冷間加工率が5%を越えると急激に増加す
る。これは、冷間加工率が5%を越えると蓄積された歪
のために回復が起こり、クリープ変形が促進されること
による。図3は、30kgf/mm2の応力を負荷して
、350℃の温度に加熱し、1200時間経過後のクリ
ープ変形量(%/1200時間)を評価したものである
Further, to explain why the cold working rate is less than 5%, it is set based on the relationship between the cold working rate and creep deformation, as shown in FIG. That is, from FIG. 3, creep deformation increases rapidly when the cold working rate exceeds 5%. This is because when the cold working rate exceeds 5%, recovery occurs due to accumulated strain and creep deformation is promoted. FIG. 3 shows the evaluation of the amount of creep deformation (%/1200 hours) after 1200 hours of applying a stress of 30 kgf/mm2 and heating to a temperature of 350°C.

【0021】従って、従来の(α+β)型ジルコニウム
合金としてのZr−2.5wt%Nb合金は、機械的強
度および耐蝕性を劣化させることなく耐クリープ変形性
を向上させるためには、冷間加工率を制御することが重
要であり、冷間加工率は1〜5%未満とする。
Therefore, the Zr-2.5wt%Nb alloy, which is a conventional (α+β) type zirconium alloy, has to be cold-worked in order to improve its creep deformation resistance without deteriorating its mechanical strength and corrosion resistance. It is important to control the cold work rate and the cold work rate should be less than 1-5%.

【0022】次に、重要な特性である強度について説明
すると、冷間加工率によって強度が変化することはなく
、即ち、図4に示すように、冷間加工率と機械的強度(
引張強度)の関係からわかるように、冷間加工率が1〜
20%までは機械的強度に変化はない。このことは、こ
の冷間加工率の範囲内においては、時効処理により析出
したNb析出物の引張強度への寄与が同じであることに
よる。図4は、JISの引張試験条件に基づき引張強度
を評価したものである。
Next, to explain strength, which is an important characteristic, strength does not change depending on the cold working rate. In other words, as shown in FIG. 4, the cold working rate and the mechanical strength (
As can be seen from the relationship between tensile strength and
There is no change in mechanical strength up to 20%. This is because within this range of cold working rates, the contribution of Nb precipitates precipitated by aging treatment to the tensile strength is the same. FIG. 4 shows the evaluation of tensile strength based on JIS tensile test conditions.

【0023】[0023]

【実  施  例】本発明に係るジルコニウム合金の製
造方法について、実施例を説明する。
[Example] Examples of the method for producing a zirconium alloy according to the present invention will be described.

【0024】[0024]

【実 施 例 1】(α+β)型Zr−2.5wt%N
b合金を、通常の溶製法により溶解、鋳造後、10mm
厚×150mm幅×200mm長さの板材に加工を行っ
た。
[Example 1] (α+β) type Zr-2.5wt%N
After melting and casting b alloy by normal melting method, 10mm
A plate material of thickness x 150 mm width x 200 mm length was processed.

【0025】この板材に対して、870℃の温度に30
分保持後水冷する溶体化処理を行い、さらに、この板材
に最大20%の冷間加工を行った後、500℃の温度に
24時間保持後炉冷する時効処理を行った。
[0025] This plate material was heated to a temperature of 870°C for 30 minutes.
After holding the plate for 24 hours and cooling it in a solution heat treatment, the plate material was subjected to cold working of up to 20%, and then subjected to an aging treatment in which it was held at a temperature of 500° C. for 24 hours and then cooled in a furnace.

【0026】このような処理を行った板材から試験片を
採取して、下記に説明する試験を行った。 (1)24時間腐蝕試験。 (2)引張試験。 (3)350℃×30jgf/mm2×1200時間の
クリープ試験。 そして、耐蝕性、引張強度およびクリープ変形量を調査
した。 耐蝕性の評価 レベル1は腐蝕増量が35mg/dm2未満,レベル2
は腐蝕増量が35mg/dm2以上,クリープ変形量の
評価 レベル1はクリープ変形量が1%未満,レベル2はクリ
ープ変形量が1〜2%,レベル3はクリープ変形量が2
%以上,表1にこれらの試験結果を示してあるが、本発
明に係るジルコニウム合金の製造方法により製造された
ジルコニウム合金は、比較例に比して耐蝕性は殆ど変わ
らないが、しかし、クリープ変形量のレベルは1であり
、比較例のG〜Kのレベル2および3よりも優れている
ことがわかる。
[0026] A test piece was taken from the plate material subjected to such treatment, and the test described below was conducted. (1) 24 hour corrosion test. (2) Tensile test. (3) Creep test at 350°C x 30jgf/mm2 x 1200 hours. Then, the corrosion resistance, tensile strength, and amount of creep deformation were investigated. Corrosion resistance evaluation level 1 is corrosion increase less than 35mg/dm2, level 2
The corrosion increase is 35mg/dm2 or more, creep deformation evaluation level 1 is less than 1% creep deformation, level 2 is creep deformation 1 to 2%, and level 3 is creep deformation 2%.
% or more, these test results are shown in Table 1. The zirconium alloy manufactured by the zirconium alloy manufacturing method according to the present invention has almost no difference in corrosion resistance compared to the comparative example, but has a creep resistance. It can be seen that the deformation amount level is 1, which is superior to levels 2 and 3 of G to K of the comparative examples.

【0027】[0027]

【表1】[Table 1]

【0028】[0028]

【実 施 例 2】実施例1と同様な方法により、(α
+β)型Zr−2.5wt%Nb合金丸棒を素材として
、外径150mmの押出ビレットを作製し、加熱温度を
850℃に制御して押出を行った。
[Example 2] Using a method similar to Example 1, (α
An extrusion billet with an outer diameter of 150 mm was prepared using a +β) type Zr-2.5wt% Nb alloy round bar as a raw material, and extrusion was performed while controlling the heating temperature to 850°C.

【0029】さらに、加工率10%の冷間加工を行った
後、870℃の温度に加熱し、直ちに水冷を行った。
[0029] Furthermore, after performing cold working at a processing rate of 10%, it was heated to a temperature of 870°C and immediately cooled with water.

【0030】その後、冷間加工率0%、1.0%、2.
3%、3.5%、4.9%、6%、11.8%、15.
2%で8種類の管を作製した。これらの管を500℃×
24時間の時効処理を行い、耐蝕性および耐クリープ変
形性を評価した。評価方法は実施例1の場合と同じであ
る。
[0030] After that, the cold working rate is 0%, 1.0%, 2.
3%, 3.5%, 4.9%, 6%, 11.8%, 15.
Eight types of tubes were made at 2%. These tubes were heated to 500℃
Aging treatment was performed for 24 hours, and corrosion resistance and creep deformation resistance were evaluated. The evaluation method was the same as in Example 1.

【0031】表2に製造工程を示す。また、表3に耐蝕
性、耐クリープ変形性および引張強度を示してある。こ
の表3から、本発明に係るジルコニウム合金の製造方法
により製造されたジルコニウム合金は、比較例に比して
耐蝕性、耐クリープ変形性に優れており、また、引張強
度も比較例と同等程度である。
Table 2 shows the manufacturing process. Furthermore, Table 3 shows the corrosion resistance, creep deformation resistance, and tensile strength. From Table 3, the zirconium alloy manufactured by the method for manufacturing a zirconium alloy according to the present invention has superior corrosion resistance and creep deformation resistance compared to the comparative example, and also has a tensile strength comparable to that of the comparative example. It is.

【0032】[0032]

【表2】[Table 2]

【0033】[0033]

【表3】[Table 3]

【0034】[0034]

【発明の効果】以上説明したように、本発明に係るジル
コニウム合金の製造方法は上記の構成を有しているもの
であるから、ジルコニウム合金の(α+β)型Zr−2
.5wt%Nb合金において、溶体化処理後における冷
間加工率を厳密に制御することによって、機械的強度お
よび耐蝕性を劣化させることなく、耐クリープ変形性を
著しく向上させることができるジルコニウム合金が製造
できるという効果を有しているものである。
Effects of the Invention As explained above, since the method for producing a zirconium alloy according to the present invention has the above-mentioned structure, the (α+β) type Zr-2 of the zirconium alloy
.. In a 5wt% Nb alloy, by strictly controlling the cold working rate after solution treatment, a zirconium alloy has been produced that can significantly improve creep deformation resistance without deteriorating mechanical strength and corrosion resistance. This has the effect that it can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】Zr−2.5wt%Nb合金の製造工程を示す
図である。
FIG. 1 is a diagram showing the manufacturing process of Zr-2.5wt%Nb alloy.

【図2】冷間加工率と耐蝕性との関係を示す図である。FIG. 2 is a diagram showing the relationship between cold working rate and corrosion resistance.

【図3】冷間加工率とクリープ変形の関係を示す図であ
る。
FIG. 3 is a diagram showing the relationship between cold working rate and creep deformation.

【図4】冷間加工率と引張強度の関係を示す図である。FIG. 4 is a diagram showing the relationship between cold working rate and tensile strength.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  (α+β)型ジルコニウム合金に対し
て溶体化処理を行った後、1%〜5%未満の冷間加工を
行い、次いで、時効処理を行うことを特徴とするジルコ
ニウム合金の製造方法。
[Claim 1] Production of a zirconium alloy characterized by subjecting an (α+β) type zirconium alloy to solution treatment, followed by cold working of 1% to less than 5%, and then aging treatment. Method.
JP14647391A 1991-04-30 1991-04-30 Production of zirconium alloy Withdrawn JPH04329855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14647391A JPH04329855A (en) 1991-04-30 1991-04-30 Production of zirconium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14647391A JPH04329855A (en) 1991-04-30 1991-04-30 Production of zirconium alloy

Publications (1)

Publication Number Publication Date
JPH04329855A true JPH04329855A (en) 1992-11-18

Family

ID=15408438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14647391A Withdrawn JPH04329855A (en) 1991-04-30 1991-04-30 Production of zirconium alloy

Country Status (1)

Country Link
JP (1) JPH04329855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100737700B1 (en) * 2004-10-28 2007-07-10 한국원자력연구원 Tubes of Zr based alloys and their Manufacturing Method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100737700B1 (en) * 2004-10-28 2007-07-10 한국원자력연구원 Tubes of Zr based alloys and their Manufacturing Method

Similar Documents

Publication Publication Date Title
JP3512402B2 (en) Method for producing niobium-containing zirconium alloy nuclear fuel cladding with excellent corrosion resistance
KR100441979B1 (en) Tube for a nuclear fuel assembly and method for making same
EP1111623B1 (en) Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
KR100364093B1 (en) A method of manufacturing a tube for a nuclear fuel assembly, and tubes obtained thereby
US6811746B2 (en) Zirconium alloy having excellent corrosion resistance and mechanical properties for nuclear fuel cladding tube
JPH0197897A (en) Zirconium base alloy pipe for covering reactor fuel element cover and making thereof
KR930009987B1 (en) Method of manufacturing tubes of zirconium alloys with improved corrosion resistance for thermal nuclear reactors
US5854818A (en) Zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
EP0261880B1 (en) Nickel-base alloy heat treatment
US5835550A (en) Method of manufacturing zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
JP2001262260A (en) Improved zirconium-niobium-tin alloy for nuclear reactor
CN1134466A (en) Zirconium-based alloy tube for nuclear reactor fuel assembly and process for producing such tube
JPS6151626B2 (en)
JPH03209191A (en) Manufacture of clad tube for nuclear fuel rods
JPH04329855A (en) Production of zirconium alloy
JPS5822365A (en) Preparation of zirconium base alloy
JPS59226158A (en) Manufacture of fuel structural member with high corrosion resistance
JP3483804B2 (en) Manufacturing method of corrosion resistant zirconium based alloy tube
JPS5822366A (en) Preparation of zirconium base alloy
JPH0421746B2 (en)
JPS6026650A (en) Fuel cladding pipe for nuclear reactor
JPH07173587A (en) Production of zirconium alloy welded member
JP2001262259A (en) Highly corrosion resistant zirconium alloy, structural material for nuclear reactor core and its producing method
JP2830420B2 (en) Manufacturing method of zirconium alloy cladding tube excellent in stress corrosion cracking resistance
JPH059688A (en) Manufacture of zr alloy rolled stock excellent in workability

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711