JPH0432969B2 - - Google Patents

Info

Publication number
JPH0432969B2
JPH0432969B2 JP58110198A JP11019883A JPH0432969B2 JP H0432969 B2 JPH0432969 B2 JP H0432969B2 JP 58110198 A JP58110198 A JP 58110198A JP 11019883 A JP11019883 A JP 11019883A JP H0432969 B2 JPH0432969 B2 JP H0432969B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
magnetic sensor
magnetoresistive elements
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58110198A
Other languages
Japanese (ja)
Other versions
JPS603515A (en
Inventor
Shigekazu Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Precision Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP58110198A priority Critical patent/JPS603515A/en
Publication of JPS603515A publication Critical patent/JPS603515A/en
Publication of JPH0432969B2 publication Critical patent/JPH0432969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 本発明はロータリーエンコーダ、リニアエンコ
ーダとして用いることができる磁気検出装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic detection device that can be used as a rotary encoder or a linear encoder.

例えば回転軸に取付けた磁気記録媒体を有する
円板または円筒に等間隔のビツト長を有する磁化
パターンの形態で記録されている磁気信号を強磁
性磁気抵抗効果素子(以下MR素子と略称する)
を具える磁気センサで読み取ることにより、回転
軸の回転角を検出する所謂ロータリーエンコーダ
は既知である。しかし、従来のロータリーエンコ
ーダにおいてモータの出力軸に磁気記録媒体を有
する円板または円筒を取付け、これを磁気センサ
で読取つて出力軸の回転角を検出する場合には、
モータの励磁用永久磁石や電機子から相当大きな
磁界が外部に漏洩しているため、この外部磁界の
影響で磁気センサの検出出力のS/Nが悪くな
り、誤動作することがあつた。このような不具合
を解決するため、例えば特開昭54−162556号公報
において、モータの出力軸に取付けられた磁気記
録媒体を有する円板と、これと対向して配置した
磁気センサおよび該磁気センサの駆動回路、信号
処理回路とを高透磁率磁性体で囲むことにより磁
気シールドするようにした角度検出器が提案され
た。しかし、このように角度検出器をモータから
の漏洩磁界から完全に磁気シールドすることは極
めて困難である等の不具合がある。また、外部磁
界の影響を除去するため、別の磁気センサで外部
磁界のみを検出し、この検出信号と磁気記録媒体
を検出する磁気センサの出力信号とを電気的に演
算することにより外部磁界の影響を補償すること
も考えられるが、この場合には、磁気センサを構
成するMR素子の磁気−抵抗特性が完全な比例関
係ではないので、動作点がずれると出力信号が変
形し、高精度の検出ができない不具合がある。
For example, a magnetic signal recorded in the form of a magnetization pattern with equally spaced bit lengths on a disk or cylinder having a magnetic recording medium attached to a rotating shaft is transferred to a ferromagnetic magnetoresistive element (hereinafter abbreviated as MR element).
A so-called rotary encoder is known that detects the rotation angle of a rotating shaft by reading it with a magnetic sensor having a rotary shaft. However, in a conventional rotary encoder, when a disk or cylinder having a magnetic recording medium is attached to the output shaft of the motor and the rotation angle of the output shaft is detected by reading this with a magnetic sensor,
Since a considerably large magnetic field leaks to the outside from the excitation permanent magnet and armature of the motor, the S/N ratio of the detection output of the magnetic sensor deteriorates due to the influence of this external magnetic field, resulting in malfunction. In order to solve such problems, for example, Japanese Patent Laid-Open No. 54-162556 discloses a disk having a magnetic recording medium attached to the output shaft of a motor, a magnetic sensor placed opposite the disk, and the magnetic sensor. An angle detector has been proposed in which the drive circuit and signal processing circuit are magnetically shielded by surrounding them with a high permeability magnetic material. However, there are drawbacks such as the fact that it is extremely difficult to completely magnetically shield the angle detector from the leakage magnetic field from the motor. In addition, in order to eliminate the influence of the external magnetic field, another magnetic sensor detects only the external magnetic field, and this detection signal and the output signal of the magnetic sensor that detects the magnetic recording medium are electrically calculated. It may be possible to compensate for the effects, but in this case, the magneto-resistance characteristics of the MR elements that make up the magnetic sensor are not perfectly proportional, so if the operating point shifts, the output signal will be distorted, making it difficult to achieve high precision. There is a problem that cannot be detected.

さらに、本発明者は特願昭57−36644号におい
て、2個の磁気センサを設け、ノイズ磁界を一方
の磁気センサで検出し、この検出出力によりノイ
ズ磁界を相殺する磁界を他方の磁気センサで発生
させて信号磁界だけを検出し得るようにした磁気
検出器を提案しているが、ノイズ磁界だけを検出
することができないような場合には適用すること
ができない。
Furthermore, in Japanese Patent Application No. 57-36644, the present inventor provided two magnetic sensors, detected a noise magnetic field with one magnetic sensor, and used the detection output to generate a magnetic field that canceled out the noise magnetic field with the other magnetic sensor. Although a magnetic detector has been proposed that can detect only a signal magnetic field by generating it, it cannot be applied to cases where only a noise magnetic field cannot be detected.

例えばダイレクトドライブモータの駆動制御を
行なうと共に回転角制御を行なうために磁気検出
器を用いることが考えられるが、この場合には、
駆動制御を行なうために回転子磁界を検出すると
共に回転角制御を行なうために回転子外周に設け
た磁化パターンを検出する必要がある。この場
合、回転子磁界と磁化パターンによる磁界とは重
畳して磁気検出器に印加されるため、従来の磁気
検出器では正確な駆動制御や回転角制御を行なう
ことができない。
For example, it is possible to use a magnetic detector to control the drive and rotation angle of a direct drive motor, but in this case,
In order to perform drive control, it is necessary to detect the rotor magnetic field, and to perform rotation angle control, it is necessary to detect a magnetization pattern provided on the outer periphery of the rotor. In this case, since the rotor magnetic field and the magnetic field due to the magnetization pattern are applied to the magnetic detector in a superimposed manner, the conventional magnetic detector cannot perform accurate drive control or rotation angle control.

さらに磁気抵抗素子を用いた磁気センサは非常
に高い感度を有しているが、比較的小さい磁界で
飽和するので、例えばノイズ磁界が大きい場合に
は飽和してしまい検出出力を得ることができなく
なる。
Furthermore, although magnetic sensors using magnetoresistive elements have extremely high sensitivity, they become saturated with a relatively small magnetic field, so if a noise magnetic field is large, for example, they will become saturated and no detection output can be obtained. .

一方、磁気抵抗素子を具える磁気センサとし
て、絶縁膜を挟んで二層の磁気抵抗素子を上下に
設け、相互に磁気的バイアスを与えるようにした
ものが特公昭53−37204号公報および同53−37205
号公報などに記載されており、公知である。例え
ば特公昭53−37204号公報に記載された磁気セン
サでは磁気抵抗素子を上下に二層積層し、一方の
磁気抵抗素子に流れる駆動電流により発生する磁
界により他方の磁気抵抗素子にバイアス磁界を印
加するものであり、これを以後、一次バイアス方
式と云う。また、特公昭53−37205号公報に記載
された磁気センサは、一方の磁気抵抗素子を流れ
る駆動電流により発生する磁界により他方の磁気
抵抗素子に加えられ、この他方の磁気抵抗素子に
おける磁化の一成分が逆磁界を生じ、この逆磁界
が一方の磁気抵抗素子にバイアス磁界として印加
されるものであり、これを以後二次バイアス方式
と云う。
On the other hand, as a magnetic sensor equipped with a magnetoresistive element, two layers of magnetoresistive elements are provided above and below with an insulating film in between, and magnetic bias is applied to each other. −37205
It is described in the No. 3 publication, etc., and is publicly known. For example, in the magnetic sensor described in Japanese Patent Publication No. 53-37204, two layers of magnetoresistive elements are stacked one above the other, and the magnetic field generated by the drive current flowing through one magnetoresistive element applies a bias magnetic field to the other magnetoresistive element. Hereinafter, this will be referred to as the primary bias method. In addition, in the magnetic sensor described in Japanese Patent Publication No. 53-37205, a magnetic field generated by a drive current flowing through one magnetoresistive element is applied to the other magnetoresistive element, and the magnetization in the other magnetoresistive element is changed. The component produces a reverse magnetic field, and this reverse magnetic field is applied to one of the magnetoresistive elements as a bias magnetic field, and this is hereinafter referred to as a secondary bias method.

第1図は上述した特公昭53−37204号公報に記
載された磁気検出器の回路図である。絶縁膜を介
して上下に積層された第1および第2の磁気抵抗
素子MR1およびMR2を定電流源Sと大地電位
との間に並列に接続し、定電流源Sと磁気抵抗素
子MR1およびMR2との接続点に現われる電圧
V1およびV2の差を差動増幅器DAで求めるように
したものである。
FIG. 1 is a circuit diagram of the magnetic detector described in the above-mentioned Japanese Patent Publication No. 53-37204. First and second magnetoresistive elements MR1 and MR2 stacked one above the other with an insulating film in between are connected in parallel between a constant current source S and the ground potential, and the constant current source S and magnetoresistive elements MR1 and MR2 voltage appearing at the connection point with
The difference between V 1 and V 2 is determined using a differential amplifier DA.

このような相互磁気バイアス形の磁気検出器
は、例えば絶縁基板上に第1の磁気抵抗膜、絶縁
膜および第2の磁気抵抗膜を順次に被着して構成
されているが、安定した検出出力を得るために
は、第1および第2の磁気抵抗膜が同一の磁気特
性を有することが必要となる。このような磁気検
出器を製造する方法としては、基板上に第1磁気
抵抗膜および電極膜を蒸着し、フオトエツチング
等によりパターニングした後、絶縁膜を蒸着し、
さらにその上に第2磁気抵抗膜および電極膜を蒸
着してパターニングする方法が一般的に考えられ
る。しかしながら、このような製造方法では、第
1および第2の磁気抵抗素子は異なる磁気抵抗膜
から形成されるので、膜厚、比抵抗、抵抗温度係
数等が同一となりにくく、磁気特性が揃わなくな
る欠点がある。また第1および第2の磁気抵抗素
子は別々の工程でパターニングして形成されるた
め、寸法精度が悪く、同一の寸法とならず、この
ために磁気特性に差異が現われる欠点もある。し
たがつて、無磁界における出力電圧である不平衡
電圧が発生し、それが温度によつてドリフトする
ため、正確な磁気検出を行うことができない欠点
がある。
Such a mutual magnetic bias type magnetic detector is constructed, for example, by sequentially depositing a first magnetoresistive film, an insulating film, and a second magnetoresistive film on an insulating substrate. In order to obtain an output, it is necessary that the first and second magnetoresistive films have the same magnetic properties. A method for manufacturing such a magnetic detector includes depositing a first magnetoresistive film and an electrode film on a substrate, patterning them by photo-etching, etc., and then depositing an insulating film.
A generally considered method is to further deposit and pattern a second magnetoresistive film and an electrode film thereon. However, in such a manufacturing method, since the first and second magnetoresistive elements are formed from different magnetoresistive films, it is difficult for them to have the same film thickness, specific resistance, temperature coefficient of resistance, etc., and the disadvantage is that the magnetic properties are not uniform. There is. Furthermore, since the first and second magnetoresistive elements are formed by patterning in separate steps, their dimensional accuracy is poor and they do not have the same dimensions, resulting in a disadvantage that differences appear in their magnetic properties. Therefore, an unbalanced voltage, which is an output voltage in the absence of a magnetic field, is generated and this drifts depending on the temperature, so there is a drawback that accurate magnetic detection cannot be performed.

本発明の目的は重畳された二つの磁界を相互に
影響されることなく正確に検出することができ、
特にノイズ磁界が重畳された信号磁界をノイズ磁
界に影響されることなく検出することができ、
S/Nの高い出力信号を得ることができる磁気検
出器を提供しようとするものである。
The purpose of the present invention is to be able to accurately detect two superimposed magnetic fields without being influenced by each other,
In particular, it is possible to detect a signal magnetic field on which a noise magnetic field is superimposed without being affected by the noise magnetic field.
The present invention aims to provide a magnetic detector that can obtain an output signal with a high S/N ratio.

本発明の他の目的は、ダイナミツクレンジが大
きく入力磁界が印加されても飽和せずに正確な検
出を行なうことができるようにした磁気検出器を
提供しようとするものである。
Another object of the present invention is to provide a magnetic detector which has a large dynamic range and can perform accurate detection without saturation even when an input magnetic field is applied.

本発明のさらに他の目的は、抵抗温度係数、膜
厚、形状係数などの変動による不平衡電圧の発生
を抑止し、一層正確な検出を行なうことができる
磁気検出器を提供しようとするものである。
Still another object of the present invention is to provide a magnetic detector that can suppress the occurrence of unbalanced voltage due to variations in resistance temperature coefficient, film thickness, shape factor, etc., and can perform more accurate detection. be.

本発明の磁気検出器は、それぞれ絶縁膜を挟ん
で積層した少なく共2層の磁気抵抗素子を具え、
これら磁気抵抗素子を互いに反対方向に磁気バイ
アスした少なく共2組の磁気センサを、第1の磁
界を生ずる磁化パターンに対してほぼ180°の位相
差を有するように配置し、一方の磁気センサから
得られる信号を、他方の磁気センサに設けた磁界
発生手段に供給して互いに重畳する第1および第
2の磁界のいずれか一方または双方を選択的に検
出し得るように構成したことを特徴とするもので
ある。
The magnetic detector of the present invention includes at least two layers of magnetoresistive elements each stacked with an insulating film in between,
At least two sets of magnetic sensors in which these magnetoresistive elements are magnetically biased in opposite directions are arranged so as to have a phase difference of approximately 180° with respect to the magnetization pattern that generates the first magnetic field. The magnetic sensor is characterized in that the obtained signal is supplied to a magnetic field generating means provided in the other magnetic sensor to selectively detect one or both of the first and second magnetic fields superimposed on each other. It is something to do.

本発明の好適な実施例においては、双方の磁気
センサに磁界発生手段を設け、一方の磁気センサ
の出力を、この一方の磁気センサに設けた磁界発
生手段にも供給するようにして、ダイナミツクレ
ンジを等価的に拡大するようにする。
In a preferred embodiment of the present invention, both magnetic sensors are provided with magnetic field generating means, and the output of one magnetic sensor is also supplied to the magnetic field generating means provided on the other magnetic sensor. Try to expand the range equivalently.

本発明の磁気検出器に用いる磁界発生手段は、
磁気抵抗素子上に絶縁層を介して積層した導電層
を以つてきわめて簡単に構成することができる。
The magnetic field generating means used in the magnetic detector of the present invention is
It can be constructed extremely simply by using a conductive layer laminated on the magnetoresistive element with an insulating layer interposed therebetween.

以下、図面を参照して本発明を詳細に説明す
る。
Hereinafter, the present invention will be explained in detail with reference to the drawings.

第2図は本発明の磁気検出器に用いる磁気セン
サの一例の構成を示す線図的斜視図であり、図面
を明瞭とするために上側の絶縁層および磁界を発
生するための導電層は省いてある。本例では4個
の磁気抵抗素子Ra1,Ra2,Rb1,Rb2を具えるも
のであり、素子Ra1とRb1およびRa2とRb2とはそ
れぞれ同じ磁気抵抗膜をパターンニングして形成
されており、素子Ra1とRa2およびRb1とRb2とは
絶縁層INSを介して上下に積層されている。これ
らの素子は絶縁基板S上に並べて形成されてい
る。
FIG. 2 is a diagrammatic perspective view showing the configuration of an example of a magnetic sensor used in the magnetic detector of the present invention, and the upper insulating layer and the conductive layer for generating the magnetic field are omitted for clarity. There is. In this example, four magnetoresistive elements Ra 1 , Ra 2 , Rb 1 , and Rb 2 are provided, and the elements Ra 1 and Rb 1 and Ra 2 and Rb 2 are formed by patterning the same magnetoresistive film, respectively. Elements Ra 1 and Ra 2 and Rb 1 and Rb 2 are stacked one above the other with an insulating layer INS in between. These elements are formed side by side on an insulating substrate S.

磁気抵抗素子には第3図に示すように、絶縁層
にあけたスルーホールを介して導体が接続されて
いる。すなわち、基板S上の磁気抵抗素子Ra2
は絶縁層INS1およびINS2および磁気抵抗素子
Ra1にあけたスルーホールを介して導体C1を接続
し、磁気抵抗素子Ra1には絶縁層INS2にあけたス
ルーホールを介して導体C2を接続する構造とな
つている。さらに絶縁層INS2の上には後述する
磁界発生手段として作用する導電膜Laが被着さ
れている。
As shown in FIG. 3, a conductor is connected to the magnetoresistive element via a through hole formed in an insulating layer. That is, the magnetoresistive element Ra 2 on the substrate S has insulating layers INS 1 and INS 2 and the magnetoresistive element Ra 2 on the substrate S.
The conductor C 1 is connected to the magnetoresistive element Ra 1 through a through hole formed in the insulating layer INS 2, and the conductor C 2 is connected to the magnetoresistive element Ra 1 through a through hole formed in the insulating layer INS 2 . Further, on the insulating layer INS2 , a conductive film La is deposited which acts as a magnetic field generating means, which will be described later.

上述した磁気抵抗素子Ra1,Ra2,Rb1および
Rb2は第4図に示すように接続する。すなわち、
磁気抵抗素子Ra1およびRb1の一端を電源Eの正
端子に共通に接続し、素子Ra1の他端を素子Ra2
の一端に接続し、素子Rb1の他端を素子Rb2の一
端に接続し、素子Ra2およびRb2の他端を電源E
の負端子に共通に接続する。したがつて磁気抵抗
素子Ra1,Ra2,Rb1,Rb2には第4図に矢印で示
す方向に電流が流れ、その結果としてこれらの素
子は磁気的に相互にバイアスされる。本例では二
次バイアス効果が大きいため、各素子は第4図に
示すように磁気バイアスされる。すなわち、素子
Ra1およびRb1は紙面の下から上へ向う磁気バイ
アス+Hbが印加され、素子Ra2およびRb2には紙
面の上から下に向う磁気バイアス−Hbが印加さ
れることになる。
The magnetoresistive elements Ra 1 , Ra 2 , Rb 1 and
Rb 2 is connected as shown in FIG. That is,
One ends of magnetoresistive elements Ra 1 and Rb 1 are commonly connected to the positive terminal of power supply E, and the other end of element Ra 1 is connected to element Ra 2.
The other end of element Rb 1 is connected to one end of element Rb 2 , and the other ends of elements Ra 2 and Rb 2 are connected to the power supply E.
Commonly connected to the negative terminal of Current therefore flows through the magnetoresistive elements Ra 1 , Ra 2 , Rb 1 , Rb 2 in the direction indicated by the arrows in FIG. 4, with the result that these elements are magnetically biased toward each other. In this example, since the secondary bias effect is large, each element is magnetically biased as shown in FIG. In other words, the element
A magnetic bias +Hb directed upward from the bottom of the page is applied to Ra 1 and Rb 1 , and a magnetic bias -Hb directed downward from the top of the page is applied to the elements Ra 2 and Rb 2 .

このような磁気バイアスのため、磁気抵抗素子
Ra1,Rb1およびRa2,Rb2の動作特性は第5図A
に示すように対称的なものとなる。すなわち、曲
線Aは素子Ra1,Rb1の動作特性を示し、Iで示
す入力磁界が与えられると、曲線RAで示したよ
うな抵抗変化が得られ、曲線Bは素子Ra2,Rb2
の動作特性を示し、入力磁界1に対して抵抗値は
曲線RBで示すように変化することになる。した
がつて第4図の端子Ta,Tbに現われる電圧VT
第5図に示すようになる。磁気抵抗素子は感度は
高いが、入力磁界に比例した出力電圧が得られる
磁界の範囲、すなわちリニアに動作する範囲+
HL〜−HLは比較的狭くなつており、入力磁界が
±HLを越えると出力は最早やリニアとはならず
正確な検出を行なうことができなくなる。
Because of this magnetic bias, magnetoresistive elements
The operating characteristics of Ra 1 , Rb 1 and Ra 2 , Rb 2 are shown in Figure 5A.
It becomes symmetrical as shown in . That is, curve A shows the operating characteristics of elements Ra 1 and Rb 1 , and when an input magnetic field indicated by I is applied, a resistance change as shown by curve R A is obtained, and curve B shows the operating characteristics of elements Ra 2 and Rb 2.
The resistance value changes as shown by the curve R B for an input magnetic field of 1. Therefore, the voltage V T appearing at terminals Ta and Tb in FIG. 4 becomes as shown in FIG. 5. Magnetoresistive elements have high sensitivity, but the magnetic field range in which an output voltage proportional to the input magnetic field can be obtained, that is, the range in which they operate linearly +
H L to −H L are relatively narrow, and when the input magnetic field exceeds ±H L , the output is no longer linear and accurate detection cannot be performed.

本発明においては、上述したように構成した各
磁気センサに第6図に示すように磁界発生手段と
して作用する導電膜LaおよびLbを絶縁層を介し
て積層してある。一方の磁気センサの素子Ra1
Ra2との接続点はTaを大きな利得を有する差動
増幅器DEFaの負側入力端子に接続し、正側入力
端子には基準電源Eaを接続する。この差動増幅
器DEFaの出力端子を導電層Laの一端に接続し、
この導電層の他端は導電層Lbの一端に接続し、
この導電層の他端は接地する。他方の磁気センサ
の素子Rb1とRb2との接続点Tbを差動増幅器
DEFbの頁側入力端子に接続し、正側入力端子に
は基準電源Ebを接続する。基準電源EaおよびEb
の電圧値は、磁気センサUaおよびUbに磁界が作
用しないときに差動増幅器DEFaおよびDEFbの
出力電圧が零となるように選択する。
In the present invention, as shown in FIG. 6, conductive films La and Lb functioning as magnetic field generating means are laminated with an insulating layer interposed in each magnetic sensor constructed as described above. Element Ra 1 of one magnetic sensor and
At the connection point with Ra 2 , Ta is connected to the negative input terminal of a differential amplifier DEFa having a large gain, and the reference power supply Ea is connected to the positive input terminal. Connect the output terminal of this differential amplifier DEFa to one end of the conductive layer La,
The other end of this conductive layer is connected to one end of conductive layer Lb,
The other end of this conductive layer is grounded. The connection point Tb between elements Rb 1 and Rb 2 of the other magnetic sensor is connected to a differential amplifier.
Connect to the page side input terminal of DEFb, and connect the reference power supply Eb to the positive side input terminal. Reference power supply Ea and Eb
The voltage value of is selected such that the output voltages of the differential amplifiers DEFa and DEFb are zero when no magnetic field acts on the magnetic sensors Ua and Ub.

本発明においては、上述したように構成した磁
気センサUaおよびUbの基板Sを第7図に示すよ
うに磁化パターンを記録した記録媒体Mの変位方
向Dと直交する方向に対して角度θだけ傾斜させ
る。この傾斜角度θは2組の磁気抵抗素子Ra1
Ra2およびRb1,Rb2が磁化パターンの周期に対
してほぼ180°の位相差が得られるようなものとす
る。
In the present invention, the substrates S of the magnetic sensors Ua and Ub configured as described above are tilted by an angle θ with respect to a direction perpendicular to the displacement direction D of the recording medium M on which a magnetization pattern is recorded, as shown in FIG. let This inclination angle θ is determined by two sets of magnetoresistive elements Ra 1 ,
It is assumed that Ra 2 , Rb 1 , and Rb 2 have a phase difference of approximately 180° with respect to the period of the magnetization pattern.

このように構成すると、一方の磁気センサUa
の磁気抵抗素子Ra1,Ra2に加えられる磁化パタ
ーンによる磁界と、他方の磁気センサUbの磁気
抵抗素子Rb1,Rb2に加えられる磁化パターンに
よる磁界とは常に反対方向となる。これに対し、
一般にノイズ磁界は両磁気センサの磁気抵抗素子
に同一向きに加えられることになる。したがつ
て、第6図に示すように、一方の磁気センサUa
には、例えば磁化パターンによる信号磁界+HS
とノイズ磁界+HNとが重畳して印加されること
になり、他方の磁気センサUbには磁化パターン
による信号磁界−HSとノイズ磁界+HNとが重畳
して印加されることになる。したがつて一方の磁
気センサUaでは、入力磁界(HS+HN)に比例し
た出力電圧が差動増幅器DEFaから得られ、この
出力電圧によつて直列接続した導電層Laおよび
Lbに電流が流れ、これによつて−(HS+HN)の
磁界が角磁気センサで発生される。したがつて、
他方の磁気センサUbに印加される正味の磁界は、
(−HS+HN)−(HS+HN)=−2HSとなり、ノイズ
磁界HNは相殺除去されることになる。したがつ
てノイズ成分は除去され、差動増幅器DEFbから
は磁化パターンによる信号成分だけが出力される
ことになり、信号磁界とノイズ磁界との選択能が
高くなり、S/Nの高い出力信号が得られ、変位
量の検出精度が著しく高くなる。
With this configuration, one magnetic sensor Ua
The magnetic field due to the magnetization pattern applied to the magnetoresistive elements Ra 1 and Ra 2 of the other magnetic sensor Ub and the magnetic field due to the magnetization pattern applied to the magnetoresistive elements Rb 1 and Rb 2 of the other magnetic sensor Ub are always in opposite directions. On the other hand,
Generally, the noise magnetic field will be applied to the magnetoresistive elements of both magnetic sensors in the same direction. Therefore, as shown in FIG.
For example, the signal magnetic field due to the magnetization pattern + H S
and the noise magnetic field +H N are applied in a superimposed manner, and the signal magnetic field -H S due to the magnetization pattern and the noise magnetic field +H N are applied in a superimposed manner to the other magnetic sensor Ub. Therefore, in one magnetic sensor Ua, an output voltage proportional to the input magnetic field (H S +H N ) is obtained from the differential amplifier DEFa, and this output voltage causes the series-connected conductive layers La and
A current flows through Lb, thereby generating a magnetic field of -(H S +H N ) in the angular magnetic sensor. Therefore,
The net magnetic field applied to the other magnetic sensor Ub is
(−H S +H N )−(H S +H N )=−2H S , and the noise magnetic field H N is canceled out and removed. Therefore, the noise component is removed and only the signal component due to the magnetization pattern is output from the differential amplifier DEFb, which increases the selectivity between the signal magnetic field and the noise magnetic field, resulting in an output signal with a high S/N ratio. As a result, the accuracy of detecting the amount of displacement is significantly increased.

さらに、本例においては、一方の磁気センサ
Uaにも磁界発生手段として作用する導電層Laを
設け、差動増幅器DEFaの出力電圧に比例した電
流がこの導電層Laに流れるようにしたため、こ
の磁気センサUaの磁気抵抗素子Ra1,Ra2に印加
される磁界は入力磁界(HS+HN)に比べて著し
く小さくなり、ダイナミツクレンジは等価的に著
しく広くなる。
Furthermore, in this example, one of the magnetic sensors
Ua is also provided with a conductive layer La that acts as a magnetic field generating means, and a current proportional to the output voltage of the differential amplifier DEFa flows through this conductive layer La, so that the magnetoresistive elements Ra 1 , Ra 2 of this magnetic sensor Ua The magnetic field applied to is significantly smaller than the input magnetic field (H S +H N ), and the dynamic range is equivalently significantly wider.

すなわち、第5図Bにおいて、入力磁界(HS
+HN)がHLよりも大きくなつても実際に磁気抵
抗素子Ra1,Ra2に印加される磁界は、導電層La
により発生される反対方向の磁界によつて相殺さ
れ、HLよりも小さくなるので、これらの素子は
リニアな範囲で動作することになり、正確な検出
が可能となる。したがつて相当大きなノイズ磁界
HN中に重畳された小さな信号磁界HSを有効に検
出することができるようになる。このように磁気
センサUaの磁気抵抗素子Ra1,Ra2に印加される
正味の磁界は小さくなるので、差動増幅器DEFa
の利得を大きくし、入力磁界(HS+HN)に比例
した出力電圧が得られるようにしてある。
That is, in FIG. 5B, the input magnetic field (H S
+H N ) is larger than H L , the magnetic field actually applied to the magnetoresistive elements Ra 1 and Ra 2 is the conductive layer L a
These elements operate in a linear range, allowing for accurate detection, since they are canceled by the oppositely directed magnetic fields generated by H L and are smaller than H L . Therefore, the noise magnetic field is quite large.
It becomes possible to effectively detect the small signal magnetic field H S superimposed on H N. In this way, the net magnetic field applied to the magnetoresistive elements Ra 1 and Ra 2 of the magnetic sensor Ua becomes smaller, so the differential amplifier DEFa
The gain is increased so that an output voltage proportional to the input magnetic field (H S +H N ) can be obtained.

第8図は本発明の磁気検出器の他の実施例を示
すものであり、本例では基板S上に3個の磁気セ
ンサUa,UbおよびUcを形成してある。各磁気
センサUa,Ub,Ucには、前例と同様に2層の
磁気抵抗素子Ra1,Ra2;Rb1,Rb2;Rc1,Rc2
と導電層La,Lb,Lcとを設ける。これらの素子
は第9図に示すように接続する。すなわち、第1
および第2の磁気センサUaおよびUbは前例とま
つたく同様に接続し、導電層Lbの他端を導電層
Lcの他端に接続し、この導電層Lcの一端を接地
する。したがつて、導電層Lcには他の導電層La
およびLbとは反対方向に電流が流れることにな
る。第8図に示すように基板Sを磁化パターンを
記録した記録媒体Mの変位方向Dと直交する方向
に対して傾斜して配置し、磁気センサUaと、磁
気センサUbおよびUcとが磁化パターンに対して
互いに180°の位相差を有するようにする。したが
つて磁化パターンによつて生ずる第1の磁界H1
は磁気センサUaと、磁気センサUbおよびUcと
で反対位相で印加されることになる。一方、第2
の磁界H2は総ての磁気センサに対して同相で印
加される。
FIG. 8 shows another embodiment of the magnetic detector of the present invention, in which three magnetic sensors Ua, Ub and Uc are formed on a substrate S. Each magnetic sensor Ua, Ub, Uc has two layers of magnetoresistive elements Ra 1 , Ra 2 ; Rb 1 , Rb 2 ; Rc 1 , Rc 2 as in the previous example.
and conductive layers La, Lb, and Lc are provided. These elements are connected as shown in FIG. That is, the first
The second magnetic sensors Ua and Ub are connected in the same manner as in the previous example, and the other end of the conductive layer Lb is connected to the conductive layer Lb.
The conductive layer Lc is connected to the other end of the conductive layer Lc, and one end of the conductive layer Lc is grounded. Therefore, the conductive layer Lc includes another conductive layer La.
And current will flow in the opposite direction to Lb. As shown in FIG. 8, the substrate S is arranged obliquely with respect to the direction perpendicular to the displacement direction D of the recording medium M on which the magnetization pattern is recorded, and the magnetic sensor Ua and the magnetic sensors Ub and Uc are arranged in the magnetization pattern. They are made to have a phase difference of 180° from each other. Therefore, the first magnetic field H 1 caused by the magnetization pattern
are applied in opposite phases to the magnetic sensor Ua and the magnetic sensors Ub and Uc. On the other hand, the second
The magnetic field H 2 is applied to all magnetic sensors in the same phase.

ここで、第10図に示すように、破線H1で示
す第1の磁界H1と破線H2で示す第2の磁界H2
は実線H1+H2で示すように重畳されているもの
とする。前例で説明したように、磁気センサUa
に接続した高利得の差動増幅器DEFaの出力電圧
は入力磁界H1+H2に比例したものとなり、この
電圧に対応した電流が導電層LbおよびLcを流れ
ることになる。したがつて磁気センサUbにおい
ては、入力磁界−H1+H2と導電層Lbを流れる電
流によつて生ずる磁界−(H1+H2)とが重畳さ
れた磁界−H1+H2−(H1+H2)=−2H1が磁気抵
抗素子Rb1,Rb2に印加されることになり、差動
増幅器DEFbからは第1の磁界H1に比例した出力
電圧VH1が得られる。
Here, as shown in FIG. 10, the first magnetic field H1 shown by the broken line H1 and the second magnetic field H2 shown by the broken line H2 are superimposed as shown by the solid line H1 + H2 . shall be. As explained in the example, the magnetic sensor Ua
The output voltage of the high gain differential amplifier DEFa connected to is proportional to the input magnetic field H 1 +H 2 , and a current corresponding to this voltage flows through the conductive layers Lb and Lc. Therefore , in the magnetic sensor Ub , a magnetic field -H 1 +H 2 - ( H 1 +H 2 )=−2H 1 is applied to the magnetoresistive elements Rb 1 and Rb 2 , and an output voltage V H1 proportional to the first magnetic field H 1 is obtained from the differential amplifier DEFb.

一方、磁気センサUcにおいては、導電層Lcを
流れる電流は磁気センサUbとは反対となるので、
正味の磁界−H1+H2+(H1+H2)=2H2が磁気抵
抗素子Rc1,Rc2に印加されることになり、差動
増幅器DEFcからは第2の磁界H2に比例した出力
電圧VH2が得られることになる。このようにし
て、本例において、互いに重畳する第1および第
2の磁界H1およびH2を完全に分離して検出する
ことができる。
On the other hand, in the magnetic sensor Uc, the current flowing through the conductive layer Lc is opposite to that in the magnetic sensor Ub, so
A net magnetic field - H 1 + H 2 + (H 1 + H 2 ) = 2H 2 will be applied to the magnetoresistive elements Rc 1 and Rc 2 , and a second magnetic field proportional to H 2 will be applied from the differential amplifier DEFc. An output voltage V H2 will be obtained. In this way, in this example, the first and second magnetic fields H 1 and H 2 that are superimposed on each other can be completely separated and detected.

上述した実施例では第1および第2の磁界を分
離して検出するために3個の磁気センサを設けた
が、第6図に示すように2個の磁気センサを設け
た実施例でも2つの磁界を分離して検出すること
もできる。すなわち、第11図に示すように、差
動増幅器DEFaの出力と差動増幅器DEFbの出力
との差を第3の差動増幅器DEFdで求めることに
より第1の磁界H1および第2の磁界H2にそれぞ
れ比例した出力電圧VH1およびVH2を分離して検
出することができる。この場合、差動増幅器
DEFdへの両入力の利得および極性を揃えるため
に、差動増幅器DEFbとDEFdとの間に反転増幅
器AMPを接続するのが好適である。
In the embodiment described above, three magnetic sensors were provided to separate and detect the first and second magnetic fields, but even in the embodiment with two magnetic sensors as shown in FIG. It is also possible to separate and detect the magnetic field. That is, as shown in FIG. 11, by determining the difference between the output of the differential amplifier DEFa and the output of the differential amplifier DEFb by the third differential amplifier DEFd, the first magnetic field H 1 and the second magnetic field H The output voltages V H1 and V H2 , each proportional to 2 , can be detected separately. In this case, the differential amplifier
In order to equalize the gain and polarity of both inputs to DEFd, it is preferable to connect an inverting amplifier AMP between differential amplifiers DEFb and DEFd.

本発明は上述した実施例にのみ限定されるもの
ではなく、幾多の変更を加えることができる。例
えば上述した実施例では磁気センサは、磁気抵抗
素子が磁化パターンを記録した記録媒体に対して
垂直になるように配置したが、記録媒体と平行と
なるように配置することもできる。また上述した
実施例では磁気センサを磁化パターンに対してほ
ぼ180°の位相差を有するように配置するために、
磁気センサを設けた基板を変位方向と直交する方
向に対して傾斜させたが、磁気センサは変位方向
に平行にずらして配置することもできる。さら
に、上述した実施例では各磁気センサには2個の
磁気抵抗素子を設けたが、4個の磁気抵抗素子を
設け、これらをブリツジ接続することもできる。
The present invention is not limited to the embodiments described above, but can be modified in many ways. For example, in the embodiments described above, the magnetic sensor is arranged so that the magnetoresistive element is perpendicular to the recording medium on which the magnetization pattern is recorded, but it can also be arranged so that it is parallel to the recording medium. Furthermore, in the embodiment described above, in order to arrange the magnetic sensor so as to have a phase difference of approximately 180° with respect to the magnetization pattern,
Although the substrate on which the magnetic sensor is provided is tilted with respect to the direction perpendicular to the displacement direction, the magnetic sensor may also be disposed offset parallel to the displacement direction. Further, in the above-described embodiment, each magnetic sensor is provided with two magnetoresistive elements, but four magnetoresistive elements may be provided and these may be bridge-connected.

この場合には基準電圧は省くことができると共
にドリフトの影響も除くことができる。また、上
述した実施例では、各磁気センサの磁気抵抗素子
を二次相互バイアス効果によつて反対方向に磁気
バイアスしたが、一次相互バイアス効果で磁気バ
イアスしたり、導電層を設け、ここに電流を流し
て磁気バイアスしたりすることもできる。
In this case, the reference voltage can be omitted and the influence of drift can also be eliminated. In the above-described embodiment, the magnetoresistive elements of each magnetic sensor were magnetically biased in opposite directions by the secondary mutual bias effect, but it is also possible to magnetically bias the magnetoresistive elements by the primary mutual bias effect, provide a conductive layer, and conduct current. It is also possible to create a magnetic bias by flowing .

次に、それぞれ4個の磁気抵抗素子を設けた磁
気センサを変位方向に平行にずらして配置した実
施例を説明する。第12図AおよびBは磁気セン
サと磁化パターンとの配列関係を示すものであ
り、第12図Aに示す例では、それぞれ2層の磁
気抵抗素子Ra1,Ra2;Rb1,Rb2;Rc1,Rc2
Rd1,Rd2を具える磁気センサUa,Ub,Ucおよ
びUdを、記録媒体Mに記録した磁化パターンの
配列方向、すなわち記録媒体Mの変位方向Dに磁
化パターンに対して順次に180°だけ平行にずらし
て配置する。また第12図Bに示す実施例では、
それぞれ2層の磁気抵抗素子Ra1,Ra2および
Rc1,Rc2を具える磁気センサUaおよびUcを変位
方向と直交する方向にずらして配置すると共に同
じくそれぞれ2層の磁気抵抗素子Rb1,Rb2およ
びRd1,Rd2を有する磁気センサUbおよびUdを
変位方向と直交する方向にずらして配置し、さら
に磁気センサUa,Ucと磁気センサUb,Udとを
磁化パターンに対して180°だけ変位方向に平行に
ずらして配置する。
Next, an embodiment will be described in which magnetic sensors each having four magnetoresistive elements are arranged shifted in parallel to the displacement direction. 12A and 12B show the arrangement relationship between the magnetic sensor and the magnetization pattern. In the example shown in FIG. 12A, the two-layer magnetoresistive elements Ra 1 , Ra 2 ; Rb 1 , Rb 2 ; Rc 1 , Rc 2 ;
Magnetic sensors Ua, Ub, Uc and Ud comprising Rd 1 and Rd 2 are sequentially moved by 180° with respect to the magnetization pattern in the arrangement direction of the magnetization pattern recorded on the recording medium M, that is, in the displacement direction D of the recording medium M. Arrange them parallel to each other. Furthermore, in the embodiment shown in FIG. 12B,
Two-layer magnetoresistive elements Ra 1 , Ra 2 and
A magnetic sensor Ub includes magnetic sensors Ua and Uc including Rc 1 and Rc 2 shifted in a direction perpendicular to the displacement direction, and also includes two layers of magnetoresistive elements Rb 1 and Rb 2 and Rd 1 and Rd 2 , respectively. and Ud are arranged to be shifted in a direction perpendicular to the displacement direction, and further, magnetic sensors Ua, Uc and magnetic sensors Ub, Ud are arranged to be shifted by 180° parallel to the displacement direction with respect to the magnetization pattern.

第13図は磁気抵抗素子および導電層の結線方
法を示すものであり、磁気センサUaおよびUcに
は外部磁界としてH1+H2が印加され、磁気セン
サUbおよびUdには−H1+H2が印加されている。
FIG. 13 shows the method of connecting the magnetoresistive element and the conductive layer. H 1 + H 2 is applied as an external magnetic field to the magnetic sensors Ua and Uc, and -H 1 + H 2 is applied to the magnetic sensors Ub and Ud. is being applied.

したがつて磁気センサUaとUcとをそれぞれブ
リツジ接続すると、差動増幅器DEFaからはH1
H2に比例した出力電圧が得られ、この電圧に比
例した電流が直列接続された導電層La,Lb,Lc
およびLdに流れる。したがつて、磁気センサUb
およびUdには正味の磁界−H1+H2−(H1+H2
=−2H1が印加されるので、これら磁気センサを
ブリツジ接続した差動増幅器DEFbからは−2H1
に比例した出力電圧VH1が得られることになる。
本例では磁気抵抗素子をブリツジ接続したため、
磁気抵抗素子の膜厚、温度抵抗係数、形状係数等
の差異に基づく不平衡電圧は相殺除去されるの
で、温度ドリフトやオフセツトのない正確な検出
を行なうことができる。
Therefore, if magnetic sensors Ua and Uc are bridge-connected, H 1 +
An output voltage proportional to H 2 is obtained, and a current proportional to this voltage is applied to the conductive layers La, Lb, Lc connected in series.
and flows to Ld. Therefore, the magnetic sensor Ub
and Ud has a net magnetic field −H 1 +H 2 −(H 1 +H 2 )
= -2H 1 is applied, so -2H 1 is applied from the differential amplifier DEFb that bridge-connects these magnetic sensors.
This results in an output voltage V H1 proportional to .
In this example, the magnetoresistive elements are bridge-connected, so
Since unbalanced voltages due to differences in film thickness, temperature resistance coefficient, shape coefficient, etc. of the magnetoresistive elements are canceled out, accurate detection without temperature drift or offset can be performed.

以上説明したように本発明によれば互いに重畳
する第1および第2の磁界を分離して検出するこ
とができるので、例えばノイズ磁界に重畳された
信号磁界をノイズ磁界に影響されることなく検出
することができ、きわめて正確な検出を行なうこ
とができる。また、ダイナミツクレンジを拡大す
ることができるので大きな入力磁界も正確に検出
することができる。
As explained above, according to the present invention, the first and second magnetic fields superimposed on each other can be detected separately, so that, for example, a signal magnetic field superimposed on a noise magnetic field can be detected without being affected by the noise magnetic field. It is possible to perform extremely accurate detection. Furthermore, since the dynamic range can be expanded, even large input magnetic fields can be detected accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の磁気抵抗素子を用いた磁気検出
器の一例を示す線図、第2図は本発明の磁気検出
器の一例の構成を示す斜視図、第3図は同じくそ
の断面図、第4図は同じくその磁気抵抗素子の結
線方法を示す線図、第5図AおよびBは同じくそ
の動作特性を示すグラフ、第6図は同じくその全
体の結線方法を示す回路図、第7図は磁気検出器
と磁化パターンとの配列関係を示す平面図、第8
図は本発明の磁気検出器の他の実施例の構成を示
す線図、第9図は同じくその全体の結線方法を示
す回路図、第10図は同じくその動作を説明する
ために入力磁界を示す波形図、第11図は本発明
の磁気検出器のさらに他の実施例の全体の結線方
法を示す回路図、第12図AおよびBは磁気セン
サを磁化パターンの配列方向に平行にずらして配
置した本発明の磁気検出器の二つの実施例を示す
線図、第13図は同じくその全体の結線方法を示
す回路図である。 S……基板、Ra1,Ra2,Rb1,Rb2,Rc1
Rc2,Rd1,Rd2……磁気抵抗素子、INS,INS1
INS2……絶縁層、La,Lb,Lc,Ld…導電層、
E……電源、Ea,Eb,Ec……基準電源、M……
記録媒体、Ua,Ub,Uc,Ud……磁気センサ、
DEFa,DEFb,DEFc,DEFd……差動増幅器。
FIG. 1 is a diagram showing an example of a magnetic detector using a conventional magnetoresistive element, FIG. 2 is a perspective view showing the configuration of an example of the magnetic detector of the present invention, and FIG. 3 is a sectional view thereof. FIG. 4 is a diagram showing the wiring method of the magnetoresistive element, FIG. 5 A and B are graphs showing its operating characteristics, FIG. 6 is a circuit diagram showing the overall wiring method, and FIG. 8 is a plan view showing the arrangement relationship between the magnetic detector and the magnetization pattern;
The figure is a diagram showing the configuration of another embodiment of the magnetic detector of the present invention, FIG. 9 is a circuit diagram showing the overall wiring method, and FIG. 10 is a diagram showing the input magnetic field in order to explain its operation. FIG. 11 is a circuit diagram showing the overall wiring method of yet another embodiment of the magnetic detector of the present invention, and FIGS. 12A and B are waveform diagrams in which the magnetic sensor is shifted in parallel to the arrangement direction of the magnetization pattern. FIG. 13 is a diagram showing two embodiments of the arranged magnetic detector of the present invention, and FIG. 13 is a circuit diagram showing the overall wiring method. S...Substrate, Ra 1 , Ra 2 , Rb 1 , Rb 2 , Rc 1 ,
Rc 2 , Rd 1 , Rd 2 ... Magnetoresistive element, INS, INS 1 ,
INS 2 ...Insulating layer, La, Lb, Lc, Ld...Conductive layer,
E...Power supply, Ea, Eb, Ec...Reference power supply, M...
Recording medium, Ua, Ub, Uc, Ud...magnetic sensor,
DEFa, DEFb, DEFc, DEFd...Differential amplifier.

Claims (1)

【特許請求の範囲】 1 それぞれ絶縁膜を挟んで積層した少なく共2
層の磁気抵抗素子を具え、これら磁気抵抗素子を
互いに反対方向に磁気バイアスした少なく共2組
の磁気センサを、第1の磁界を生ずる磁化パター
ンに対してほぼ180°の位相差を有するように配置
し、一方の磁気センサから得られる信号を、他方
の磁気センサに設けた磁界発生手段に供給して互
いに重畳する第1および第2の磁界のいずれか一
方または双方を選択的に検出し得るよう構成した
ことを特徴とする磁気検出器。 2 特許請求の範囲1記載の磁気検出器におい
て、一方の磁気センサから得られる信号を、一方
の磁気センサに設けた磁界発生手段に供給して検
出可能な磁界強度の範囲を増大するように構成し
たことを特徴とする磁気検出器。
[Claims] 1. At least 2 layers each laminated with an insulating film in between.
at least two sets of magnetic sensors each comprising a layer of magnetoresistive elements, the magnetoresistive elements magnetically biased in opposite directions, such that the magnetization pattern has a phase difference of approximately 180° with respect to the magnetization pattern producing the first magnetic field. and supplying a signal obtained from one magnetic sensor to a magnetic field generating means provided in the other magnetic sensor to selectively detect one or both of the first and second magnetic fields superimposed on each other. A magnetic detector characterized by being configured as follows. 2. The magnetic detector according to claim 1, configured to increase the range of detectable magnetic field strength by supplying the signal obtained from one of the magnetic sensors to the magnetic field generating means provided in the other magnetic sensor. A magnetic detector characterized by:
JP58110198A 1983-06-21 1983-06-21 Magnetism detector Granted JPS603515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58110198A JPS603515A (en) 1983-06-21 1983-06-21 Magnetism detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110198A JPS603515A (en) 1983-06-21 1983-06-21 Magnetism detector

Publications (2)

Publication Number Publication Date
JPS603515A JPS603515A (en) 1985-01-09
JPH0432969B2 true JPH0432969B2 (en) 1992-06-01

Family

ID=14529531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110198A Granted JPS603515A (en) 1983-06-21 1983-06-21 Magnetism detector

Country Status (1)

Country Link
JP (1) JPS603515A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627986U (en) * 1985-06-28 1987-01-17
JP2007024598A (en) 2005-07-13 2007-02-01 Denso Corp Magnetic sensor
JP5218491B2 (en) * 2010-07-29 2013-06-26 株式会社デンソー Rotation angle detector
JP6394740B2 (en) * 2017-05-25 2018-09-26 Tdk株式会社 Magnetic field detector
JP2021128096A (en) * 2020-02-14 2021-09-02 旭化成エレクトロニクス株式会社 Position detection device, lens module, imaging device, position detection method, and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127346A (en) * 1978-03-27 1979-10-03 Sony Corp Magnetic sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127346A (en) * 1978-03-27 1979-10-03 Sony Corp Magnetic sensor

Also Published As

Publication number Publication date
JPS603515A (en) 1985-01-09

Similar Documents

Publication Publication Date Title
US4603365A (en) Magnetic detection apparatus
JP4991322B2 (en) Displacement sensor using GMR element, angle detection sensor using GMR element, and semiconductor device used therefor
EP0235750B1 (en) Apparatus for magnetically detecting position or speed of moving body
US6169396B1 (en) Sensing device for detecting change in an applied magnetic field achieving high accuracy by improved configuration
JPH043483B2 (en)
JPH08242027A (en) Magnetic resistor circuit
JP2011033456A (en) Magnetic sensor
US6819101B2 (en) Magnetic detector
JPWO2008081797A1 (en) Magnetic detector
JPH08178937A (en) Magnetism detecting device
US6459261B1 (en) Magnetic incremental motion detection system and method
WO2004005950A1 (en) Ac-coupled sensor signal conditioning circuit
JPS58154612A (en) Detector of displacement quantity
JPS58106462A (en) Rotation detector
JP2008008699A (en) Rotation detecting apparatus
JP2000180207A (en) Magnetism sensor
JPH0432969B2 (en)
JPH0151127B2 (en)
JPS59147213A (en) Magnetic rotary sensor
JP2005069744A (en) Magnetic detection element
JP3186656B2 (en) Speed sensor
US6211669B1 (en) Magnetic detector with improved noise resistance characteristics
JPH0217476A (en) Differential type magnetoresistance effect element
JPH061201B2 (en) Position detection sensor
JPS58154680A (en) Magnetic sensor