JPH0151127B2 - - Google Patents

Info

Publication number
JPH0151127B2
JPH0151127B2 JP3664182A JP3664182A JPH0151127B2 JP H0151127 B2 JPH0151127 B2 JP H0151127B2 JP 3664182 A JP3664182 A JP 3664182A JP 3664182 A JP3664182 A JP 3664182A JP H0151127 B2 JPH0151127 B2 JP H0151127B2
Authority
JP
Japan
Prior art keywords
elements
recording medium
magnetic recording
displacement
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3664182A
Other languages
Japanese (ja)
Other versions
JPS58154613A (en
Inventor
Shigekazu Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP3664182A priority Critical patent/JPS58154613A/en
Priority to US06/473,250 priority patent/US4616281A/en
Priority to DE3308404A priority patent/DE3308404C2/en
Publication of JPS58154613A publication Critical patent/JPS58154613A/en
Publication of JPH0151127B2 publication Critical patent/JPH0151127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 本発明はロータリーエンコーダ、リニアエンコ
ーダとして用いることができる変位量検出装置、
特に磁気記録トラツクに沿つて配列された磁化パ
ターンの変位を複数個の磁気抵抗効果素子で検出
し、その差動出力を得るようにした変位量検出装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a displacement detection device that can be used as a rotary encoder or a linear encoder;
In particular, the present invention relates to a displacement detection device that detects displacement of a magnetization pattern arranged along a magnetic recording track using a plurality of magnetoresistive elements and obtains a differential output.

例えば回転軸に取付けた磁気記録媒体を有する
円板または円筒に等間隔のビツト長を有する磁化
パターンの形態で記録されている磁気信号を強磁
性磁気抵抗効果素子(以下MR素子と略称する)
を具える磁気センサで読み取ることにより、回転
軸の回転角を検出する所謂ロータリーエンコーダ
は既知である。このようなロータリーエンコーダ
においては、基本的には1個のMR素子により磁
気信号を検出し、変位量を知ることができるが、
出力電圧が小さいこと、温度変位により出力電圧
がドリフトするなどの欠点があるため、2つ以上
のMR素子を差動結合して出力を得ることが一般
的である。例えば特公昭54−115257号公報には2
個のMR素子を磁気記録媒体上の磁気パターンの
ピツチの整数倍に等しい間隔を置いて配設し、こ
れらMR素子の出力の差を差動増幅器で求めるよ
うにした角度検出器が記載されている。また「日
経エレクトロニクス」、1981年6月22日号、第88
頁には、第1図に示すようにそれぞれ4個のMR
素子A1〜A4,B1〜B4を有する2群の磁気センサ
を設け、各群のMR素子を磁気記録媒体Mの磁化
パターンのピツチPの1/2の間隔だけ離して配設
すると共に一方の群のMR素子を他方の群のMR
素子に対してP/4だけずらして配設し、第2図に 示すように各群の4個のMR素子をブリツジ回路
としてそれぞれ接続し、各ブリツジ回路の対角点
に現われる出力電圧の差をそれぞれ差動増幅器
DA1およびDA2で求めることにより変位量および
変位方向を検出するようにした角度検出装置が示
されている。このような差動結合方式を採用する
と出力振幅が大きくなると共にドリフトの影響も
相殺除去できる利点が得られる。しかしながらこ
のような従来の角度検出装置においては2個以上
のMR素子を変位方向、すなわち磁化パターンの
配列方向に、磁化パターンのピツチPの整数倍ま
たは整数分の一の間隔で配設しなければならず、
種々のピツチの磁化パターンを有する磁気記録媒
体に対してそれぞれ所定の間隔に配設したMR素
子を有する磁気センサを準備しなければならず、
設計の自由度に制限を受ける欠点がある。また、
磁気記録媒体を円筒表面に設ける場合、複数の
MR素子を平坦な基板上に形成すると各MR素子
と磁気記録媒体までの距離が等しくならず、各
MR素子の出力信号の振幅がばらつくことになり
差動出力に誤差が入る欠点がある。このような欠
点を解決するためにMR素子の幅を変えることが
特公昭56−35011号公報に開示されているが、そ
のようなMR素子を製作することは面倒であると
共に前記の距離が変つた場合にはこれに対応した
幅を有するMR素子を製作する必要があり、汎用
性に欠ける欠点がある。また、2個以上のMR素
子を磁気記録媒体の磁化パターンの配列方向にず
らせると、磁気センサの寸法は必然的に大きくな
り、検出装置全体も大形になり易くなるという欠
点もある。
For example, a magnetic signal recorded in the form of a magnetization pattern with equally spaced bit lengths on a disk or cylinder having a magnetic recording medium attached to a rotating shaft is transferred to a ferromagnetic magnetoresistive element (hereinafter abbreviated as MR element).
A so-called rotary encoder is known that detects the rotation angle of a rotating shaft by reading it with a magnetic sensor having a rotary shaft. In such a rotary encoder, a magnetic signal is basically detected using one MR element, and the amount of displacement can be determined.
Since the output voltage is small and the output voltage drifts due to temperature change, it is common to differentially couple two or more MR elements to obtain the output. For example, in Japanese Patent Publication No. 54-115257, 2
An angle detector is described in which MR elements are arranged at intervals equal to an integral multiple of the pitch of a magnetic pattern on a magnetic recording medium, and the difference in the outputs of these MR elements is determined using a differential amplifier. There is. Also, "Nikkei Electronics", June 22, 1981 issue, No. 88
Each page has four MRs as shown in Figure 1.
Two groups of magnetic sensors having elements A 1 to A 4 and B 1 to B 4 are provided, and the MR elements of each group are arranged at a distance of 1/2 the pitch P of the magnetization pattern of the magnetic recording medium M. and the MR elements of one group are connected to the MR elements of the other group.
The four MR elements in each group are connected as a bridge circuit as shown in Figure 2, with the elements shifted by P/4, and the difference in output voltage appearing at the diagonal points of each bridge circuit is a differential amplifier respectively
An angle detection device is shown that detects the amount and direction of displacement by determining DA 1 and DA 2 . Adopting such a differential coupling method has the advantage of increasing the output amplitude and canceling out the effects of drift. However, in such a conventional angle detection device, two or more MR elements must be arranged in the displacement direction, that is, in the arrangement direction of the magnetization pattern, at intervals that are an integral multiple or a fraction of the pitch P of the magnetization pattern. Not,
Magnetic sensors having MR elements arranged at predetermined intervals must be prepared for magnetic recording media having magnetization patterns of various pitches,
The disadvantage is that the degree of freedom in design is limited. Also,
When installing a magnetic recording medium on a cylindrical surface, multiple
When MR elements are formed on a flat substrate, the distances between each MR element and the magnetic recording medium are not equal, and each
This has the disadvantage that the amplitude of the output signal of the MR element varies, causing errors in the differential output. In order to solve this problem, Japanese Patent Publication No. 56-35011 discloses changing the width of the MR element, but manufacturing such an MR element is troublesome and the distance mentioned above is changed. In this case, it is necessary to manufacture an MR element with a width corresponding to this width, which has the disadvantage of lacking in versatility. Furthermore, if two or more MR elements are shifted in the direction in which the magnetization pattern of the magnetic recording medium is arranged, the size of the magnetic sensor inevitably becomes larger, which also has the disadvantage that the entire detection device tends to become larger.

本発明の目的は上述した欠点を除去し、MR素
子を磁気記録媒体の磁化パターンの配列方向に離
間して配置する必要がなく、しかも差動出力が得
られるようにした変位量検出装置を提供しようと
するものである。
An object of the present invention is to eliminate the above-mentioned drawbacks, to provide a displacement detection device that does not require MR elements to be spaced apart in the arrangement direction of the magnetization pattern of a magnetic recording medium, and that can provide a differential output. This is what I am trying to do.

本発明の変位量検出装置は、変位方向と同じ方
向に磁化パターンを形成した磁気記録媒体と対向
して少なく共2個の磁気抵抗効果素子を、磁気記
録媒体の前記変位方向に対して直交する方向に並
べて配設し、これら磁気抵抗効果素子を相互に逆
方向に磁気バイアスする手段と、これら磁気抵抗
効果素子の出力を差動的に検出する手段とを設け
たことを特徴とするものである。
The displacement detection device of the present invention includes at least two magnetoresistive elements facing a magnetic recording medium having a magnetization pattern formed in the same direction as the displacement direction, and at least two magnetoresistive elements arranged perpendicularly to the displacement direction of the magnetic recording medium. The magnetoresistance effect elements are arranged side by side in a direction, and are characterized by being provided with means for magnetically biasing these magnetoresistive elements in mutually opposite directions, and means for differentially detecting the outputs of these magnetoresistive elements. be.

以下図面を参照して本発明を詳細に説明する。 The present invention will be described in detail below with reference to the drawings.

第3図〜第5図AおよびBは本発明の変位量検
出装置の一例の構成を示すものである。変位量を
測定すべき部材と一体に設けた磁気記録媒体10
には矢印で示すその変位方向に所定のピツチPで
磁化パターンを記録する。この記録媒体10と対
向して磁気センサ11を配置する。第4図に示す
ようにこの磁気センサ11は基板12の上に第1
および第2の強磁性磁気抵抗効果素子13aおよ
び13bを変位方向に対して直交する方向に並べ
て配設する。本例においてはこれらMR素子13
aおよび13bを互いに逆方向に磁気バイアスす
るためにMR素子13aおよび13bの上に絶縁
膜14aおよび14bを介して導電膜15aおよ
び15bを設け、これら導電膜に互いに反対方向
にバイアス電流を流す。すなわち、第4図の側面
図に示すように導電膜15aおよび15bを直流
電源16に接続し、それぞれ矢印で示すように互
いに反対方向にバイアス電流が流れるようにす
る。したがつて第4図のA−A線およびB−B線
に沿つて切つて示す第5図AおよびBに示すよう
に一方の導電膜15aには紙面の手前側から裏側
へ電流が流れ、破線矢印で示すように時計方向に
バイアス磁界が発生し、他方の導電膜15bには
紙面の裏側から手前側へ電流が流れ、破線矢印で
示すように反時計方向にバイアス磁界が発生され
ることになる。このようにして第1および第2の
MR素子13aおよび13bには互いに反対方向
のバイアス磁界が印加されることになる。したが
つて第6図において曲線17aおよび17bで示
す磁気記録媒体10に記録された磁化パターンに
応じた磁界とバイアス磁界±HBの合成磁界の変
化に対して第1および第2のMR素子13aおよ
び13bの抵抗値Rはそれぞれ第6図の曲線18
aおよび18bで示すようにそれぞれ変化するこ
とになる。ここでバイアス磁界±HBの大きさは
それぞれのMR素子13aおよび13bの動作点
が磁気−抵抗特性曲線のそれぞれ反対側の直線部
分のほぼ中央となるように設定するのが好適であ
る。このように磁気記録媒体10の変位に応じた
第1および第2のMR素子13aおよび13bの
抵抗値Rの変化は曲線18aおよび18bで示す
ように互いに逆相となる。したがつてこれらの
MR素子13aおよび13bを第7図に示すよう
に直列に接続し、両端を正および負の電源+Eお
よび−Eに接続することにより両MR素子の接続
点19には第8図の曲線20で示すような差動出
力が得られることになる。
3 to 5A and 5B show the configuration of an example of the displacement detection device of the present invention. Magnetic recording medium 10 provided integrally with the member whose displacement is to be measured
A magnetization pattern is recorded at a predetermined pitch P in the displacement direction indicated by the arrow. A magnetic sensor 11 is placed opposite this recording medium 10. As shown in FIG. 4, this magnetic sensor 11 has a first
And second ferromagnetic magnetoresistive elements 13a and 13b are arranged side by side in a direction orthogonal to the displacement direction. In this example, these MR elements 13
Conductive films 15a and 15b are provided on MR elements 13a and 13b via insulating films 14a and 14b in order to magnetically bias elements a and 13b in opposite directions, and bias currents are passed through these conductive films in opposite directions. That is, as shown in the side view of FIG. 4, conductive films 15a and 15b are connected to DC power supply 16 so that bias currents flow in opposite directions as shown by arrows. Therefore, as shown in FIGS. 5A and 5B, which are cut along lines A-A and B-B in FIG. A bias magnetic field is generated in the clockwise direction as shown by the broken line arrow, a current flows through the other conductive film 15b from the back side of the page to the front side, and a bias magnetic field is generated in the counterclockwise direction as shown by the broken line arrow. become. In this way the first and second
Bias magnetic fields in opposite directions are applied to the MR elements 13a and 13b. Therefore, the first and second MR elements 13a respond to changes in the composite magnetic field of the magnetic field and the bias magnetic field ±H B according to the magnetization pattern recorded on the magnetic recording medium 10 as shown by curves 17a and 17b in FIG. and the resistance value R of 13b is the curve 18 in FIG.
They will change as shown by a and 18b, respectively. Here, the magnitude of the bias magnetic field ±H B is preferably set so that the operating points of the respective MR elements 13a and 13b are approximately at the center of the straight line portions on opposite sides of the magneto-resistance characteristic curves. In this way, the changes in the resistance values R of the first and second MR elements 13a and 13b in response to the displacement of the magnetic recording medium 10 are in opposite phases to each other, as shown by the curves 18a and 18b. Therefore these
By connecting the MR elements 13a and 13b in series as shown in FIG. 7, and connecting both ends to the positive and negative power supplies +E and -E, the connection point 19 of both MR elements has a curve 20 in FIG. A differential output as shown will be obtained.

本実施例のようにMR素子13aおよび13b
の上方に導電膜15aおよび15bを形成し、こ
れらを直流電源16に直列に接続してバイアス磁
界を発生させる場合には、直流電源16の変動は
両MR素子に均等に作用するため、差動出力では
相殺除去され、出力には現われない利点がある。
As in this embodiment, the MR elements 13a and 13b
When the conductive films 15a and 15b are formed above and connected in series to the DC power supply 16 to generate a bias magnetic field, fluctuations in the DC power supply 16 act equally on both MR elements, so the differential There is an advantage that is canceled out in the output and does not appear in the output.

第9図は本発明の変位量検出装置の磁気センサ
の他の例を示す斜視図である。本例では磁気記録
媒体10の上方に配置した磁気センサ21の基板
22を記録媒体10上に対して垂直に配置する。
また基板22上には、矢印で示す変位方向に対し
て直交する方向に並べてMR素子23a,23b
を設け、さらにこれらMR素子の上にそれぞれ薄
い絶縁膜25aおよび25bを介してMR素子2
4aおよび24bをそれぞれ設ける。さらにバイ
アス磁界を印加するために、MR素子24aおよ
び24bの上にはそれぞれ厚い絶縁膜26aおよ
び26bを介して導電膜27aおよび27bを設
ける。これら導電膜は前例と同様に直列に直流電
源に接続し、MR素子23a,24aおよび23
b,24bに互いに逆方向のバイアス磁界を印加
し得るようにする。
FIG. 9 is a perspective view showing another example of the magnetic sensor of the displacement detection device of the present invention. In this example, the substrate 22 of the magnetic sensor 21 placed above the magnetic recording medium 10 is placed perpendicularly to the recording medium 10 .
Further, on the substrate 22, MR elements 23a and 23b are arranged in a direction orthogonal to the displacement direction shown by the arrow.
MR element 2 is provided on top of these MR elements via thin insulating films 25a and 25b, respectively.
4a and 24b are provided, respectively. Furthermore, in order to apply a bias magnetic field, conductive films 27a and 27b are provided on MR elements 24a and 24b via thick insulating films 26a and 26b, respectively. These conductive films are connected in series to a DC power supply as in the previous example, and the MR elements 23a, 24a and 23
Bias magnetic fields in mutually opposite directions can be applied to b and 24b.

このように構成した磁気センサ21の4個の
MR素子23a,23b,24aおよび24bは
第10図に示すようにブリツジ回路に接続する。
すなわちMR素子23aと24bとの接続点を正
電圧源+Eに接続し、MR素子23bと24aと
の接続点を負電圧源−Eに接続し、MR素子24
aと24bとの接続点を差動増幅器28の正入力
端子に接続し、MR素子23aと23bとの接続
点を負入力端子に接続することにより、出力端子
29には差動出力が得られることになる。
The four magnetic sensors 21 configured in this way
MR elements 23a, 23b, 24a and 24b are connected to a bridge circuit as shown in FIG.
That is, the connection point between MR elements 23a and 24b is connected to a positive voltage source +E, the connection point between MR elements 23b and 24a is connected to a negative voltage source -E, and the MR element 24
By connecting the connection point between a and 24b to the positive input terminal of the differential amplifier 28, and connecting the connection point between MR elements 23a and 23b to the negative input terminal, a differential output can be obtained at the output terminal 29. It turns out.

第9図に示す磁気センサ21は、例えばガラス
基板22上にFe−Ni合金(パーマロイ)を約500
Åの厚さに蒸着してMR素子23a,23b,2
4a,24bを形成し、これらの間に介挿される
薄い絶縁膜25a,25bはSiO2を1000〜2000
Åの厚さに蒸着して形成し、厚い絶縁膜26a,
26bは同じくSiO2を数ミクロンの厚さに蒸着
して形成し、導電膜27a,27bはAl,Au,
Cuなどの非磁性金属を1000Å以上の厚さに蒸着
して簡単に製作することができる。
The magnetic sensor 21 shown in FIG. 9 includes, for example, a Fe-Ni alloy (permalloy) of about 500% on a glass substrate 22.
The MR elements 23a, 23b, 2 are formed by vapor deposition to a thickness of Å.
4a and 24b, and thin insulating films 25a and 25b interposed between them contain SiO 2 of 1000 to 2000%.
A thick insulating film 26a,
26b is similarly formed by vapor-depositing SiO 2 to a thickness of several microns, and conductive films 27a and 27b are made of Al, Au,
It can be easily manufactured by depositing non-magnetic metal such as Cu to a thickness of 1000 Å or more.

上述したように本発明によれば2個のMR素子
を磁気記録媒体の変位方向に対して直交する方向
に並べて配設するため、磁化パターンのピツチP
に全く拘束されなくなる。したがつて、従来のよ
うにピツチが等しい磁化パターンを用いる必要は
なく、例えば第11図に示すようにピツチがP1
P2,P3と相違する磁化パターンを記録した磁気
記録媒体30や、第12図に示すようにピツチが
連続的に変化するような磁化パターンを記録した
磁気記録媒体40を用いることができる。このよ
うに磁化パターンのピツチが変化する磁気記録媒
体は例えば変位の途中で検出精度を変えるような
場合に有効である。
As described above, according to the present invention, since two MR elements are arranged side by side in a direction perpendicular to the displacement direction of the magnetic recording medium, the pitch P of the magnetization pattern is
will no longer be restricted by. Therefore, it is not necessary to use a magnetization pattern with the same pitch as in the past. For example, as shown in FIG. 11, the pitch is P 1 ,
A magnetic recording medium 30 in which magnetization patterns different from P 2 and P 3 are recorded, or a magnetic recording medium 40 in which a magnetization pattern whose pitch changes continuously as shown in FIG. 12 can be used. A magnetic recording medium in which the pitch of the magnetization pattern changes in this way is effective when, for example, the detection accuracy is to be changed during displacement.

本発明は上述した実施例にのみ限定されるもの
ではなく、幾多の変更や変形が可能である。例え
ば上述した例では磁気記録媒体を直線的なものと
して示したが、ロータリーエンコーダに適用する
場合のように円板状または円筒状とすることもで
きる。さらに上述した例ではバイアス磁界を発生
させるために導電膜に電流を流すようにしたが、
永久磁石や電磁石をMR素子の近傍に配置してバ
イアス磁界を印加するようにしてもよい。
The present invention is not limited to the embodiments described above, and can be modified and modified in many ways. For example, in the above example, the magnetic recording medium is shown as being linear, but it may also be disk-shaped or cylindrical, as in the case of application to a rotary encoder. Furthermore, in the above example, a current was passed through the conductive film to generate a bias magnetic field, but
A bias magnetic field may be applied by placing a permanent magnet or an electromagnet near the MR element.

上述したように本発明の変位量検出装置によれ
ば、複数のMR素子を磁気記録媒体の変位方向に
対して直交する方向に配設したため、磁気記録媒
体に記録した磁化パターンのピツチがどのような
ものであつても検出が可能であり、したがつて磁
気記録媒体を交換したような場合でも磁気センサ
はそのまま使用することができる。また、磁気記
録媒体を円板または円筒の側面に設けたロータリ
ーエンコーダに適用した場合、総てのMR素子と
磁気記録媒体との間の距離は等しくなるため均等
な出力が得られ、正確な検出が可能であり、しか
もMR素子の幅を変える必要はない。さらに本発
明では磁気記録媒体そのものは既存のものも使用
することができるので、容易かつ安価に実施する
ことができる。
As described above, according to the displacement detection device of the present invention, since a plurality of MR elements are arranged in a direction perpendicular to the displacement direction of the magnetic recording medium, it is possible to determine the pitch of the magnetization pattern recorded on the magnetic recording medium. Even if the magnetic recording medium is replaced, the magnetic sensor can be used as is. In addition, when applied to a rotary encoder in which the magnetic recording medium is installed on the side of a disk or cylinder, the distance between all MR elements and the magnetic recording medium is equal, resulting in uniform output and accurate detection. is possible, and there is no need to change the width of the MR element. Furthermore, since the present invention can use existing magnetic recording media, it can be implemented easily and at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の変位量検出装置の一例の構成を
示す斜視図、第2図は同じくその磁気抵抗効果素
子より成るブリツジ回路を示す回路図、第3図は
本発明の変位量検出装置の一例の構成を示す平面
図、第4図は同じくその変位方向から見た側面
図、第5図AおよびBは第4図のA−A線および
B−B線に沿つて切つた断面図、第6図は同じく
その動作を説明するための波形図、第7図は同じ
くその2個の磁気抵抗効果素子の接続を示す回路
図、第8図は同じくその差動出力を示す波形図、
第9図は本発明の変位量検出装置の他の例の構成
を示す斜視図、第10図は同じくその4個の磁気
抵抗効果素子の接続を示す回路図、第11図およ
び第12図は本発明の変位量検出装置に用いる磁
気記録媒体の変形例を示す平面図である。 10,30,40……磁気記録媒体、11,2
1……磁気センサ、12,22……基板、13
a,13b,23a,23b,24a,24b…
…磁気抵抗効果素子、14a,14b,25a,
25b,26a,26b……絶縁膜、15a,1
5b,27a,27b……導電膜、16……直流
電源、28……差動増幅器。
FIG. 1 is a perspective view showing the configuration of an example of a conventional displacement detection device, FIG. 2 is a circuit diagram showing a bridge circuit made of the same magnetoresistive element, and FIG. 3 is a diagram of the displacement detection device of the present invention. A plan view showing the configuration of an example, FIG. 4 is a side view similarly seen from the displacement direction, and FIGS. 5A and B are sectional views taken along the line AA and line B-B in FIG. FIG. 6 is a waveform diagram for explaining the operation, FIG. 7 is a circuit diagram showing the connection of the two magnetoresistive elements, and FIG. 8 is a waveform diagram showing the differential output.
FIG. 9 is a perspective view showing the configuration of another example of the displacement detection device of the present invention, FIG. 10 is a circuit diagram showing the connection of four magnetoresistive elements, and FIGS. 11 and 12 are FIG. 7 is a plan view showing a modification of the magnetic recording medium used in the displacement detection device of the present invention. 10, 30, 40...magnetic recording medium, 11, 2
1... Magnetic sensor, 12, 22... Board, 13
a, 13b, 23a, 23b, 24a, 24b...
...Magnetoresistive element, 14a, 14b, 25a,
25b, 26a, 26b...Insulating film, 15a, 1
5b, 27a, 27b... conductive film, 16... DC power supply, 28... differential amplifier.

Claims (1)

【特許請求の範囲】 1 変位方向と同じ方向に磁化パターンを形成し
た磁気記録媒体と対向して少なく共2個の磁気抵
抗効果素子を、磁気記録媒体の前記変位方向に対
して直交する方向に並べて配設し、これら磁気抵
抗効果素子を相互に逆方向に磁気バイアスする手
段と、これら磁気抵抗効果素子の出力を差動的に
検出する手段とを設けたことを特徴とする変位量
検出装置。 2 前記磁気抵抗効果素子上に絶縁膜を介して導
電膜を形成し、この導電膜に所定の方向に電流を
流すことにより磁気抵抗効果素子を磁気バイアス
するよう構成したことを特徴とする特許請求の範
囲第1項記載の変位量検出装置。
[Claims] 1. At least two magnetoresistive elements facing a magnetic recording medium having a magnetization pattern formed in the same direction as the displacement direction, in a direction perpendicular to the displacement direction of the magnetic recording medium. A displacement detection device characterized by comprising means for magnetically biasing these magnetoresistive elements arranged side by side in mutually opposite directions, and means for differentially detecting the outputs of these magnetoresistive elements. . 2. A patent claim characterized in that a conductive film is formed on the magnetoresistive element via an insulating film, and the magnetoresistive element is magnetically biased by passing a current through the conductive film in a predetermined direction. The displacement amount detection device according to item 1.
JP3664182A 1982-03-10 1982-03-10 Detector of displacement quantity Granted JPS58154613A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3664182A JPS58154613A (en) 1982-03-10 1982-03-10 Detector of displacement quantity
US06/473,250 US4616281A (en) 1982-03-10 1983-03-08 Displacement detecting apparatus comprising magnetoresistive elements
DE3308404A DE3308404C2 (en) 1982-03-10 1983-03-09 Device for measuring a relative displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3664182A JPS58154613A (en) 1982-03-10 1982-03-10 Detector of displacement quantity

Publications (2)

Publication Number Publication Date
JPS58154613A JPS58154613A (en) 1983-09-14
JPH0151127B2 true JPH0151127B2 (en) 1989-11-01

Family

ID=12475466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3664182A Granted JPS58154613A (en) 1982-03-10 1982-03-10 Detector of displacement quantity

Country Status (1)

Country Link
JP (1) JPS58154613A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60232018A (en) * 1984-05-02 1985-11-18 松山株式会社 Digging machine
DE3788831T2 (en) * 1986-07-29 1994-08-11 Nippon Denso Co Contactless potentiometer.
US7259553B2 (en) * 2005-04-13 2007-08-21 Sri International System and method of magnetically sensing position of a moving component
JP2008101932A (en) * 2006-10-17 2008-05-01 Tokai Rika Co Ltd Magnetic position sensor
JP4921327B2 (en) * 2007-11-27 2012-04-25 シーケーディ株式会社 Magnetic linear measuring device
CN103499270B (en) * 2013-09-29 2016-01-20 北京理工大学 A kind of piston position check processing method of free-piston internal combustion engine generator
JP6472175B2 (en) * 2014-06-09 2019-02-20 Dmg森精機株式会社 Position detection device
DE102017129346A1 (en) * 2016-12-13 2018-06-14 Infineon Technologies Ag Magnetic sensor circuits and systems and methods of forming magnetic sensor circuits
JPWO2022131049A1 (en) * 2020-12-18 2022-06-23

Also Published As

Publication number Publication date
JPS58154613A (en) 1983-09-14

Similar Documents

Publication Publication Date Title
JPH0252807B2 (en)
US5357388A (en) Shorted dual element magnetoresistive reproduce head exhibiting high density signal amplification
US7112957B2 (en) GMR sensor with flux concentrators
US6107793A (en) Magnetic sensing device unaffected by positioning error of magnetic field sensing elements
US6169396B1 (en) Sensing device for detecting change in an applied magnetic field achieving high accuracy by improved configuration
CA1136240A (en) Magnetic rotary encoder for detection of absolute values of angular displacement
CA1137189A (en) Magnetic rotary encoder for detection of incremental angular displacement
US20100001723A1 (en) Bridge type sensor with tunable characteristic
US4506220A (en) Temperature compensated magnetoresistive effect thin film magnetic sensor
JP3367230B2 (en) Position detection device
JP3487452B2 (en) Magnetic detector
JPH11304413A (en) Magnetism detecting device
JPH0151127B2 (en)
JPS58154612A (en) Detector of displacement quantity
US6246234B1 (en) Magnetic detector with improved temperature characteristic and noise resistance
JPS61173101A (en) Positional sensor
JPH06275887A (en) Magnetoresistance element
JPH0448175B2 (en)
JP4237855B2 (en) Magnetic field sensor
JPS58154680A (en) Magnetic sensor
JP2929714B2 (en) Angle detector
KR100323906B1 (en) Magnetic Detection Device_
JPH0618279A (en) Detecting apparatus for position
JPH0432969B2 (en)
JP2000028395A (en) Magnetism detecting apparatus