JPH04329671A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04329671A
JPH04329671A JP3126876A JP12687691A JPH04329671A JP H04329671 A JPH04329671 A JP H04329671A JP 3126876 A JP3126876 A JP 3126876A JP 12687691 A JP12687691 A JP 12687691A JP H04329671 A JPH04329671 A JP H04329671A
Authority
JP
Japan
Prior art keywords
gate electrode
buried contact
semiconductor substrate
oxide film
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3126876A
Other languages
Japanese (ja)
Other versions
JP2621686B2 (en
Inventor
Masateru Kawaguchi
川口 眞輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3126876A priority Critical patent/JP2621686B2/en
Publication of JPH04329671A publication Critical patent/JPH04329671A/en
Application granted granted Critical
Publication of JP2621686B2 publication Critical patent/JP2621686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To obtain a method for manufacturing a semiconductor device, which can reduce a contact resistance by increasing an electric contact area of a gate electrode with a diffused layer in a static RAM. CONSTITUTION:A conductive film 5 made of metal such as tungsten, titanium, etc., or polycrystalline silicon, a single crystalline silicon, etc., is selectively grown in a buried contact 4 opened at a gate oxide film 3 of a semiconductor substrate 1, a gate electrode 6 is formed on the film 5, an impurity is implanted to the substrate 1 through the electrode 6 and the film 5 to form a diffused layer 8. Thus, the layer 8 is electrically connected to the electrode 6 in the entire area of the contact 4 by the film 5.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はスタティック型随時書き
込み読み出し可能メモリセルを有する半導体装置に関し
、特にこの種半導体装置におけるゲート電極と拡散層を
接続する埋め込みコンタクト部の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a static type memory cell that can be written to and read at any time, and more particularly to a method for manufacturing a buried contact portion connecting a gate electrode and a diffusion layer in this type of semiconductor device.

【0002】0002

【従来の技術】従来のスタテックRAM(Randam
 Access Memory) を構成するMOSF
ETのゲート電極と拡散層とを電気的に接続する埋込み
コンタクト構造の製造工程を図3に示す。先ず、図3(
a)に示すように、P型半導体基板1の一主面上に約4
000Å〜6000Åの素子分離酸化膜2を形成し、か
つ素子領域には約 200Åのゲート酸化膜3を形成す
る。次に、フォトレジストをパターニングし、ウェット
エッチング等の技術を用いて、図3(b)に示すように
ゲート酸化膜3を選択的に除去し、埋込コンタクト4を
開口する。
[Prior Art] Conventional static RAM (Random
MOSF that constitutes Access Memory
FIG. 3 shows the manufacturing process of a buried contact structure that electrically connects the gate electrode of the ET and the diffusion layer. First, Figure 3 (
As shown in a), on one main surface of the P-type semiconductor substrate 1, about 4
An element isolation oxide film 2 with a thickness of 000 Å to 6000 Å is formed, and a gate oxide film 3 with a thickness of about 200 Å is formed in the element region. Next, the photoresist is patterned, and using a technique such as wet etching, the gate oxide film 3 is selectively removed as shown in FIG. 3(b), and a buried contact 4 is opened.

【0003】次に、図3(c)に示すように、リン含有
多結晶シリコンを成長し、パターン形成したフォトレジ
ストをマスクにした異方性エッチングにより多結晶シリ
コンを選択的に除去してゲート電極6を形成する。続い
て、このゲート電極6をマスクにして、例えばヒ素をイ
オン注入し、活性化のための熱処理を加える。この熱処
理により、イオン注入したヒ素と、ゲート電極6より半
導体基板1に拡散したリンによりn型拡散層8が形成さ
れ、ゲート電極6とn型拡散層8の電気的な接続が達成
される。
Next, as shown in FIG. 3(c), phosphorus-containing polycrystalline silicon is grown, and the polycrystalline silicon is selectively removed by anisotropic etching using a patterned photoresist as a mask. Electrode 6 is formed. Subsequently, using this gate electrode 6 as a mask, ions of, for example, arsenic are implanted, and heat treatment is applied for activation. Through this heat treatment, the n-type diffusion layer 8 is formed by the ion-implanted arsenic and the phosphorus diffused into the semiconductor substrate 1 from the gate electrode 6, and electrical connection between the gate electrode 6 and the n-type diffusion layer 8 is achieved.

【0004】0004

【発明が解決しようとする課題】しかしながら、この製
造方法では、埋込コンタクト4を開口した後に、多結晶
シリコンを選択除去してゲート電極6を形成しているが
、フォトレジストによる両者の重ね合わせ精度の関係か
らゲート電極6が拡散層8に接する領域は埋込コンタク
ト4の全領域の一部に過ぎない。このため、近年におけ
る半導体装置の高集積化に伴ってデバイス寸法が縮少さ
れ、埋込コンタクト4やゲート電極6が微細化されると
、埋込コンタクト4におけるゲート電極6と拡散層8と
の接触面積が更に減少され、コンタクト抵抗が増大して
回路を正常に動作させることが困難になるという問題が
ある。本発明の目的は埋込コンタクトにおけるゲート電
極と拡散層との接触面積を増大してコンタクト抵抗の低
減を可能にした半導体装置の製造方法を提供することに
ある。
However, in this manufacturing method, after opening the buried contact 4, the polycrystalline silicon is selectively removed to form the gate electrode 6; For accuracy reasons, the area where the gate electrode 6 contacts the diffusion layer 8 is only a part of the entire area of the buried contact 4. Therefore, as semiconductor devices have become highly integrated in recent years, device dimensions have been reduced and buried contacts 4 and gate electrodes 6 have become finer. There is a problem in that the contact area is further reduced and the contact resistance is increased, making it difficult to operate the circuit normally. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that enables reduction in contact resistance by increasing the contact area between a gate electrode and a diffusion layer in a buried contact.

【0005】[0005]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板のゲート酸化膜に開口した埋込コ
ンタクト内に、タングステン、チタン等の金属或いは多
結晶シリコン、単結晶シリコン等からなる導電膜を選択
的に成長させ、その上で導電膜上にゲート電極を形成し
、かつゲート電極及び導電膜を通して不純物を半導体基
板に導入して拡散層を形成する工程を含んでいる。 又、埋込コンタクトに接触されるゲート電極を形成した
後に、埋込コンタクト内の半導体基板の表面及びゲート
電極の表面に夫々導電膜を選択的に成長させてもよい。
[Means for Solving the Problems] The method for manufacturing a semiconductor device of the present invention is to fill a buried contact opened in a gate oxide film of a semiconductor substrate with metal such as tungsten or titanium, polycrystalline silicon, single crystal silicon, etc. The method includes the steps of selectively growing a conductive film, forming a gate electrode on the conductive film, and introducing impurities into the semiconductor substrate through the gate electrode and the conductive film to form a diffusion layer. Furthermore, after forming the gate electrode in contact with the buried contact, a conductive film may be selectively grown on the surface of the semiconductor substrate within the buried contact and on the surface of the gate electrode, respectively.

【0006】[0006]

【実施例】次に、本発明について図面を参照して説明す
る。図1(a)乃至(e)は本発明の第1実施例を製造
工程順に示す縦断面である。先ず、図1(a)に示すよ
うに、P型半導体基板1の一主面上に素子分離酸化膜2
を約6000Åの厚さに形成し、かつ素子領域にゲート
酸化膜3を約 200Åの厚さに形成する。次に、図1
(b)に示すように、パターン形成したフォトレジスト
をマスクにしてゲート酸化膜3の一部をエッチング除去
し、埋込コンタクト4を開口し、半導体基板1の表面を
露出させる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings. FIGS. 1(a) to 1(e) are longitudinal cross-sections showing a first embodiment of the present invention in the order of manufacturing steps. First, as shown in FIG. 1(a), an element isolation oxide film 2 is formed on one main surface of a P-type semiconductor substrate 1.
A gate oxide film 3 is formed to a thickness of about 6000 Å and a gate oxide film 3 is formed to a thickness of about 200 Å in the element region. Next, Figure 1
As shown in FIG. 3B, a part of the gate oxide film 3 is etched away using the patterned photoresist as a mask, a buried contact 4 is opened, and the surface of the semiconductor substrate 1 is exposed.

【0007】次に、フォトレジストを除去したのち、図
1(c)に示すように、埋込コンタクト4の半導体基板
1の表面に金属選択成長法によりタングステン5を約 
200Å程度の厚さに成長させる。次に、図1(d)に
示すように、リン含有多結晶シリコン膜を約3000Å
程度形成し、かつパターン形成したフォトレジストをマ
スクにしてエッチングを行うことでゲート電極6を形成
する。続いて、ゲート電極6をマスクにして例えばリン
を加速エネルギー30KeV で1E13cm−2  
のドーズ量で半導体基板1にイオン注入する。
Next, after removing the photoresist, as shown in FIG. 1(c), approximately tungsten 5 is deposited on the surface of the semiconductor substrate 1 of the buried contact 4 by a metal selective growth method.
It is grown to a thickness of about 200 Å. Next, as shown in FIG. 1(d), a phosphorus-containing polycrystalline silicon film with a thickness of approximately 3000
The gate electrode 6 is formed by etching using the patterned photoresist as a mask. Next, using the gate electrode 6 as a mask, for example, phosphorus is accelerated at 1E13 cm-2 with an energy of 30 KeV.
Ions are implanted into the semiconductor substrate 1 at a dose of .

【0008】次いで、図1(e)に示すように、CVD
法によりシリコン酸化膜を約2000Å形成し、これを
異方性ドライエッチングによりエッチングすることでゲ
ート電極6の側壁にサイドウォール7を形成する。そし
て、ゲート電極6及びサイドウォール7をマスクにして
例えばヒ素を加速エネルギー50KeV で1E16c
m−2のドーズ量で半導体基板1にイオン注入し、注入
イオン活性化のための熱処理を加える。この熱処理によ
り、図外の素子領域ではLDD構造のソース・ドレイン
領域が形成され、かつ埋込コンタクト4ではゲート電極
6からリンがタングステン5を介して半導体基板1に拡
散し、またイオン注入したリン、ヒ素の横方向拡散によ
りn型拡散層8が形成され、埋め込みコンタクト4での
ゲート電極6とn型拡散層8の電気的接続が達成される
Next, as shown in FIG. 1(e), CVD
A silicon oxide film having a thickness of about 2000 Å is formed by the method, and is etched by anisotropic dry etching to form sidewalls 7 on the sidewalls of the gate electrode 6. Then, using the gate electrode 6 and sidewall 7 as a mask, for example, arsenic is applied at an acceleration energy of 1E16c at 50KeV.
Ions are implanted into the semiconductor substrate 1 at a dose of m-2, and heat treatment is applied to activate the implanted ions. As a result of this heat treatment, source/drain regions of an LDD structure are formed in the element region (not shown), phosphorus is diffused from the gate electrode 6 into the semiconductor substrate 1 via the tungsten 5 in the buried contact 4, and ion-implanted phosphorus is diffused into the semiconductor substrate 1 through the tungsten 5. , an n-type diffusion layer 8 is formed by lateral diffusion of arsenic, and electrical connection between the gate electrode 6 and the n-type diffusion layer 8 at the buried contact 4 is achieved.

【0009】したがって、この製造方法によれば、導電
性の高いタングステン5が埋込コンタクト4の全域に選
択成長法によって形成されるため、拡散層8に対してタ
ングステン5が広い面積で接触され、かつこのタングス
テン5にゲート電極6が電気接続されているために、従
来よりもコンタクト抵抗を低減できる。また、注入イオ
ン活性化の為の熱処理により、タングステン5が接する
ゲート電極6と半導体基板1の両方がシリサイド化され
、ゲート電極6と半導体基板1が冶金的に一体化され、
これによってもさらにコンタクト抵抗が低減できる。尚
、素子がLDD構造でない場合には、前記したサイドウ
ォール7の形成及び2回のイオン注入工程は不要であり
、所要の不純物濃度となるように1回のイオン注入を行
えばよい。
Therefore, according to this manufacturing method, the highly conductive tungsten 5 is formed over the entire area of the buried contact 4 by the selective growth method, so that the tungsten 5 is in contact with the diffusion layer 8 over a wide area. In addition, since the gate electrode 6 is electrically connected to the tungsten 5, the contact resistance can be reduced compared to the conventional case. In addition, by the heat treatment for activating the implanted ions, both the gate electrode 6 and the semiconductor substrate 1 in contact with the tungsten 5 are silicided, and the gate electrode 6 and the semiconductor substrate 1 are metallurgically integrated.
This also allows the contact resistance to be further reduced. Note that if the device does not have an LDD structure, the formation of the sidewall 7 and the two ion implantation steps described above are not necessary, and it is sufficient to perform ion implantation once to obtain the required impurity concentration.

【0010】図2(a)乃至(e)は本発明の第2実施
例の製造工程を示す縦断面図である。先ず、図2(a)
に示すように、前記第1実施例と同様に、P型半導体基
板1の一主面上に素子分離酸化膜2、ゲート酸化膜3、
埋込コンタクト4を順次形成する。次に、図2(b)に
示すように、ここでは先にリン含有多結晶シリコン膜を
形成しかつこれを選択エッチングしてゲート電極6を形
成し、このゲート電極6をマスクにして、例えばリンを
加速エネルギー30KeV で1E13cm−2のドー
ズ量で注入する。
FIGS. 2(a) to 2(e) are longitudinal sectional views showing the manufacturing process of a second embodiment of the present invention. First, Figure 2(a)
As shown in the first embodiment, an element isolation oxide film 2, a gate oxide film 3,
Embedded contacts 4 are sequentially formed. Next, as shown in FIG. 2(b), here, a phosphorus-containing polycrystalline silicon film is first formed and selectively etched to form a gate electrode 6. Using this gate electrode 6 as a mask, for example, Phosphorus is implanted at an acceleration energy of 30 KeV and a dose of 1E13 cm-2.

【0011】次に、図2(c)に示すように、約200
0Åの厚さのシリコン酸化膜をCVD法で形成し、異方
性エッチングすることでゲート電極6の側壁にサイドウ
ォール7を形成し、次いで例えばヒ素を加速エネルギー
50KeVで1E16cm−2のドーズ量でイオン注入
する。その後、図2(d)に示すように、CVD法によ
りシリコン酸化膜9を約 200Å成長し、その上にフ
ォトレジスト10を埋め込みコンタクト4と同じパター
ンにパターン形成し、これをマスクにしてエッチングす
ることで埋込コンタクト部のシリコン酸化膜9を除去す
る。
Next, as shown in FIG. 2(c), about 200
A silicon oxide film with a thickness of 0 Å is formed by the CVD method, and sidewalls 7 are formed on the side walls of the gate electrode 6 by anisotropic etching. Then, for example, arsenic is etched with an acceleration energy of 50 KeV and a dose of 1E16 cm-2. Implant ions. Thereafter, as shown in FIG. 2(d), a silicon oxide film 9 of about 200 Å is grown by the CVD method, a photoresist 10 is formed on it in the same pattern as the buried contact 4, and etching is performed using this as a mask. As a result, the silicon oxide film 9 in the buried contact portion is removed.

【0012】その後、フォトレジスト10を除去した後
、図2(e)に示すように埋込コンタクト4に露呈され
たゲート電極6の表面と半導体基板1の表面に金属選択
成長法によりタングステン5を約 200Åの厚さに選
択成長させ、更にイオン注入した不純物の活性化の為に
熱処理を加える。この熱処理によりゲート電極6から半
導体基板1へリンが拡散してn型拡散層8が形成され、
埋込コンタクト4での電気的接続が完了する。この実施
例においても、埋込コンタクト4では選択成長したタン
グステン5によっても電気的接続が行われるため、拡散
層8とゲート電極6との実質的な接触面積を増大させ、
従来よりコンタクト抵抗が低減できる。尚、本発明は前
記各実施例のタングステンに代えて、他の導電性材料、
例えばチタン等の金属或いは多結晶シリコンを使用する
ことも可能である。
Thereafter, after removing the photoresist 10, as shown in FIG. 2(e), tungsten 5 is grown on the surface of the gate electrode 6 exposed to the buried contact 4 and the surface of the semiconductor substrate 1 by a metal selective growth method. It is selectively grown to a thickness of about 200 Å, and then heat treated to activate the ion-implanted impurities. Through this heat treatment, phosphorus is diffused from the gate electrode 6 to the semiconductor substrate 1 to form an n-type diffusion layer 8.
Electrical connection using the buried contact 4 is completed. In this embodiment as well, since electrical connection is also made by the selectively grown tungsten 5 in the buried contact 4, the substantial contact area between the diffusion layer 8 and the gate electrode 6 is increased.
Contact resistance can be reduced compared to conventional methods. Incidentally, in the present invention, instead of tungsten in each of the above embodiments, other conductive materials,
It is also possible to use metals such as titanium or polycrystalline silicon.

【0013】[0013]

【発明の効果】以上説明したように本発明は、埋込コン
タクト内に導電膜を選択的に形成する工程、或いはゲー
ト電極及び埋込コンタクトの夫々に導電膜を選択的に形
成する工程を含んでいるので、拡散層とゲート電極は導
電膜によって埋込コンタクトの全域で電気接続されるこ
とになり、両者の実質的な接触面積を増大し、コンタク
ト抵抗を低減することができる効果がある。
[Effects of the Invention] As explained above, the present invention includes a step of selectively forming a conductive film within a buried contact, or a step of selectively forming a conductive film on each of a gate electrode and a buried contact. Therefore, the diffusion layer and the gate electrode are electrically connected by the conductive film over the entire area of the buried contact, which has the effect of increasing the substantial contact area between the two and reducing the contact resistance.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】(a)乃至(e)は本発明の第1実施例を製造
工程順に示す断面図である。
FIGS. 1A to 1E are cross-sectional views showing a first embodiment of the present invention in the order of manufacturing steps.

【図2】(a)乃至(e)は本発明の第2実施例を製造
工程順に示す断面図である。
FIGS. 2(a) to 2(e) are cross-sectional views showing a second embodiment of the present invention in the order of manufacturing steps.

【図3】(a)乃至(c)は従来の製造方法を工程順に
示す断面図である。
FIGS. 3A to 3C are cross-sectional views showing a conventional manufacturing method in the order of steps.

【符号の説明】[Explanation of symbols]

1  半導体基板 2  素子分離酸化膜 3  ゲート酸化膜 4  埋込コンタクト 5  タングステン 6  ゲート電極 1 Semiconductor substrate 2 Element isolation oxide film 3 Gate oxide film 4 Embedded contact 5 Tungsten 6 Gate electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  素子分離領域が形成された半導体基板
の一主面上に、ゲート酸化膜を形成する工程と、このゲ
ート酸化膜を選択的に除去して埋込コンタクトを開口す
る工程と、この埋込コンタクト内に露呈された前記半導
体基板の表面にタングステン、チタン等の金属或いは多
結晶シリコン、単結晶シリコン等からなる導電膜を選択
的に成長させる工程と、この導電膜上に多結晶シリコン
を成長しかつこれをパターン形成して少なくともその一
部が前記埋込コンタクト上に位置されるゲート電極を形
成する工程と、このゲート電極及び前記導電膜を通して
不純物を前記半導体基板に導入して熱処理を加え、埋込
コンタクトを含む領域に拡散層を形成する工程を含むこ
とを特徴とする半導体装置の製造方法。
1. A step of forming a gate oxide film on one main surface of a semiconductor substrate in which an element isolation region is formed, and a step of selectively removing the gate oxide film to open a buried contact. A process of selectively growing a conductive film made of a metal such as tungsten or titanium, polycrystalline silicon, single crystal silicon, etc. on the surface of the semiconductor substrate exposed in the buried contact, and growing silicon and patterning it to form a gate electrode, at least a portion of which is located over the buried contact; and introducing impurities into the semiconductor substrate through the gate electrode and the conductive film. A method for manufacturing a semiconductor device, comprising the step of applying heat treatment to form a diffusion layer in a region including a buried contact.
【請求項2】  素子分離領域が形成された半導体基板
の一主面上に、ゲート酸化膜を形成する工程と、このゲ
ート酸化膜を選択的に除去して埋込コンタクトを開口す
る工程と、多結晶シリコンを成長しかつこれをパターン
形成して少なくともその一部が前記埋込コンタクトに接
触されるゲート電極を形成する工程と、全面に酸化膜を
形成した後前記埋込コンタクトに相当する領域の該酸化
膜を除去する工程と、前記埋込コンタクト内に露呈され
た前記半導体基板の表面及びゲート電極の表面に夫々タ
ングステン、チタン等の金属或いは多結晶シリコン、単
結晶シリコン等からなる導電膜を選択的に成長させる工
程と、前記ゲート電極及び前記導電膜を通して不純物を
前記半導体基板に導入して熱処理を加え、埋込コンタク
トを含む領域に拡散層を形成する工程を含むことを特徴
とする半導体装置の製造方法。
2. Forming a gate oxide film on one main surface of the semiconductor substrate on which the element isolation region is formed; selectively removing the gate oxide film to open a buried contact; a step of growing polycrystalline silicon and patterning it to form a gate electrode, at least a portion of which is in contact with the buried contact; and forming an oxide film over the entire surface and then forming an area corresponding to the buried contact. a conductive film made of metal such as tungsten, titanium, polycrystalline silicon, single crystal silicon, etc. on the surface of the semiconductor substrate exposed in the buried contact and the surface of the gate electrode, respectively. and a step of introducing an impurity into the semiconductor substrate through the gate electrode and the conductive film and applying heat treatment to form a diffusion layer in a region including the buried contact. A method for manufacturing a semiconductor device.
JP3126876A 1991-04-30 1991-04-30 Method for manufacturing semiconductor device Expired - Fee Related JP2621686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3126876A JP2621686B2 (en) 1991-04-30 1991-04-30 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3126876A JP2621686B2 (en) 1991-04-30 1991-04-30 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04329671A true JPH04329671A (en) 1992-11-18
JP2621686B2 JP2621686B2 (en) 1997-06-18

Family

ID=14946035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3126876A Expired - Fee Related JP2621686B2 (en) 1991-04-30 1991-04-30 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2621686B2 (en)

Also Published As

Publication number Publication date
JP2621686B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
US5472897A (en) Method for fabricating MOS device with reduced anti-punchthrough region
US6066534A (en) Method of manufacturing a field effect transistor
JPS6046831B2 (en) Manufacturing method of semiconductor device
KR0161474B1 (en) Method of manufacturing semiconductor memory device using cell plug ion injection
US5610092A (en) Method for fabricating large capacity NAND type ROM with short memory cell gate length
JPH07326595A (en) Manufacture of semiconductor device
JP2001068546A (en) Manufacture of semiconductor device
JP2621686B2 (en) Method for manufacturing semiconductor device
US6307248B1 (en) Definition of anti-fuse cell for programmable gate array application
JPH0640549B2 (en) Method for manufacturing MOS semiconductor device
JP2557206B2 (en) Method for manufacturing semiconductor device
KR20000019080A (en) Method for manufacturing mos transistors
KR0151039B1 (en) Semiconductor device with polycide interconnection constructure
JP2000188396A (en) Manufacture of semiconductor device
JPH09139382A (en) Manufacture of semiconductor device
JPH0321100B2 (en)
US6365469B2 (en) Method for forming dual-polysilicon structures using a built-in stop layer
JP2550302B2 (en) Method for manufacturing semiconductor device
KR100236049B1 (en) Bipolar transistor and method of manufacturing the same
JPH0661250A (en) Manufacture of semiconductor device
JP2727576B2 (en) Method for manufacturing semiconductor device
KR0172253B1 (en) Method of manufacturing semiconductor device
JPH021922A (en) Manufacture of semiconductor device
JPH04162660A (en) Semiconductor device
JPH1041479A (en) Manufacturing method of semiconductor memory cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees