JPH04328874A - Electrostatic induction transistor and manufacture thereof - Google Patents

Electrostatic induction transistor and manufacture thereof

Info

Publication number
JPH04328874A
JPH04328874A JP12486291A JP12486291A JPH04328874A JP H04328874 A JPH04328874 A JP H04328874A JP 12486291 A JP12486291 A JP 12486291A JP 12486291 A JP12486291 A JP 12486291A JP H04328874 A JPH04328874 A JP H04328874A
Authority
JP
Japan
Prior art keywords
terrace
substrate
terraces
layer
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12486291A
Other languages
Japanese (ja)
Inventor
Satoshi Terada
聡 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP12486291A priority Critical patent/JPH04328874A/en
Publication of JPH04328874A publication Critical patent/JPH04328874A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a grid and a channel section possessed of a hetero-junction interface excellent in Schottky junction characteristics. CONSTITUTION:A substrate 1 has such a stepped and sloping surface that flat terraces 1a and steps 1b whose risers are vertical to the terraces 1a are provided extending from one side to the other side, and an N-type GaAs semiconductor layer 2 is provided onto the surface of the substrate 1 to form terraces 2a and steps 2b uniform in shape, a vertical superlattice layer which constitutes a grid section 3 and a vertical superlattice layer which forms a channel section 4 are formed on each of the terraces 2a through an atomic layer epitaxy method taking advantage of the steps 2b so as to come into contact with each other, and an I-type GaAs semiconductor layer 5 is laminated thereon.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はグリッド部に対する電圧
制御によりソース領域からチャネル部へのキャリア注入
量を制御する静電誘導トランジスタ及びその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static induction transistor that controls the amount of carriers injected from a source region to a channel region by controlling a voltage applied to a grid region, and a method for manufacturing the same.

【0002】0002

【従来の技術】図3は従来の静電誘導トランジスタ(日
本語版サイエンス  1983年2月発行,西澤潤一 
 静電誘導トランジスタ)を示す断面構造図であり、図
示しない基板上にn− 型のドレイン電極28、n型の
GaAsからなるドレイン領域22、n− 型のGaA
s層23を形成し、このn− 型のGaAs層23中に
メッシュ状、或いは格子状に不純物を拡散してp+ 型
のゲート領域を形成し、更にこの上にn型のGaAsか
らなるソース領域25を形成し、このソース領域25上
にn+ 型のソース電極27を積層し、更に前記ゲート
領域24にはp+ 型のゲート電極29を形成して構成
してある。
[Prior Art] Figure 3 shows a conventional static induction transistor (Japanese version of Science, published February 1983, Junichi Nishizawa)
This is a cross-sectional structural diagram showing an n-type drain electrode 28, a drain region 22 made of n-type GaAs, and an n-type GaAs on a substrate (not shown).
An s-layer 23 is formed, and impurities are diffused into the n- type GaAs layer 23 in a mesh or lattice pattern to form a p+-type gate region, and on top of this, a source region made of n-type GaAs is formed. 25 is formed, an n+ type source electrode 27 is laminated on this source region 25, and a p+ type gate electrode 29 is further formed in the gate region 24.

【0003】0003

【発明が解決しようとする課題】ところでこのような従
来の静電誘導トランジスタではゲート領域はn− 型の
GaAs層23内に不純物をイオン注入して形成してい
るため、グリッド部となるゲート領域24とチャネル部
となるn− 型のGaAs層23との間のヘテロ接合界
面では不純物濃度が漸減する態様で分布することとなり
、ショトキー接合特性が悪く、トランジスタとしての性
能向上に限界があった。
[Problems to be Solved by the Invention] However, in such a conventional static induction transistor, the gate region is formed by ion-implanting impurities into the n- type GaAs layer 23, so the gate region, which becomes the grid portion, is At the heterojunction interface between the transistor 24 and the n- type GaAs layer 23 serving as the channel portion, the impurity concentration is distributed in a gradually decreasing manner, resulting in poor Schottky junction characteristics and a limit to improvement in performance as a transistor.

【0004】この対策として反応性イオンエッチングに
より、n− 型のGaAs層23の所定個所に孔を穿っ
てこれにグリッド部用材料を充填形成する方法が提案さ
れているが、孔が微細になると隙間なく充填することが
難しくなり、グリッド部とチャネル部とのヘテロ接合界
面に十分なショトキー接合特性が得られないという問題
があった。本発明はかかる事情に鑑みなされたものであ
って、その目的とするところはグリッド部, チャネル
部間にショトキー接合特性の良好なヘテロ接合界面を有
する静電誘導トランジスタ及びその製造方法を提供する
にある。
As a countermeasure to this problem, a method has been proposed in which holes are formed at predetermined locations in the n- type GaAs layer 23 by reactive ion etching and filled with grid material. There was a problem in that it became difficult to fill without gaps, and sufficient Schottky junction characteristics could not be obtained at the heterojunction interface between the grid part and the channel part. The present invention has been made in view of the above circumstances, and its purpose is to provide a static induction transistor having a heterojunction interface with good Schottky junction characteristics between a grid portion and a channel portion, and a method for manufacturing the same. be.

【0005】[0005]

【課題を解決するための手段】本発明に係る静電誘導ト
ランジスタは、平坦面をもつテラスとこれと垂直なステ
ップとによって一側から他側に向けて段階的に傾斜した
表面を備える基板と、前記テラス上にこれと垂直な方向
に形成された、グリッド部を構成する縦型の超格子層及
びこれと接した状態でチャネル部を構成する縦型の他の
超格子層と、これら両超格子層にわたって積層された半
導体層とを有することを特徴とする。
[Means for Solving the Problems] A static induction transistor according to the present invention includes a substrate having a surface that is gradually inclined from one side to the other side by a terrace having a flat surface and steps perpendicular to the terrace. , a vertical superlattice layer forming a grid section formed on the terrace in a direction perpendicular thereto, and another vertical superlattice layer forming a channel section in contact with the superlattice layer, and both of these layers. The semiconductor layer is stacked over the superlattice layer.

【0006】本発明に係る静電誘導トランジスタの製造
方法は、平坦面をもつテラスとこれと垂直な面をもつス
テップとによって一側から他側に向けて段階的に傾斜し
た表面を備える基板を形成する過程と、前記各基板のテ
ラス上と対応する位置に原子層エピタキシー法を用いて
相互に接合させた2種の縦型半導体超格子層を成長させ
てグリッド部とチャネル部とを形成する工程とを含むこ
とを特徴とする。
The method for manufacturing a static induction transistor according to the present invention includes a substrate having a surface that is gradually inclined from one side to the other side by terraces having flat surfaces and steps having surfaces perpendicular to the terraces. In addition, two types of vertical semiconductor superlattice layers bonded to each other using atomic layer epitaxy are grown at positions corresponding to the terraces of each substrate to form a grid portion and a channel portion. It is characterized by including a process.

【0007】[0007]

【作用】本発明に係る静電誘導トランジスタにあっては
、平坦面を有するテラス及びこれと垂直な面をもつステ
ップにより一側から他側に向けて傾斜した表面をもつ基
板を用いることによって、ステップ面を利用してテラス
上にグリッド部,チャネル部夫々を構成する縦型超格子
層を相互に材料の混入のない状態で接合形成することが
可能となり、両者の間にショトキー接合特性に優れたヘ
テロ接合界面が得られる。
[Operation] In the static induction transistor according to the present invention, by using a substrate having a surface inclined from one side to the other side by a terrace having a flat surface and a step having a surface perpendicular to the terrace, By using the step surface, it is possible to bond the vertical superlattice layers that make up the grid section and the channel section on the terrace without any material being mixed in with each other, resulting in excellent Schottky bonding properties between the two. A heterojunction interface is obtained.

【0008】また本発明に係る静電誘導トランジスタの
製造方法にあっては、原子層エピタキシー法により基板
のテラス上に独立して、夫々グリッド部,チャネル部を
構成する縦型超格子層を形成するから、相互の接合面は
ショトキー接合特性に優れたヘテロ接合界面となる。
Further, in the method for manufacturing a static induction transistor according to the present invention, vertical superlattice layers constituting a grid portion and a channel portion, respectively, are formed independently on the terrace of a substrate by an atomic layer epitaxy method. Therefore, the mutual bonding surfaces become heterojunction interfaces with excellent Schottky bonding characteristics.

【0009】[0009]

【実施例】以下本発明を図面に基づき具体的に説明する
。図1,図2は本発明に係る静電誘導トランジスタの製
造方法の主要製造工程を示す模式的断面図であり、図中
1は微傾斜面基板を示している。微傾斜面基板1はn型
GaAs単結晶基板表面を所定結晶軸に対して傾斜させ
て研磨することにより、一側から他側に向けて平坦な面
をもつテラス1aと垂直面をもつステップ1bとによっ
て段階的に傾斜した状態となっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. 1 and 2 are schematic cross-sectional views showing the main manufacturing steps of the method for manufacturing an electrostatic induction transistor according to the present invention, and 1 in the figures indicates a slightly inclined surface substrate. Slightly inclined surface substrate 1 is produced by polishing the surface of an n-type GaAs single crystal substrate at an angle to a predetermined crystal axis, thereby forming a terrace 1a having a flat surface from one side to the other and a step 1b having a vertical surface. It is in a state of inclination in stages.

【0010】各テラス1aはその面積は異なっているが
、相互に略平行な平面となっており、またステップ1b
は1分子又は1原子相当分の段差であって、いずれもそ
の高さは略一定である。このような微傾斜面基板1の表
面に原子層エピタキシー法(ALE)法を用いてn型 
(不純物濃度:3×1017cm−3)半導体層2を形
成し、幅が160 Åで略一定のテラス2a, 高さが
1分子又は1原子相当となるステップ2bとなるよう形
状を整える。
Although the areas of the terraces 1a are different, they are planes that are substantially parallel to each other, and the terraces 1a have different areas.
is a step equivalent to one molecule or one atom, and the height is approximately constant in both cases. An n-type layer is formed on the surface of such a slightly inclined substrate 1 using atomic layer epitaxy (ALE).
(Impurity concentration: 3×10 17 cm −3 ) A semiconductor layer 2 is formed and shaped so that the terrace 2 a has a substantially constant width of 160 Å and the step 2 b has a height equivalent to one molecule or one atom.

【0011】次に原子層エピタキシー法により各テラス
2a上にグリッド部3を構成するNix Al1−x 
を、続いてチャネル部4を構成するn型GaAs半導体
を夫々テラスの1/2 相当の幅だけ1分子又は1原子
相当の高さづつ所定回数反復形成することによって、幅
80ÅのNix Al1−x の縦形超格子層からなる
グリッド部3、同じく幅80Åのn型GaAsの縦形超
格子層からなるチャネル部4を夫々相接した状態で高さ
80Å程度に形成する。
Next, Nix Al1-x is formed to form a grid portion 3 on each terrace 2a by atomic layer epitaxy.
Then, by repeatedly forming the n-type GaAs semiconductor constituting the channel portion 4 by a predetermined number of times with a width equivalent to 1/2 of the terrace and a height equivalent to one molecule or one atom, Nix Al1-x with a width of 80 Å is formed. A grid portion 3 made of a vertical superlattice layer of n-type GaAs having a width of 80 Å and a channel portion 4 made of a vertical superlattice layer of n-type GaAs having a width of 80 Å are formed in contact with each other and have a height of about 80 Å.

【0012】その後同じく原子層エピタキシー法により
図2(a) に示す如く、厚さ100 Åのi型GaA
sからなる半導体層5を略均一な厚さに形成し、更に図
2(b) に示す如くn型GaAsからなる半導体層6
を積層形成する。なお図示していないが、微傾斜面基板
1の下面, n型のGaAsからなる半導体層6の表面
及びグリッド部3に夫々電極を形成してある。
Thereafter, using the same atomic layer epitaxy method, an i-type GaA film with a thickness of 100 Å was grown as shown in FIG.
A semiconductor layer 5 made of GaAs is formed to have a substantially uniform thickness, and a semiconductor layer 6 made of n-type GaAs is further formed as shown in FIG. 2(b).
Laminated and formed. Although not shown, electrodes are formed on the lower surface of the slightly inclined substrate 1, on the surface of the semiconductor layer 6 made of n-type GaAs, and on the grid portion 3, respectively.

【0013】而してこのような本発明に係る静電誘導ト
ランジスタ及びその製造方法にあっては、グリッド部3
に負電圧を印加することによってチャネル部4を通流す
る電流を遮断し、またグリッド部3に零又は正電圧を印
加することによりチャネル部4に電流を通流させること
が可能となる。またグリッド部3,チャネル部4の形成
には、原料ガスを交互に互いに混合することのないよう
にしてチャンバ内に流すことで吸着が単分子層で自己停
止機能により停止し、2層目の分子が到達しても吸着し
ない、所謂ガス分子吸着選択効果を利用する原子エピタ
キシー法を用いるから、グリッド部3,チャネル部4の
成長は原料ガス1回の導入につき1原子層毎の成長が進
行する。
[0013] In the electrostatic induction transistor and the manufacturing method thereof according to the present invention, the grid portion 3
By applying a negative voltage to the grid part 3, it is possible to cut off the current flowing through the channel part 4, and by applying a zero or positive voltage to the grid part 3, it is possible to make the current flow through the channel part 4. In addition, to form the grid part 3 and channel part 4, the raw material gases are flowed into the chamber alternately without being mixed with each other, so that the adsorption is stopped in a monomolecular layer by a self-stopping function, and the second layer is Since we use the atomic epitaxy method that utilizes the so-called gas molecule adsorption selection effect, in which molecules are not adsorbed even when they arrive, the growth of the grid portion 3 and channel portion 4 progresses one atomic layer at a time for each introduction of the source gas. do.

【0014】従ってNix Al1−x の原料ガス及
びn型のGaAsの原料ガスを交互に供給することによ
り、テラス上面に1分子層又は1原子層の速度で、材料
が相互に混入することなくグリッド部3,チャネル部4
の成長が行われ、グリッド部3を構成するNix Al
1−x の縦型超格子層とチャネル部4を構成するn型
のGaAsの縦型超格子層とが相互に接した状態で独立
して形成され、幅160 Åのテラス上に幅80Åづつ
ステップ側からNix Al1−x からなるグリッド
部3,n型のGaAsからなるチャネル部4が相接した
状態で積層せしめられてショトキー接合特性に優れたヘ
テロ接合界面が得られることとなる。
Therefore, by alternately supplying the raw material gas of Nix Al1-x and the raw material gas of n-type GaAs, a grid is formed on the upper surface of the terrace at a rate of one molecular layer or one atomic layer without the materials mixing with each other. Part 3, Channel part 4
is grown, forming the grid part 3.
1-x vertical superlattice layer and the n-type GaAs vertical superlattice layer constituting the channel part 4 are formed independently in contact with each other, and are formed on a terrace with a width of 160 Å each with a width of 80 Å. From the step side, the grid portion 3 made of Nix Al1-x and the channel portion 4 made of n-type GaAs are stacked in contact with each other, resulting in a heterojunction interface with excellent Schottky junction characteristics.

【0015】[0015]

【発明の効果】以上の如く本発明に係る静電誘導トラン
ジスタ及びその製造方法にあっては、異種半導体の超格
子層を相互の間に、材料が混入することなく相接した状
態で形成出来て、ショトキー接合特性の優れたヘテロ界
面をもつグリッド部,チャネル部を形成得、特性の向上
、及び信頼性の向上に優れた効果を奏するものである。
As described above, in the static induction transistor and the manufacturing method thereof according to the present invention, superlattice layers of different types of semiconductors can be formed in a state in which they are in contact with each other without mixing of materials between them. Therefore, it is possible to form a grid portion and a channel portion having a hetero-interface with excellent Schottky junction characteristics, which is effective in improving characteristics and reliability.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係る静電誘導トランジスタの製造方法
の主要製造工程を示す模式的断面図である。
FIG. 1 is a schematic cross-sectional view showing the main manufacturing steps of a method for manufacturing a static induction transistor according to the present invention.

【図2】本発明に係る静電誘導トランジスタの製造方法
の主要製造工程を示す模式的断面図である。
FIG. 2 is a schematic cross-sectional view showing the main manufacturing steps of the method for manufacturing a static induction transistor according to the present invention.

【図3】従来の静電誘導トランジスタを示す断面構造図
である。
FIG. 3 is a cross-sectional structural diagram showing a conventional static induction transistor.

【符号の説明】[Explanation of symbols]

1  微傾斜面基板 1a  テラス 1b  ステップ 2  n型GaAsからなる半導体層 2a  テラス 2b  ステップ 3  グリッド部 4  チャネル部 5  i型GaAsからなる半導体層 6  n型GaAsからなる半導体層 1 Slightly inclined surface substrate 1a Terrace 1b Step 2 Semiconductor layer made of n-type GaAs 2a Terrace 2b Step 3 Grid section 4 Channel part 5 Semiconductor layer made of i-type GaAs 6 Semiconductor layer made of n-type GaAs

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  平坦面をもつテラスとこれと垂直なス
テップとによって一側から他側に向けて段階的に傾斜し
た表面を備える基板と、前記テラス上にこれと垂直な方
向に形成された、グリッド部を構成する縦型の超格子層
及びこれと接した状態でチャネル部を構成する縦型の他
の超格子層と、これら両超格子層にわたって積層された
半導体層とを有することを特徴とする静電誘導トランジ
スタ。
1. A substrate having a surface that is gradually inclined from one side to the other side by a terrace having a flat surface and a step perpendicular to the terrace, and a substrate formed on the terrace in a direction perpendicular to the terrace. , having a vertical superlattice layer constituting a grid portion, another vertical superlattice layer constituting a channel portion in contact with the vertical superlattice layer, and a semiconductor layer laminated across both these superlattice layers. Characteristics of static induction transistors.
【請求項2】  平坦面をもつテラスとこれと垂直な面
をもつステップとによって一側から他側に向けて段階的
に傾斜した表面を備える基板を形成する工程と、前記基
板の各テラスと対応する位置に原子層エピタキシー法を
用いて相互に接合させた2種の縦型半導体超格子層を成
長させてグリッド部とチャネル部とを形成する工程とを
含むことを特徴とする静電誘導トランジスタの製造方法
2. A step of forming a substrate having a surface gradually sloped from one side to the other by terraces having flat surfaces and steps having surfaces perpendicular to the terraces, each terrace of the substrate comprising: Electrostatic induction comprising the step of growing two types of vertical semiconductor superlattice layers that are bonded to each other at corresponding positions using atomic layer epitaxy to form a grid part and a channel part. Method of manufacturing transistors.
JP12486291A 1991-04-27 1991-04-27 Electrostatic induction transistor and manufacture thereof Pending JPH04328874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12486291A JPH04328874A (en) 1991-04-27 1991-04-27 Electrostatic induction transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12486291A JPH04328874A (en) 1991-04-27 1991-04-27 Electrostatic induction transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04328874A true JPH04328874A (en) 1992-11-17

Family

ID=14895941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12486291A Pending JPH04328874A (en) 1991-04-27 1991-04-27 Electrostatic induction transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04328874A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128965A (en) * 2005-11-01 2007-05-24 Renesas Technology Corp Switching semiconductor device and its manufacturing method
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
JP2007128965A (en) * 2005-11-01 2007-05-24 Renesas Technology Corp Switching semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
US10074536B2 (en) Lattice-mismatched semiconductor structures and related methods for device fabrication
JP2817995B2 (en) III-V compound semiconductor heterostructure substrate and III-V compound heterostructure semiconductor device
JPH04328874A (en) Electrostatic induction transistor and manufacture thereof
KR100548047B1 (en) Field Effect Transistor
JPH08213594A (en) Field-effect transistor
US4811070A (en) Heterojunction bipolar transistor with inversion layer base
JPH03159135A (en) Semiconductor device and its manufacture
JP2619734B2 (en) Semiconductor substrate and method of manufacturing the same
KR960006751B1 (en) Hetero-junction bipolar transistor and the manufacturing method thereof
JPH01289163A (en) Semiconductor device
JP2718511B2 (en) Compound semiconductor device
JP2535738B2 (en) Semiconductor device
US6936530B1 (en) Deposition method for Si-Ge epi layer on different intermediate substrates
JP2003124223A (en) Compound semiconductor bipolar transistor and method for manufacturing the same
JPH02306668A (en) Semiconductor device with quantum fine wire and manufacture thereof
JP3057503B2 (en) Compound semiconductor growth method
JPH0620039B2 (en) Manufacturing method of semiconductor device
JP2557613B2 (en) Heterojunction bipolar transistor
JP2512084B2 (en) Method for manufacturing semiconductor device
JP2878488B2 (en) Semiconductor substrate manufacturing method
CN113990741A (en) Semiconductor structure and manufacturing method thereof
JP3106526B2 (en) Compound semiconductor growth method
JPS62119915A (en) Semiconductor device
JPH08279518A (en) Semiconductor substrate for igbt and manufacturing method thereof
JP2003059937A (en) Semiconductor device