JPH04328296A - Manufacture of thin film light emitting element - Google Patents

Manufacture of thin film light emitting element

Info

Publication number
JPH04328296A
JPH04328296A JP3125420A JP12542091A JPH04328296A JP H04328296 A JPH04328296 A JP H04328296A JP 3125420 A JP3125420 A JP 3125420A JP 12542091 A JP12542091 A JP 12542091A JP H04328296 A JPH04328296 A JP H04328296A
Authority
JP
Japan
Prior art keywords
thin film
amorphous carbon
hydrogenated amorphous
light emitting
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3125420A
Other languages
Japanese (ja)
Inventor
Noboru Otani
昇 大谷
Masakazu Katsuno
正和 勝野
Toshirou Futaki
二木 登史郎
Kazuhiko Kawamura
和彦 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3125420A priority Critical patent/JPH04328296A/en
Publication of JPH04328296A publication Critical patent/JPH04328296A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To provide a manufacturing method of noncrystal hydride carbon thin film electroluminescence(EL) element whose blue color purity is high. CONSTITUTION:Noncrystal carbon hydride thin film which is a light emitting layer of noncrystal carbon hydride thin film EL devices is manufactured by high frequency plasma chemical vapor deposition(CVD) from 100% gas of ethylene as raw gas and at a substrate temperature of 100 deg.C or lower and at a reaction gas pressure of 0.5 Torr or more. Under the conditions of this invention, a chain polymerization reaction of ethylene gas is apt to occur, and resultantly, it is possible to fix many polyethylene bonding structures which become source of light emission into noncrystal carbon hydride thin film, so that it is possible to improve blue color purity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、大面積ディスプレイ等
に用いることができる薄膜発光素子の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film light emitting device that can be used for large area displays and the like.

【0002】0002

【従来の技術】水素化非晶質半導体薄膜は、大面積化が
容易なこと、発光効率が高いこと等の特徴を有し、この
水素化非晶質半導体薄膜を用いた薄膜エレクトロルミネ
ッセンス(EL)素子が、大面積で且つ赤から青までの
光を目的に応じて出すEL素子として研究されている。
[Prior Art] Hydrogenated amorphous semiconductor thin films have the characteristics of being easy to increase in area and having high luminous efficiency.Thin film electroluminescence (EL) using this hydrogenated amorphous semiconductor thin film ) device is being researched as an EL device that has a large area and emits light from red to blue depending on the purpose.

【0003】0003

【発明が解決しようとする課題】しかしながら、従来の
非晶質半導体薄膜EL素子では、青色発光の素子が得ら
れないという問題があった。青色発光の素子が得られな
い主な理由は次の通りである。即ち、従来は、発光層と
して、通常、バンドギャップが2.5〜3.3eVの水
素化非晶質シリコンカーボン薄膜が用いられてきたが、
この水素化非晶質シリコンカーボン薄膜のバンドギャッ
プが青色発光を示すには狭く、このため、薄膜EL素子
を形成した際に青色発光が得られなかった。
[Problems to be Solved by the Invention] However, conventional amorphous semiconductor thin film EL devices have a problem in that blue light emitting devices cannot be obtained. The main reasons why blue-emitting devices cannot be obtained are as follows. That is, conventionally, a hydrogenated amorphous silicon carbon thin film with a band gap of 2.5 to 3.3 eV has been used as a light emitting layer.
The bandgap of this hydrogenated amorphous silicon carbon thin film was too narrow to emit blue light, and therefore blue light could not be emitted when a thin film EL element was formed.

【0004】このような事情から、広いバンドギャップ
を有し且つ高発光効率を示す材料の研究が行われ、その
結果、高周波プラズマ化学堆積法(PCVD法)を用い
、希釈されたエチレンガスを分解することによって、バ
ンドギャップが3.6eV以上で高発光効率を示す水素
化非晶質カーボン薄膜が開発された。そして、この水素
化非晶質カーボン薄膜を非晶質シリコン系薄膜EL素子
の発光層に用いて、青色発光する非晶質半導体薄膜EL
素子が実現された。しかしながら、それでも、その青色
純度はかなり悪かった(Yoshihiro Hama
kawa et al. ”Journal of N
on−Crystalline Solids” Vo
l.115, 1989, p.180−182)。
[0004] Under these circumstances, research has been conducted on materials that have a wide bandgap and exhibit high luminous efficiency, and as a result, diluted ethylene gas has been decomposed using radio frequency plasma chemical deposition (PCVD). As a result, a hydrogenated amorphous carbon thin film with a band gap of 3.6 eV or more and high luminous efficiency was developed. This hydrogenated amorphous carbon thin film is then used as a light-emitting layer of an amorphous silicon-based thin film EL device to create an amorphous semiconductor thin film EL device that emits blue light.
The device was realized. However, its blue purity was still quite poor (Yoshihiro Hama
Kawa et al. ”Journal of N
on-Crystalline Solids” Vo
l. 115, 1989, p. 180-182).

【0005】そこで、本発明は、水素化非晶質カーボン
薄膜EL素子の青色純度の向上を目的としたものである
[0005] Therefore, the present invention aims to improve the blue purity of a hydrogenated amorphous carbon thin film EL device.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、少なくとも一方が透明又は透光性であ
る2つの電極層を備え、これらの2つの電極層間に、バ
ンドギャップが3.5eV以上の絶縁性薄膜、水素化非
晶質カーボン薄膜及びバンドギャップが3.5eV以上
の絶縁性薄膜を順に設けた薄膜発光素子の製造方法にお
いて、前記非晶質カーボン薄膜を、高周波プラズマ化学
堆積法により、原料ガスとして実質的にエチレンガスの
みを用い、基板温度100℃以下、反応ガス圧0.5T
orr以上の条件で製造する。
[Means for Solving the Problems] In order to solve the above problems, the present invention includes two electrode layers, at least one of which is transparent or translucent, and has a band gap of 3 between these two electrode layers. In a method for manufacturing a thin film light emitting device, in which an insulating thin film with a band gap of .5 eV or more, a hydrogenated amorphous carbon thin film, and an insulating thin film with a band gap of 3.5 eV or more are sequentially provided, the amorphous carbon thin film is subjected to high frequency plasma chemistry. By the deposition method, substantially only ethylene gas is used as the raw material gas, the substrate temperature is 100°C or less, and the reaction gas pressure is 0.5T.
Manufactured under conditions of orr or higher.

【0007】ここで、透明又は透光性の電極層は、薄膜
発光素子内で発生した光を外部に取り出すためのもので
あり、例えばSnO2 膜、ITO膜、半透明金属膜等
が用いられる。
[0007] Here, the transparent or translucent electrode layer is for extracting the light generated within the thin film light emitting device to the outside, and for example, a SnO2 film, an ITO film, a semi-transparent metal film, etc. are used.

【0008】また、バンドギャップが3.5eV以上の
絶縁性薄膜としては、酸化イットリウム、水素化非晶質
シリコン窒化薄膜等が用いられる。
Further, as the insulating thin film having a band gap of 3.5 eV or more, yttrium oxide, hydrogenated amorphous silicon nitride thin film, etc. are used.

【0009】[0009]

【作用】従来の水素化非晶質カーボン薄膜を発光層とす
る非晶質半導体薄膜EL素子において、純度の良い青色
発光が得られなかった理由は、本発明者らの実験に基づ
くと、次の通りであると考えられる。
[Operation] Based on experiments conducted by the present inventors, the reason why blue light emission with good purity could not be obtained in the conventional amorphous semiconductor thin film EL device using a hydrogenated amorphous carbon thin film as the light emitting layer is as follows. This is considered to be the case.

【0010】前述した論文に示されているように、水素
化非晶質カーボン薄膜EL素子の発光スペクトルには、
特徴的な3つのピークが現れる。まず第一に、波長67
0nm付近に現れる赤色発光、第二に、520nm付近
に現れる緑色発光、最後に、450nm付近に現れる青
色発光である。従来の水素化非晶質カーボン薄膜EL素
子では、520nm付近の緑色発光のピークが一番強度
が大きく、450nm付近の青色発光のピークと670
nm付近の赤色発光のピークはその半分以下である。こ
の青色発光のピークの強度が小さいことが、青色純度の
悪い原因であった。そこで、青色純度を高めるためには
、この450nm付近の青色発光成分の強度を高めるこ
とが必要である。本発明者らは、この青色発光成分の源
となる膜中の結合構造を検討し、更に、その結合構造を
薄膜中に多量に作り付ける方法を見出した。
As shown in the above-mentioned paper, the emission spectrum of a hydrogenated amorphous carbon thin film EL device has the following characteristics:
Three characteristic peaks appear. First of all, wavelength 67
The second is the red emission that appears around 0 nm, the second is the green emission that appears around 520 nm, and the last is the blue emission that appears around 450 nm. In conventional hydrogenated amorphous carbon thin film EL devices, the green emission peak near 520 nm has the highest intensity, and the blue emission peak near 450 nm and the 670 nm peak have the highest intensity.
The peak of red light emission near nm is less than half of that. The low intensity of this blue emission peak was the cause of poor blue purity. Therefore, in order to increase the blue purity, it is necessary to increase the intensity of this blue light emitting component around 450 nm. The present inventors investigated the bonding structure in the film that is the source of this blue light-emitting component, and further discovered a method for creating a large amount of the bonding structure in the thin film.

【0011】本発明者らは、まず、ポリエチレンの電界
発光において、水素化非晶質カーボン薄膜と類似した4
50nm付近の青色発光が得られていることに着目し(
宮入圭一他、「電子情報通信学会論文誌  C−II」
  Vol.J73−C−II、No.7、pp.41
7−423)、水素化非晶質カーボン薄膜中のポリエチ
レン様結合構造について調べた。その結果、水素化非晶
質カーボン薄膜EL素子においても、やはり発光層であ
る水素化非晶質カーボン薄膜中のポリエチレン様結合構
造が450nm付近の青色発光を担っていることが明ら
かになった。
The present inventors first discovered that in polyethylene electroluminescence, 4
We focused on the fact that blue light emission around 50 nm was obtained (
Keiichi Miyairi et al., “Transactions of the Institute of Electronics, Information and Communication Engineers C-II”
Vol. J73-C-II, No. 7, pp. 41
7-423), investigated the polyethylene-like bond structure in hydrogenated amorphous carbon thin films. As a result, it was revealed that even in the hydrogenated amorphous carbon thin film EL device, the polyethylene-like bond structure in the hydrogenated amorphous carbon thin film, which is the light emitting layer, is responsible for blue light emission around 450 nm.

【0012】次に、本発明者らは、このポリエチレン様
結合構造を水素化非晶質カーボン薄膜中に多量に作り付
けることを目的として、水素化非晶質カーボン薄膜作製
条件の絞り込みを行った。その結果、高周波プラズマC
VD法を用いて、原料ガスを実質的にエチレンガスのみ
とし、基板温度を100℃以下、反応ガス圧を0.5T
orr以上とした条件下で作製した水素化非晶質カーボ
ン薄膜中には、ポリエチレン様結合構造が多量に含まれ
ることを見出し、この水素化非晶質カーボン薄膜を非晶
質半導体薄膜EL素子に適用することによって、非常に
青色純度の高い非晶質半導体薄膜EL素子を作製するこ
とに成功した。ここで、水素化非晶質カーボン薄膜の作
製方法として高周波プラズマCVD法を用いた理由は、
この方法が、素子製造において、大面積での均一性及び
プロセス安定性等で最も優れた方法であるからである。
Next, the present inventors narrowed down the conditions for producing a hydrogenated amorphous carbon thin film with the aim of incorporating a large amount of this polyethylene-like bonding structure into the hydrogenated amorphous carbon thin film. . As a result, high frequency plasma C
Using the VD method, the raw material gas is substantially only ethylene gas, the substrate temperature is 100°C or less, and the reaction gas pressure is 0.5T.
It was discovered that a hydrogenated amorphous carbon thin film produced under conditions of orr or higher contained a large amount of polyethylene-like bonding structure, and this hydrogenated amorphous carbon thin film was used in an amorphous semiconductor thin film EL device. By applying this method, we succeeded in producing an amorphous semiconductor thin film EL device with extremely high blue purity. Here, the reason why high frequency plasma CVD method was used as the method for producing the hydrogenated amorphous carbon thin film is as follows.
This is because this method is the most excellent method in terms of uniformity over a large area, process stability, etc. in device manufacturing.

【0013】上述した条件中、基板温度を100℃以下
とすると、薄膜中に多量に水素が存在するようになり、
上記ポリエチレン様結合構造の形成が促進される。また
、原料ガスとしてエチレンの実質100%ガス(非希釈
ガス)を用い、更に反応ガス圧を0.5Torr以上と
すると、気相中での鎖状重合反応が促進され、膜中に多
量のポリエチレン様結合構造を形成することができる。 なお、水素化非晶質カーボン薄膜の安定堆積を実現する
ためには、基板温度を室温以上、反応ガス圧を2.0T
orr以下とすることが望ましい。
Under the above conditions, if the substrate temperature is 100° C. or lower, a large amount of hydrogen will exist in the thin film,
Formation of the polyethylene-like bonding structure is promoted. In addition, when substantially 100% ethylene gas (non-diluent gas) is used as the raw material gas and the reaction gas pressure is set to 0.5 Torr or more, the chain polymerization reaction in the gas phase is promoted, and a large amount of polyethylene is contained in the film. A similar bonding structure can be formed. In addition, in order to achieve stable deposition of a hydrogenated amorphous carbon thin film, the substrate temperature must be kept above room temperature and the reaction gas pressure must be 2.0T.
It is desirable to set it to orr or less.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0015】図1は、本発明の一実施例による水素化非
晶質カーボン薄膜EL素子の構造を示す概略図である。 ガラス基板1上にSnO2 を堆積して形成した透明電
極2の上に、まず、絶縁性薄膜3として、バンドギャッ
プ5.0eVの非晶質シリコン窒化薄膜を平行平板型高
周波プラズマCVD装置を用い、3000Å堆積した。 堆積条件は、ガス圧力0.4Torr、高周波出力24
W、基板温度180℃、成膜ガス比  SiH4 :N
H3 =1:20である。次に、水素化非晶質カーボン
薄膜4を、やはり平行平板型高周波プラズマCVD装置
により、1000Å堆積した。堆積条件は、ガス圧力1
Torr、高周波出力100W、基板温度50℃、成膜
ガスC2 H4 100%である。次に、絶縁性薄膜5
として、前記の絶縁性薄膜3と同じバンドギャップ5.
0eVの非晶質シリコン窒化薄膜を3000Å同条件で
堆積した。最後に、真空蒸着装置でクロムを蒸着し、電
極6とした。
FIG. 1 is a schematic diagram showing the structure of a hydrogenated amorphous carbon thin film EL device according to an embodiment of the present invention. First, on a transparent electrode 2 formed by depositing SnO2 on a glass substrate 1, an amorphous silicon nitride thin film with a band gap of 5.0 eV is formed as an insulating thin film 3 using a parallel plate type high frequency plasma CVD apparatus. A thickness of 3000 Å was deposited. The deposition conditions were a gas pressure of 0.4 Torr and a high frequency output of 24
W, substrate temperature 180°C, film forming gas ratio SiH4:N
H3 = 1:20. Next, a hydrogenated amorphous carbon thin film 4 of 1000 Å was deposited using a parallel plate high frequency plasma CVD apparatus. The deposition conditions are gas pressure 1
Torr, high frequency output of 100 W, substrate temperature of 50° C., and film forming gas of C2 H4 of 100%. Next, the insulating thin film 5
The bandgap 5. is the same as that of the insulating thin film 3 described above.
A 0 eV amorphous silicon nitride thin film was deposited to a thickness of 3000 Å under the same conditions. Finally, chromium was vapor-deposited using a vacuum evaporator to form an electrode 6.

【0016】図2に、本実施例で作製した水素化非晶質
カーボン薄膜EL素子の交流印加電圧100V、印加電
圧周波数1kHzにおける発光スペクトルを示す。45
0nmの青色発光が、520nmの緑色発光、670n
mの赤色発光に比べ、非常に強くなっており、このこと
より、全体に占める青色発光の割合が増大しているのが
分かる。即ち、本発明の製造方法により、水素化非晶質
カーボン薄膜EL素子の発光スペクトルの青色純度が向
上する。
FIG. 2 shows the emission spectrum of the hydrogenated amorphous carbon thin film EL device produced in this example at an applied AC voltage of 100 V and an applied voltage frequency of 1 kHz. 45
0nm blue emission, 520nm green emission, 670nm
It is much stronger than the red light emitted by m, and it can be seen that the proportion of blue light emitted in the whole is increasing. That is, the manufacturing method of the present invention improves the blue purity of the emission spectrum of the hydrogenated amorphous carbon thin film EL device.

【0017】[0017]

【発明の効果】本発明によれば、水素化非晶質カーボン
薄膜EL素子において、発光層である水素化非晶質カー
ボン薄膜中に、青色発光の源となるポリエチレン様結合
構造を多量に作り付けることができ、その結果、水素化
非晶質カーボン薄膜EL素子の青色純度を向上させるこ
とができる。
According to the present invention, in a hydrogenated amorphous carbon thin film EL device, a large amount of polyethylene-like bonding structure, which is a source of blue light emission, is created in the hydrogenated amorphous carbon thin film that is the light emitting layer. As a result, the blue purity of the hydrogenated amorphous carbon thin film EL device can be improved.

【0018】このことにより、非晶質半導体薄膜EL素
子を用いたカラーディスプレイが可能になる。
[0018] This enables a color display using an amorphous semiconductor thin film EL element.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例による水素化非晶質カーボン
薄膜EL素子の構造を示す概略図である。
FIG. 1 is a schematic diagram showing the structure of a hydrogenated amorphous carbon thin film EL device according to an embodiment of the present invention.

【図2】図1の水素化非晶質カーボン薄膜EL素子の発
光スペクトルを示すグラフである。
FIG. 2 is a graph showing the emission spectrum of the hydrogenated amorphous carbon thin film EL device of FIG. 1;

【符号の説明】[Explanation of symbols]

1  ガラス基板 2  透明電極 3  絶縁性薄膜 4  水素化非晶質カーボン薄膜 5  絶縁性薄膜 6  クロム電極 1 Glass substrate 2 Transparent electrode 3 Insulating thin film 4 Hydrogenated amorphous carbon thin film 5 Insulating thin film 6 Chromium electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  少なくとも一方が透明又は透光性であ
る2つの電極層を備え、これらの2つの電極層間に、バ
ンドギャップが3.5eV以上の絶縁性薄膜、水素化非
晶質カーボン薄膜及びバンドギャップが3.5eV以上
の絶縁性薄膜を順に設けた薄膜発光素子の製造方法にお
いて、前記非晶質カーボン薄膜を、高周波プラズマ化学
堆積法により、原料ガスとして実質的にエチレンガスの
みを用い、基板温度100℃以下、反応ガス圧0.5T
orr以上の条件で製造することを特徴とする薄膜発光
素子の製造方法。
Claim 1: Comprising two electrode layers, at least one of which is transparent or translucent, and between these two electrode layers, an insulating thin film with a band gap of 3.5 eV or more, a hydrogenated amorphous carbon thin film, and a hydrogenated amorphous carbon thin film are provided. In a method for manufacturing a thin film light emitting device in which insulating thin films having a band gap of 3.5 eV or more are sequentially provided, the amorphous carbon thin film is formed by a high frequency plasma chemical deposition method using substantially only ethylene gas as a raw material gas, Substrate temperature 100℃ or less, reaction gas pressure 0.5T
1. A method for manufacturing a thin film light emitting device, characterized in that the device is manufactured under conditions of orr or higher.
JP3125420A 1991-04-26 1991-04-26 Manufacture of thin film light emitting element Withdrawn JPH04328296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3125420A JPH04328296A (en) 1991-04-26 1991-04-26 Manufacture of thin film light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3125420A JPH04328296A (en) 1991-04-26 1991-04-26 Manufacture of thin film light emitting element

Publications (1)

Publication Number Publication Date
JPH04328296A true JPH04328296A (en) 1992-11-17

Family

ID=14909667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3125420A Withdrawn JPH04328296A (en) 1991-04-26 1991-04-26 Manufacture of thin film light emitting element

Country Status (1)

Country Link
JP (1) JPH04328296A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123325A1 (en) * 2008-03-31 2009-10-08 東京エレクトロン株式会社 Process for producing silicon nitride film, process for producing silicon nitride film laminate, computer-readable storage medium, and plasma cvd device
US8119545B2 (en) 2008-03-31 2012-02-21 Tokyo Electron Limited Forming a silicon nitride film by plasma CVD

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123325A1 (en) * 2008-03-31 2009-10-08 東京エレクトロン株式会社 Process for producing silicon nitride film, process for producing silicon nitride film laminate, computer-readable storage medium, and plasma cvd device
US8119545B2 (en) 2008-03-31 2012-02-21 Tokyo Electron Limited Forming a silicon nitride film by plasma CVD

Similar Documents

Publication Publication Date Title
US6926572B2 (en) Flat panel display device and method of forming passivation film in the flat panel display device
WO2018113017A1 (en) Oled display device and manufacturing method therefor
CN108630822B (en) Assembly of top-emitting OLED device and top-emitting OLED device
US5116640A (en) Process for preparing an electroluminescent device
JPH04328296A (en) Manufacture of thin film light emitting element
EP0244874A2 (en) Luminescent material, process for producing it and luminescent semiconductor device using it
KR100289595B1 (en) Group III-nitride semiconductor light emitting device
JPH01298681A (en) Thin film el element
JPH01186589A (en) Electroluminescence element
JP2508015B2 (en) Method of manufacturing light emitting material
JPH0158839B2 (en)
JP2000077183A (en) Manufacture of organic electroluminescent element
JPS5956478A (en) Thin-film luminescent element and preparation of same
KR100464007B1 (en) Mim emitter of field emission device and manufacturing method thereof
JPS60100398A (en) Thin film light emitting element
JPS6054196A (en) Thin film el element
JP2762910B2 (en) Luminescent material
JPH0652806B2 (en) Method for manufacturing semiconductor light emitting device
JPH06112524A (en) Manufacture of thin film light emitting diode
JPH03105898A (en) Organic el device
JPH02216877A (en) Light emitting diode
JPH02260669A (en) Manufacture of light emitting element
KR960004329B1 (en) Manufacturing process of film edge emitter emitting device
JPH05259507A (en) Thin-film light-emitting element and manufacture thereof
JPS59181681A (en) Light emitting element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711