JPS6054196A - Thin film el element - Google Patents

Thin film el element

Info

Publication number
JPS6054196A
JPS6054196A JP58158993A JP15899383A JPS6054196A JP S6054196 A JPS6054196 A JP S6054196A JP 58158993 A JP58158993 A JP 58158993A JP 15899383 A JP15899383 A JP 15899383A JP S6054196 A JPS6054196 A JP S6054196A
Authority
JP
Japan
Prior art keywords
atomic
film
amorphous hydrogenated
thin film
hydrogenated silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58158993A
Other languages
Japanese (ja)
Inventor
山添 勝彦
浩史 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58158993A priority Critical patent/JPS6054196A/en
Publication of JPS6054196A publication Critical patent/JPS6054196A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は非晶質水素化炭化ケイ素薄膜と非晶質水素化窒
化ケイ素薄膜とからなる2重絶縁構造の交流EL素子に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an AC EL device having a double insulation structure consisting of an amorphous hydrogenated silicon carbide thin film and an amorphous hydrogenated silicon nitride thin film.

従来、非晶質薄膜を発光層に用いたEL素子(ELはe
lectroluminescenceの略)に関して
は、非晶質シリコンを用いた素子(J、 1.Pank
oveet al、 App、1. Phys、 Le
tt、 29(,9)1320(1978))及び、非
晶質炭化ケイ素を用いた素子(林木ら、第28回応用物
理学会予稿集、3a−2−8(昭57春))等が知られ
ている。
Conventionally, EL elements (EL is e
Regarding electroluminescence (abbreviation for electroluminescence), elements using amorphous silicon (J, 1.Pank
oveet al, App, 1. Phys, Le
tt, 29 (, 9) 1320 (1978)) and devices using amorphous silicon carbide (Hayashiki et al., Proceedings of the 28th Japan Society of Applied Physics, 3a-2-8 (Spring 1980)), etc. It is being

しかしながら、前者のようにバンドギャップの小さい非
晶質シリコンを用いた素子では可視発光は示さず発光表
示素子として実用上極めて不適である。このような欠点
を克服しようとして最近1、<ン1ζギャップの大きい
非晶質炭化ケイ素が右q!視されるようになった。これ
を用いたのが後者であり、可視のELが報告されている
が、そのEL輝度、駆動安定性等の実用的物性は満足で
きるものではなく、今後の4片、向」二が切望されてい
るのが現状である。又、絶縁膜として電子ビーム蒸着Y
2O3薄膜を用いており、素子作製時に大気中に晒す確
率が極めて高く素子の不安定性及び物性低下等を誘引し
ている。
However, the former device using amorphous silicon with a small band gap does not emit visible light and is extremely unsuitable for practical use as a light emitting display device. Recently, in an attempt to overcome these drawbacks, amorphous silicon carbide with a large <n1ζ gap has been developed. It began to be seen. It is the latter that uses this, and visible EL has been reported, but its practical properties such as EL brightness and drive stability are not satisfactory, and future 4-piece, 2-layer products are desperately needed. The current situation is that In addition, electron beam evaporation Y is used as an insulating film.
Since a 2O3 thin film is used, there is an extremely high probability that the device will be exposed to the atmosphere during device fabrication, leading to instability and deterioration of physical properties of the device.

本発明は係る問題点を克服せんと鋭意検ネ1した紀果、
発光層に非晶質水素化炭化ケイ素、絶縁層に非晶質水素
化窒化ケイ素を用いた2重絶縁構造EL素子が青白色〜
橙色の可視ELを呈すEL能の優れた素子になり得るこ
とを見い出したことに基いてなされた。
The present invention is the result of extensive research to overcome these problems.
A double insulation structure EL element using amorphous hydrogenated silicon carbide for the light emitting layer and amorphous hydrogenated silicon nitride for the insulating layer is blue-white ~
This was based on the discovery that it could be an element with excellent EL ability that exhibits orange visible EL.

本発明は、発光体膜と絶縁体11りの積層構造部を有す
る薄膜EL素子であって、上記発光体1りとして45原
子%以上の炭素含有量(炭素/炭素+ケイ素)を有す非
晶質水素化炭化ケイ素を用い、■1つ上記絶縁体膜とし
て非晶質水素化窒化ケイ素を用いることを特徴とする薄
膜EL素子を提供する。
The present invention is a thin-film EL device having a laminated structure of a light-emitting film and an insulator 11, in which the light-emitting member is made of a non-carbon material having a carbon content of 45 atomic % or more (carbon/carbon+silicon). The present invention provides a thin film EL device using crystalline hydrogenated silicon carbide and (1) using amorphous hydrogenated silicon nitride as the insulating film.

本発明の薄膜EL素子は、発光層として可視発光を示す
非晶質水素化炭化ケイ素、絶縁層として非晶質水素化窒
化ケイ素を用いることを最大の特徴とする。
The main feature of the thin film EL device of the present invention is that amorphous hydrogenated silicon carbide that emits visible light is used as the light emitting layer, and amorphous hydrogenated silicon nitride is used as the insulating layer.

すなわち、素子の各構成膜を全て回−チェンバー内での
グロー放電分解法によって作製できる故、大気に全く晒
すことなしに素子を作製でき、従って不純物混入による
膜表面汚染、界面物性低下によるEL能低下等の悪因子
を除去することが可能である。
In other words, since all of the constituent films of the device can be fabricated by glow discharge decomposition within a cycle chamber, the device can be fabricated without being exposed to the atmosphere at all.Therefore, there is no possibility of film surface contamination due to contamination of impurities or EL performance due to deterioration of interface physical properties. It is possible to remove negative factors such as decline.

又、非晶質水素化窒化ケイ素は以下に示すようにEL素
子に好ましい特徴を有す。
Furthermore, amorphous hydrogenated silicon nitride has favorable characteristics for EL devices as shown below.

(イ)低温で、大面積の薄膜を作成することが可能であ
る。
(b) It is possible to create large-area thin films at low temperatures.

(ロ)高い抵抗値を持つ。(b) Has a high resistance value.

(ハ)高耐電圧性を持つ。(c) Has high voltage resistance.

(ニ)誘電率が大きい。(d) Large dielectric constant.

(ホ)耐湿性に優れている。(e) Excellent moisture resistance.

従って、本発明により作製された素子は可視域に安定に
強いELを示すことが可能である。加えて、絶縁体膜に
非晶質水素化窒化ケイ素を採用しているが故に、素子の
全膜厚を通常のY2O3’al膜を用いた場合よりも薄
くでき発光電圧の低減も達成できるという2重の効果を
示す。
Therefore, the device manufactured according to the present invention can stably exhibit strong EL in the visible region. In addition, because amorphous silicon hydrogenated nitride is used for the insulator film, the total film thickness of the device can be made thinner than when using a normal Y2O3'al film, and a reduction in the light emission voltage can also be achieved. This shows a double effect.

本発明の薄膜EL素子の発光層に用いる非晶質水素化炭
化ケイ素の炭素含有量は45原子%以上であることを必
要とする。45原子%末溝の場合には可視ELを示さず
不適である。ここで炭素含イ1量とは、(炭素)/(炭
素+ケイ素)の原子比を意味する。より好ましい炭素含
有量としては70原子%以上が挙げられる。
The carbon content of the amorphous hydrogenated silicon carbide used in the light emitting layer of the thin film EL device of the present invention is required to be 45 atomic % or more. In the case of 45 atom % end groove, no visible EL is shown and it is unsuitable. Here, the carbon content means the atomic ratio of (carbon)/(carbon+silicon). A more preferable carbon content is 70 atom % or more.

EL輝度及び発光色は炭素含有♀:を適宜調整すること
により変えることが可能である。例えば、青白色発光を
得るには炭素含有量を75原子%以」二に選ぶ必要があ
る。
The EL brightness and emission color can be changed by appropriately adjusting the carbon content ♀. For example, in order to obtain blue-white light emission, the carbon content must be selected to be 75 atomic % or more.

又、非晶質水素化炭化ケイ素に含まれる水素は発光の無
輻射遷移の中心となるダングリングボンドを補うのに特
に効果的に作用しているとイ1察される。水素がない場
合にはダングリングボンドが多く残りELとして劣るが
、多すぎても熱的安定性が低下しデバイスとして好まし
くない。
It is also believed that hydrogen contained in amorphous hydrogenated silicon carbide acts particularly effectively to compensate for dangling bonds, which are the center of non-radiative transition of light emission. If there is no hydrogen, many dangling bonds remain and the EL is poor, but if there is too much hydrogen, the thermal stability decreases and is not preferred as a device.

水素量の範囲としては3原子%以」−60原子%以下、
好ましくは3原子%以」−50原子%以下が挙げられる
The range of hydrogen content is 3 atomic % or more - 60 atomic % or less,
Preferably, the range is 3 atomic % or more and 50 atomic % or less.

又、非晶質水素化炭化ケイ素に酸素又は窒素の少くとも
1種を含有させることにより、EL強度の増大及びEL
スペクトルの半値rtJの減少が可能であり実用上好ま
しい特性を賦与することができる。酸素又は窒素の含有
量としては、少くとも一方を1原子%〜7原子%含むこ
とが好ましい。7原子%を超えると発光層の抵抗が著し
く高くなりEL素子として不適である。0.1原子%未
満では酸素又は窒素を含有した効果が顕著ではない。
Furthermore, by incorporating at least one of oxygen or nitrogen into the amorphous hydrogenated silicon carbide, the EL intensity can be increased and the EL
It is possible to reduce the half value rtJ of the spectrum, and it is possible to impart practically preferable characteristics. The content of oxygen or nitrogen is preferably 1 atomic % to 7 atomic % of at least one of them. If it exceeds 7 atomic %, the resistance of the light emitting layer becomes extremely high, making it unsuitable for use as an EL device. If the content is less than 0.1 atomic %, the effect of containing oxygen or nitrogen is not significant.

一方、絶縁体膜としての非晶質水素化窒化ケイ素のケイ
素含有量は43〜50原子%が好ましい。この範囲外で
はEL素子用の良好な絶縁膜にならない。
On the other hand, the silicon content of the amorphous hydrogenated silicon nitride as the insulating film is preferably 43 to 50 at %. Outside this range, it will not be a good insulating film for EL elements.

本発明の薄11uEL素子は例えば以下のような方法で
製造することができる。
The thin 11u EL device of the present invention can be manufactured, for example, by the following method.

基板としては、室温〜400 ’(!の温度範囲に酎え
得るものであれば良く1例えば単結晶Si等の半導体、
ステンレス、アルミニウム等の金属、ガラス、セラミク
スやその表面に金属又は金属酸化物等の導゛市性被膜を
設けたものから適宜選択し得る。好ましい基板としては
ガラス等、可視域で透明な基体上に導電性被膜を設けた
ものが挙げられる。
The substrate may be any material that can be heated within a temperature range of room temperature to 400' (!).For example, a semiconductor such as single crystal Si,
The material may be appropriately selected from metals such as stainless steel and aluminum, glass, ceramics, and materials whose surfaces are coated with a conductive coating such as metal or metal oxide. A preferable substrate is one in which a conductive film is provided on a substrate transparent in the visible range, such as glass.

導電性被膜としてはPt、 Au、AM、In703.
5n02 、 ITO等を用いることができるが無色透
明である程好ましい。
As the conductive film, Pt, Au, AM, In703.
5n02, ITO, etc. can be used, but the more colorless and transparent the better.

これらのノ、(板表面を清浄に洗顔したのち第1図に示
すようなグロー放電分解装置内に設置し、N2又はNH
3カスと含シリコン化合物、例えばモノシラン、ジシラ
ンガスを適当量混合し、この程合気体でグロー放電分解
を行って基板上に非晶質水素化窒化ケイ素絶縁膜を堆積
させる。残存ガスを完全に排気した後、続いてハイドロ
カーホン、例えばCH4、C2H4等と含シリコン化合
物、例えばSiH4、Si2 H6、(ill:H3)
 4 Si等及び場合によっては、N2及び/又は02
を適当量混合し、グロー放電分解し上述した絶縁膜」−
に非晶質水素化炭化ケイ素発光層を積層堆積する。続い
て、残存ガスを完全に排気した後、上述した絶縁膜堆積
と全く同じ手法で発光層上に絶縁膜を堆積する。
After washing the plate surface clean, place it in a glow discharge decomposition device as shown in Figure 1, and use N2 or NH
An appropriate amount of silicon-containing compound such as monosilane or disilane gas is mixed with the 3 dregs, and glow discharge decomposition is performed in the amorphous gas to deposit an amorphous hydrogenated silicon nitride insulating film on the substrate. After the residual gas is completely evacuated, a hydrocarbon, e.g. CH4, C2H4, etc. and a silicon-containing compound, e.g. SiH4, Si2 H6, (ill:H3) are added.
4 Si etc. and in some cases N2 and/or 02
The above-mentioned insulating film is obtained by mixing appropriate amounts of the above and decomposing it by glow discharge.
An amorphous hydrogenated silicon carbide light-emitting layer is stacked and deposited on the wafer. Subsequently, after the remaining gas is completely exhausted, an insulating film is deposited on the light emitting layer using exactly the same method as for depositing the insulating film described above.

グロー放電分解するガスはH2や高純度不活性ガス、例
えばAr等で希釈して使用することもできる。
The gas decomposed by glow discharge can also be used after being diluted with H2 or a high purity inert gas such as Ar.

この場合、混合気体の圧力は0.05〜5 Torr程
度ニ保ツカ0.1〜2Torrがより適している。
In this case, it is more suitable for the pressure of the mixed gas to be about 0.05 to 5 Torr and between 0.1 to 2 Torr.

ノ、(板温度は各層に応じて室温〜400 ’C!で適
宜選択するが、80〜400’Cで選択するのが好まし
い。
(The plate temperature is appropriately selected from room temperature to 400'C! depending on each layer, but preferably from 80 to 400'C!).

各層を堆積した後、系外に取り出し迅速に真空蒸着器に
セットし背面電極として例えばA文を蒸着すること“に
よりEL素子(第2図)を作製することができる。
After each layer has been deposited, it is taken out of the system and quickly set in a vacuum evaporator, and an EL element (FIG. 2) can be fabricated by evaporating, for example, pattern A as a back electrode.

本発明のEL素子は端末用平面ディスプレーテレビ、オ
ーディオ等のレベルメーター表示、家電機器等のデジタ
ル表示、信号表示、画像表示材等としての展開が可能で
ある。
The EL element of the present invention can be used as flat display televisions for terminals, level meter displays for audio equipment, digital displays for home appliances, signal displays, image display materials, and the like.

次に実施例をあげて本発明の詳細な説明するがこれに限
定されるものではない。
Next, the present invention will be explained in detail with reference to examples, but the present invention is not limited thereto.

なお、以下の実施例、比較例における堆積膜のC,Si
、0、Nの組成分析はオージェ電子分光分析によった。
In addition, C, Si of the deposited film in the following Examples and Comparative Examples
, 0, and N were analyzed by Auger electron spectroscopy.

実施例1 水素により10%に希釈されたSiH4と純N2ガスを
用いてケイ素含有量(Si/ Si 十N )が46原
子%になるように混合比を調整し、第1図に示す装置中
でグロー放電分解し、同図2の位置に設置した予め清浄
に洗浄されたNESAガラス上に非晶質水素化窒化ケイ
素(以降a−3iNと略す)を約1oooA堆積した。
Example 1 Using SiH4 diluted to 10% with hydrogen and pure N2 gas, the mixing ratio was adjusted so that the silicon content (Si/Si -N) was 46 at%, and the mixture was placed in the apparatus shown in Figure 1. After glow discharge decomposition, amorphous hydrogenated silicon nitride (hereinafter abbreviated as a-3iN) was deposited at a thickness of about 100 A on the NESA glass which had been cleaned in advance and placed in the position shown in FIG.

反応時の基板温度は320’C,系内圧は0.5Tor
rに保った(プロセスA)。
The substrate temperature during the reaction was 320'C, and the system internal pressure was 0.5 Torr.
(Process A).

次に上で用いた反応ガスを系内から完全にυ1気除去し
基板温度を 150°Cに設定し直した後、水素により
10%に希釈されたSiH4と純C2H4を用いて炭素
含有量(C/C+Si)が78原子%になるように混合
比を調整し、」二で堆積したa−9iN七に非晶質水素
化炭化ケイ素(以降a−3iCと略す)を約aoo A
堆積した。また、IRスペクトルよりめたa−9iC中
の水素量は46原子%であった。反応時の系内圧は9.
8Torrに保った(プロセスB)。
Next, after completely removing υ1 of the reaction gas used above from the system and resetting the substrate temperature to 150°C, the carbon content ( The mixing ratio was adjusted so that C/C+Si) was 78 atomic %, and amorphous hydrogenated silicon carbide (hereinafter abbreviated as a-3iC) was added to the a-9iN deposited in step 2 by about aoo A.
Deposited. Further, the amount of hydrogen in a-9iC determined from the IR spectrum was 46 at.%. The internal pressure of the system during the reaction was 9.
Maintained at 8 Torr (Process B).

次にa−SiC堆積に使用した反応ガスを系内から完全
に排気除去し基板温度を320°Cに設定し直した後プ
ロセスAと全く同じ手法でa−3iNを積層し2重絶縁
構造の素子を作製した。冷却後、系内がら取り出しA文
を背面電極として真空蒸着し素子を作製した。
Next, the reaction gas used for a-SiC deposition was completely exhausted and removed from the system, and the substrate temperature was reset to 320°C. Then, a-3iN was laminated using the exact same method as in Process A to form a double insulation structure. The device was fabricated. After cooling, the inside of the system was taken out and A pattern was vacuum-deposited as a back electrode to fabricate a device.

実施例2〜4及び比較例1 炭素含有量が表1の値をとるように、水素により10%
に希釈されたSiH4と純c2H4の混合比を変化させ
てプロセスBを行なうこと以外は実施例1と同じ方法で
処理して4種の′素子を作製した。
Examples 2 to 4 and Comparative Example 1 10% with hydrogen so that the carbon content takes the value shown in Table 1.
Four types of elements were fabricated in the same manner as in Example 1, except that Process B was carried out by varying the mixing ratio of SiH4 diluted to pure c2H4.

また、得られた各a−9iCの水素含有量を表1に同時
に示した。
Further, the hydrogen content of each obtained a-9iC is also shown in Table 1.

表 1 □□ τ 上 実施例5 実施例1及び表1に示す各素子に1.5k)Izの交流
電界を印加したところ表1、比較例1の素子以外は全て
可視域に安定なELを示した。表2に各EL素子の駆動
特性を示す。なお、vthは発光の闇値電圧である。
Table 1 □□ τ Above Example 5 When an AC electric field of 1.5 k) Iz was applied to each element shown in Example 1 and Table 1, all except the elements in Table 1 and Comparative Example 1 exhibited stable EL in the visible range. Indicated. Table 2 shows the driving characteristics of each EL element. Note that vth is the dark value voltage of light emission.

表 2 比較例2 。Table 2 Comparative example 2.

清浄に洗n1されたNESAカラス上に電子ビーム蒸着
により約250OAのY2O3を蒸着した。次にこの基
板を注意深く取り出して第1図2で示した位1直に設置
し、実施例1、プロセスBと全く同じ手法により炭素含
有量78原子%のa−3iCを約120OA積層した。
Approximately 250 OA of Y2O3 was deposited by electron beam evaporation onto a clean NESA glass. Next, this substrate was carefully taken out and placed in the position shown in FIG. 1 and 2, and about 120 OA of a-3iC with a carbon content of 78 atom % was laminated in exactly the same manner as in Example 1, Process B.

排気冷却後、グロー放電装置内から基板を注意深く取り
出し再度電子ビーム蒸着によりY2O3を約250OA
更に積層した。
After cooling the exhaust gas, carefully take out the substrate from the glow discharge device and apply Y2O3 to about 250OA by electron beam evaporation again.
Further layers were added.

その後、A更を背面電極として真空蒸着し素子を作製し
た。
Thereafter, a layer A was vacuum-deposited as a back electrode to produce a device.

実施例6 実施例1及び比較例2で(j、Jた素子に1.5kHz
の交流電界を印加した時の電圧−EL師変度特性第3図
に示す。
Example 6 In Example 1 and Comparative Example 2, 1.5kHz was applied to the elements (j, J).
FIG. 3 shows the voltage-EL variation characteristics when an alternating current electric field is applied.

a−3iNを絶縁nりに用いた場合、Y2O3の場合に
比べvthが約1/2.EL輝度は約3倍となり優れた
特性を示した。
When a-3iN is used for insulation, vth is about 1/2 compared to Y2O3. The EL brightness was approximately three times higher, showing excellent characteristics.

実施例7.8 実施例1、プロセスBの10%に希釈されたSiH4と
純C2H4を用いてを10%に希釈されたSiH,、純
C2H0及び純N2又は02を用いてに変える以外は実
施例1と全く同じ手法により、表3に示す組成のa−3
iC層を有す素子を得た。
Example 7.8 Example 1, Process B using 10% diluted SiH4 and pure C2H4 was carried out except that it was changed to using 10% diluted SiH, pure C2H0 and pure N2 or 02. Using exactly the same method as in Example 1, a-3 of the composition shown in Table 3 was prepared.
A device having an iC layer was obtained.

表 3 表3に示した各素子に1.5kHzの交流電界を印加し
たところ、窒素を含む実施例7の素子ではvth=10
5V、酸素を含む実施例8の素子ではvth=110V
で両者とも青白色ELを安定に示した。
Table 3 When an AC electric field of 1.5 kHz was applied to each element shown in Table 3, vth = 10 for the element of Example 7 containing nitrogen.
5V, vth=110V for the device of Example 8 containing oxygen.
Both exhibited stable bluish-white EL.

又、窒素も酸素も含まない実施例1の素子に比へEL師
度は実施例7.8とも約1.5倍、半値I11は15乃
至30nm小さくなり明確なドーピング効果を示した。
Moreover, compared to the device of Example 1 which does not contain nitrogen or oxygen, the EL density of Examples 7 and 8 was about 1.5 times smaller, and the half-value I11 was 15 to 30 nm smaller, showing a clear doping effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の薄膜EL素子の製造装置、第2図は薄
膜EL素子の断面図、第3図は本発明で得た薄11QE
L素子の印加電圧とEL輝度の関係を示す図である。 1・・・反応容器、2・・・基板サセプター兼電極、3
・・・ガス噴出口兼電極、4・・・カス導入口、5・・
・ガス排気口、6・・・基板加熱用ヒーター、7・・・
熱電対、8・・・カラス、9・・・5n02.10・=
a−SiN 、 1l−a−3iN 、 12−a−5
iC113・・・AM主電極14・・・交流電源 □出
願人 旭化成工業株式会社 代理人 豊 1) 片 H1 第1図 第3図 E11加電圧 (■)
Fig. 1 is a manufacturing apparatus for a thin film EL device of the present invention, Fig. 2 is a cross-sectional view of a thin film EL device, and Fig. 3 is a thin 11QE obtained by the present invention.
It is a figure which shows the relationship between the applied voltage of an L element, and EL brightness. 1... Reaction container, 2... Substrate susceptor and electrode, 3
... Gas outlet and electrode, 4... Waste inlet, 5...
・Gas exhaust port, 6... Heater for heating the substrate, 7...
Thermocouple, 8...Crow, 9...5n02.10・=
a-SiN, 1l-a-3iN, 12-a-5
iC113...AM main electrode 14...AC power supply □Applicant Asahi Kasei Corporation Agent Yutaka 1) Piece H1 Figure 1 Figure 3 E11 Applied voltage (■)

Claims (3)

【特許請求の範囲】[Claims] (1)発光体膜と絶縁体膜の積層構造部を有する薄膜E
L素子であって、」二足発光体11りとして45原子%
以上の炭素含有沿(炭素/ iK素+ケイ″′+:)を
有す非晶質水素化炭化ケイ素を用い、且つ」二足絶縁体
膜として非晶質水素化窒化ケイ素を用いることを特徴と
する薄膜EL素子。
(1) Thin film E having a laminated structure of a light emitter film and an insulator film
L element, which contains 45 atomic % as a bipedal light emitter 11.
It is characterized by using amorphous hydrogenated silicon carbide having the above carbon-containing gradient (carbon/iK + silicon) and using amorphous hydrogenated silicon nitride as the bipedal insulator film. A thin film EL device with
(2)非晶質水素化炭化ケイ素が、酸素又は窒素の少く
とも一方を1原子%〜7原子%含むことを特徴とする特
許請求の範囲第1項記載の薄11りEL素子。
(2) The thin 11-layer EL device according to claim 1, wherein the amorphous hydrogenated silicon carbide contains at least one of oxygen and nitrogen in an amount of 1 atomic % to 7 atomic %.
(3)絶縁体Hりが43〜50原子%のケイ素含イj、
1J1−(ケイ素/ケイ素士窒素)を有す非晶質水素化
窒化ケイ素であることを特徴とする特51請求の範囲第
1項記載のF、シIIA E L素子。
(3) silicon-containing insulator H of 43 to 50 atomic %,
1J1-(silicon/silicon dinitrogen).
JP58158993A 1983-09-01 1983-09-01 Thin film el element Pending JPS6054196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58158993A JPS6054196A (en) 1983-09-01 1983-09-01 Thin film el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58158993A JPS6054196A (en) 1983-09-01 1983-09-01 Thin film el element

Publications (1)

Publication Number Publication Date
JPS6054196A true JPS6054196A (en) 1985-03-28

Family

ID=15683873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58158993A Pending JPS6054196A (en) 1983-09-01 1983-09-01 Thin film el element

Country Status (1)

Country Link
JP (1) JPS6054196A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100398A (en) * 1983-11-04 1985-06-04 株式会社リコー Thin film light emitting element
JPH0372325A (en) * 1989-08-11 1991-03-27 Sharp Corp Optical write type liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100398A (en) * 1983-11-04 1985-06-04 株式会社リコー Thin film light emitting element
JPH0372325A (en) * 1989-08-11 1991-03-27 Sharp Corp Optical write type liquid crystal display device

Similar Documents

Publication Publication Date Title
Lian et al. Light emitting diodes based on inorganic composite halide perovskites
Liu et al. Ultrafast self‐limited growth of strictly monolayer WSe2 crystals
EP0377320B1 (en) Electric field light-emitting device
JP2790439B2 (en) Method for forming a fluorine-containing silicon oxide film and a composite comprising F2Si (CH3) CH2CH2Si (CH3) F2 and F3SiCH2CH2CH2CH (SiF3) C2H5
EP0543392A2 (en) Diamond semiconductor device and method of producing the same
US5036373A (en) Electric device with grains and an insulating layer
JP3592055B2 (en) Organic light emitting device
JPS6054196A (en) Thin film el element
JP2001135149A (en) Zinc oxide-based transparent electrode
EP0244874A2 (en) Luminescent material, process for producing it and luminescent semiconductor device using it
US5968612A (en) Method for the preparation of silicon compound thin film
JPH0624221B2 (en) High thermal conductive insulating substrate and manufacturing method thereof
JPH0485388A (en) Organic electroluminescent element
JP2508015B2 (en) Method of manufacturing light emitting material
JPS61128403A (en) Non-crystalline silicon based insulating material
JPH079059B2 (en) Method for producing carbon thin film
JPS6141114B2 (en)
JPH0922880A (en) Formation of rectifying electrode for diamond
JPS59181681A (en) Light emitting element
JP2762910B2 (en) Luminescent material
JPH04328296A (en) Manufacture of thin film light emitting element
JPS60100398A (en) Thin film light emitting element
JPH0760869B2 (en) High thermal conductivity insulating substrate
JPS6249681A (en) Light emitting element
JPH0742570B2 (en) Method for producing carbon thin film