JP2000077183A - Manufacture of organic electroluminescent element - Google Patents

Manufacture of organic electroluminescent element

Info

Publication number
JP2000077183A
JP2000077183A JP10244601A JP24460198A JP2000077183A JP 2000077183 A JP2000077183 A JP 2000077183A JP 10244601 A JP10244601 A JP 10244601A JP 24460198 A JP24460198 A JP 24460198A JP 2000077183 A JP2000077183 A JP 2000077183A
Authority
JP
Japan
Prior art keywords
multilayer structure
gas
sealing film
plasma cvd
cvd method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10244601A
Other languages
Japanese (ja)
Inventor
Hirofumi Kubota
広文 久保田
Taizo Ishida
泰三 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP10244601A priority Critical patent/JP2000077183A/en
Publication of JP2000077183A publication Critical patent/JP2000077183A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep a multilayer structure in an airtight state over a long period of time, by forming a sealing film, by a plasma CVD method using silane gas and nitrogen gas, on the multilayer structure comprising a positive electrode, a plurality of organic compound layers, and a negative electrode, provided on a glass substrate. SOLUTION: A positive electrode 2 comprising a transparent electrode of ITO etc., is formed by deposition on a transparent glass substrate 1, and on this, a hole injection layer 3 of copper phthalocyanine etc., a hole transfer layer 4 of a triphenylamine derivative etc., a luminous layer 5 of an aluminum chelate complex etc., an electron injection layer 6 of LiO2 etc., and a negative electrode 7 of Al etc., are deposited in this order, to form a multilayer structure 8. Then, a sealing film 9 made of SiNx is formed on the multilayer structure 8, and thus an airtightly sealed organic electroluminescent element is obtained. The sealing film 9 is formed by a plasma CVD method using a raw-material gas comprising only SiH4 gas and N2 gas. Because residual stresses are small in the plane directions, the sealing film causes no cracking or peeling, and stabilizes the luminescence of the element for a long period of time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機エレクトロル
ミネセンス(以下、ELと称す)素子の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an organic electroluminescence (hereinafter, referred to as EL) device.

【0002】[0002]

【従来の技術】図1に示すように、有機EL素子は、ガ
ラス基板1上に陽極2を形成し、その上に有機化合物か
らなる正孔注入層3、正孔輸送層4、発光層5、電子注
入層6を順次積層し、その上に金属材料からなる陰極7
を形成した多層構造体8からなっている。多層構造体8
は大気に曝されると劣化することがあり、発光ムラが生
じる原因となる。特に、陰極7は、電子注入層6に電子
を送るために仕事関数の低い材料、例えば、アルカリ金
属やアルカリ土類金属を基本とした反応性の高い合金系
によって形成されており、劣化しやすい。また、有機化
合物も酸素によって劣化しやすい。そこで、多層構造体
8はガラス基板1の上において封止被膜9で大気から遮
断されている。この封止被膜9にスパッタリング法やプ
ラズマCVD法の如き薄膜形成法を用いることによっ
て、厚さの薄いコンパクトな有機EL素子を得ることが
できる。
2. Description of the Related Art As shown in FIG. 1, an organic EL device has an anode 2 formed on a glass substrate 1 and a hole injection layer 3, a hole transport layer 4, and a light emitting layer 5 made of an organic compound formed thereon. , An electron injection layer 6 are sequentially laminated, and a cathode 7 made of a metal material is formed thereon.
Is formed of the multilayer structure 8. Multilayer structure 8
May degrade when exposed to the atmosphere, which may cause uneven light emission. In particular, the cathode 7 is formed of a material having a low work function to send electrons to the electron injection layer 6, for example, a highly reactive alloy system based on an alkali metal or an alkaline earth metal, and is easily deteriorated. . Further, organic compounds are also easily deteriorated by oxygen. Therefore, the multilayer structure 8 is shielded from the atmosphere by the sealing film 9 on the glass substrate 1. By using a thin film forming method such as a sputtering method or a plasma CVD method for the sealing film 9, a compact organic EL element having a small thickness can be obtained.

【0003】プラズマCVD法によって得られる被膜
は、スパッタリング法によって得られる被膜と比較して
結晶構造が緻密であり、機密性に優れ、多層構造体8を
大気から遮断するための被膜として適している。また、
スパッタリング法や、他のCVD法と比べて低温での成
膜が可能であり、基板1若しくは多層構造体8が熱によ
って損傷することを回避できる。
The film obtained by the plasma CVD method has a denser crystal structure and excellent confidentiality than the film obtained by the sputtering method, and is suitable as a film for shielding the multilayer structure 8 from the atmosphere. . Also,
Film formation can be performed at a lower temperature than a sputtering method or another CVD method, and damage to the substrate 1 or the multilayer structure 8 due to heat can be avoided.

【0004】[0004]

【発明が解決しようとする課題】プラズマCVD法によ
って得られる被膜は、その緻密な結晶構造の故に、被膜
の平面方向に高い残留応力が発生する。この残留応力
は、封止被膜9の下の多層構造体8や基板1に作用し
て、これを変形させてしまうことがある。また、皮膜自
体の剥離によって、大気と多層構造体8が接触して素子
が劣化してしまう。そこで本発明は、素子の多層構造体
を長期に亘って気密状態に維持できる封止被膜を有する
有機EL素子の製造方法の提供を目的とする。
The coating obtained by the plasma CVD method has a high residual stress in the plane direction of the coating due to its dense crystal structure. This residual stress may act on the multilayer structure 8 and the substrate 1 under the sealing film 9 to deform the same. In addition, the peeling of the film itself causes the multilayer structure 8 to come into contact with the atmosphere, thereby deteriorating the element. Accordingly, an object of the present invention is to provide a method for manufacturing an organic EL device having a sealing film capable of maintaining a multilayer structure of the device in an airtight state for a long period of time.

【0005】[0005]

【課題を解決するための手段】本発明による有機EL素
子の製造方法は、ガラス基板の上に、少なくとも陽極
と、複数の有機化合物層と、陰極と、を順に積層して多
層構造体を形成し、さらに前記多層構造体を気密的に封
止する封止被膜をプラズマCVD法によって成膜する有
機EL素子の製造方法であって、前記プラズマCVD法
による原料ガスが、シランガスと、窒素ガスと、のみか
らなることを特徴とする。
According to a method of manufacturing an organic EL device according to the present invention, a multilayer structure is formed by sequentially laminating at least an anode, a plurality of organic compound layers, and a cathode on a glass substrate. And a method of manufacturing an organic EL device in which a sealing film for hermetically sealing the multilayer structure is formed by a plasma CVD method, wherein the source gas by the plasma CVD method is a silane gas, a nitrogen gas, , Only.

【0006】[0006]

【発明の実施の形態】以下、本発明による有機EL素子
の製造方法について詳細に説明する。図1に示した従来
例の多層構造体と同様に、透明なガラス基板1上に透光
性のITOからなる陽極2を図示しない電極パターンを
形成するように蒸着する。その上に、銅フタロシアニン
からなる正孔注入層3、TPD(トリフェニルアミン誘
導体)からなる正孔輸送層4、Alq3(アルミキレー
ト錯体)からなる発光層5、LiO2(二酸化リチウ
ム)からなる電子注入層6を順次、蒸着する。さらに、
この上に蒸着によって、Alからなる陰極7を陽極2の
電極パターンと対向するようにパターニングする。こう
して得られたガラス基板1上の多層構造体8を、大気に
曝すことなく、プラズマCVDのチャンバ内に移送、配
置して、SiNx(窒化ケイ素)からなる封止被膜9を
その表面に成膜する。このとき、予めガラス基板1の多
層構造体8を形成した面と反対側の表面がマスキングさ
れていることが好ましい。本実施例においては、プラズ
マCVD法に用いる原料ガスとして、SiH4(シラ
ン)ガス及びN2(窒素)ガスのみを用い、各々の流量
を10 sccm及び200 sccmとし、RFパワーを10 W、チャン
バ内温度を120℃、チャンバ内圧力を0.9 Torrとした。
得られた膜厚は約2μmであった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing an organic EL device according to the present invention will be described in detail. As in the case of the conventional multilayer structure shown in FIG. 1, an anode 2 made of a transparent ITO is deposited on a transparent glass substrate 1 so as to form an electrode pattern (not shown). On top of this, a hole injection layer 3 made of copper phthalocyanine, a hole transport layer 4 made of TPD (triphenylamine derivative), a light emitting layer 5 made of Alq 3 (aluminum chelate complex), and LiO 2 (lithium dioxide). The electron injection layer 6 is sequentially deposited. further,
On this, a cathode 7 made of Al is patterned by vapor deposition so as to face the electrode pattern of the anode 2. The multilayer structure 8 thus obtained on the glass substrate 1 is transferred and arranged in a plasma CVD chamber without exposing it to the atmosphere, and a sealing film 9 made of SiN x (silicon nitride) is formed on the surface thereof. Film. At this time, it is preferable that the surface of the glass substrate 1 opposite to the surface on which the multilayer structure 8 is formed be masked in advance. In this embodiment, only SiH 4 (silane) gas and N 2 (nitrogen) gas are used as source gases used in the plasma CVD method, the flow rates are respectively 10 sccm and 200 sccm, the RF power is 10 W, and the chamber power is 10 W. The internal temperature was 120 ° C. and the pressure in the chamber was 0.9 Torr.
The resulting film thickness was about 2 μm.

【0007】上記した実施例において得られたEL素子
の封止被膜の被膜平面方向の残留応力を測定したとこ
ろ、成膜直後で0.05dyn/cm2、充分に時間を経過した後
にあっても-0.21dyn/cm2と小さいものであった。ただ
し、正の値を圧縮応力、負の値を引っ張り応力とする。
このEL素子を、それぞれ室温及び高温高湿(60℃、95
%)下に500時間放置した後であっても、封止被膜にク
ラックや剥離を発生せず、EL素子としての発光動作も
安定していた。
The residual stress in the plane direction of the sealing film of the EL element obtained in the above-described embodiment was measured. It was 0.05 dyn / cm 2 immediately after the film formation, even after a sufficient time had passed. It was as small as 0.21 dyn / cm 2 . However, a positive value is a compressive stress, and a negative value is a tensile stress.
The EL element was subjected to room temperature, high temperature and high humidity (60 ° C, 95
%), The sealing film did not crack or peel off even after standing for 500 hours, and the light emitting operation as an EL element was stable.

【0008】次に、比較例として、原料ガスとして、S
iH4ガス及びN2ガスにアンモニアを加えた例を検討し
た。つまり成膜条件は、原料ガスとしてのSiH4ガス
の流量を30 sccm、N2ガスの流量を140 sccm、NH3
スの流量を200 sccm、H2ガスの流量を30 sccmとし、RF
パワーを10 W、チャンバ内温度を120℃、チャンバ内圧
力を0.9 Torrとした。得られた膜厚は約2μmであった。
比較例のEL素子の封止被膜の残留応力については、成
膜直後で-0.49dyn/cm2、充分に時間を経過した後にあっ
ては-0.68dyn/cm2であり、実施例と比較して大きな引っ
張りの残留応力を有していた。このEL素子をそれぞれ
室温及び高温高湿(60℃、95%)下で500時間放置した
ところ、室温では変化を示さなかったが、高温高湿下で
は剥離を発生した。剥離を発生したEL素子は、輝度に
ムラを生じて発光動作が不安定になった。
Next, as a comparative example, S was used as a raw material gas.
An example in which ammonia was added to iH 4 gas and N 2 gas was examined. That is, the film forming conditions are as follows: the flow rate of the SiH 4 gas as the source gas is 30 sccm, the flow rate of the N 2 gas is 140 sccm, the flow rate of the NH 3 gas is 200 sccm, the flow rate of the H 2 gas is 30 sccm, and the RF
The power was 10 W, the temperature in the chamber was 120 ° C., and the pressure in the chamber was 0.9 Torr. The resulting film thickness was about 2 μm.
Residual stress of the sealing film of the EL device of the comparative example, -0.49dyn / cm 2 immediately after the film formation, in the after a lapse of sufficient time was -0.68dyn / cm 2, compared to Example And had a large tensile residual stress. When this EL element was left for 500 hours at room temperature and high temperature and high humidity (60 ° C., 95%), no change was observed at room temperature, but peeling occurred under high temperature and high humidity. The EL element in which peeling occurred had uneven brightness and the light emitting operation became unstable.

【0009】FT-IR分析によって、実施例及び比較例に
おける封止被膜の成分を成膜直後及び500時間経過後
において調べた。比較例では、成膜直後にN−H結合、
Si−N結合、Si−H結合の特性ピークが観察され
て、その存在が確認されたが、500時間経過後にはN
−H結合の特性ピークが不明瞭となり、N−H結合が消
滅していた。実施例では、成膜直後にSi−N結合、S
i−H結合の特性ピークが確認されたが、500時間経
過後においても特性ピークに変化がなかった。このこと
から、N−H結合の経時変化が残留応力を増大させてク
ラックの発生及び被膜の剥離を引き起こすと考えられ
る。
The components of the sealing film in Examples and Comparative Examples were examined by FT-IR analysis immediately after film formation and after 500 hours. In the comparative example, N—H bonding was performed immediately after film formation,
Characteristic peaks of Si—N bond and Si—H bond were observed and their existence was confirmed, but after 500 hours, N
The characteristic peak of the -H bond became unclear, and the N-H bond had disappeared. In the embodiment, the Si—N bond, S
Although the characteristic peak of the iH bond was confirmed, the characteristic peak did not change even after 500 hours. From this, it is considered that the temporal change of the NH bond increases the residual stress, causing cracks and peeling of the film.

【0010】[0010]

【発明の効果】以上の如く、本発明による有機EL素子
の製造方法によれば、残留応力の少ない安定した封止被
膜を有する有機EL素子を得ることができる。
As described above, according to the method for manufacturing an organic EL device according to the present invention, an organic EL device having a stable sealing film with little residual stress can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 有機EL素子の断面図である。FIG. 1 is a sectional view of an organic EL device.

【主要部分の符号の説明】[Explanation of Signs of Main Parts]

1 ガラス基板 2 陽極 3 正孔注入層 4 正孔輸送層 5 発光層 6 電子注入層 7 陰極 8 多層構造体 9 封止被膜 DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Electron injection layer 7 Cathode 8 Multilayer structure 9 Sealing film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板の上に、少なくとも陽極と、
複数の有機化合物層と、陰極と、を順に積層して多層構
造体を形成し、さらに前記多層構造体を気密的に封止す
る封止被膜をプラズマCVD法によって成膜する有機エ
レクトロルミネセンス素子の製造方法であって、 前記プラズマCVD法による原料ガスが、シランガス
と、窒素ガスと、のみからなることを特徴とする有機エ
レクトロルミネセンス素子の製造方法。
1. At least an anode on a glass substrate,
An organic electroluminescent device in which a plurality of organic compound layers and a cathode are sequentially laminated to form a multilayer structure, and further, a sealing film for hermetically sealing the multilayer structure is formed by a plasma CVD method. The method for producing an organic electroluminescence device according to claim 1, wherein the source gas by the plasma CVD method comprises only silane gas and nitrogen gas.
JP10244601A 1998-08-31 1998-08-31 Manufacture of organic electroluminescent element Pending JP2000077183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10244601A JP2000077183A (en) 1998-08-31 1998-08-31 Manufacture of organic electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10244601A JP2000077183A (en) 1998-08-31 1998-08-31 Manufacture of organic electroluminescent element

Publications (1)

Publication Number Publication Date
JP2000077183A true JP2000077183A (en) 2000-03-14

Family

ID=17121162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10244601A Pending JP2000077183A (en) 1998-08-31 1998-08-31 Manufacture of organic electroluminescent element

Country Status (1)

Country Link
JP (1) JP2000077183A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054010A2 (en) * 2002-12-11 2004-06-24 Applied Materials, Inc. Low temperature process for passivation applications
US7247074B2 (en) * 2001-12-03 2007-07-24 Denso Corporation Organic electroluminescent element and process for its manufacture
US7994707B2 (en) 2007-08-28 2011-08-09 Canon Kabushiki Kaisha Organic el device and method of producing the device
CN103904234A (en) * 2012-12-25 2014-07-02 海洋王照明科技股份有限公司 Organic light-emitting device and preparation method
JP2020080232A (en) * 2018-11-12 2020-05-28 キヤノン株式会社 Semiconductor device, manufacturing method of the same, display device, photoelectric conversion device, electronic device, lighting device, and movable body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247074B2 (en) * 2001-12-03 2007-07-24 Denso Corporation Organic electroluminescent element and process for its manufacture
WO2004054010A2 (en) * 2002-12-11 2004-06-24 Applied Materials, Inc. Low temperature process for passivation applications
WO2004054010A3 (en) * 2002-12-11 2004-11-18 Applied Materials Inc Low temperature process for passivation applications
US7086918B2 (en) 2002-12-11 2006-08-08 Applied Materials, Inc. Low temperature process for passivation applications
US7994707B2 (en) 2007-08-28 2011-08-09 Canon Kabushiki Kaisha Organic el device and method of producing the device
CN103904234A (en) * 2012-12-25 2014-07-02 海洋王照明科技股份有限公司 Organic light-emitting device and preparation method
JP2020080232A (en) * 2018-11-12 2020-05-28 キヤノン株式会社 Semiconductor device, manufacturing method of the same, display device, photoelectric conversion device, electronic device, lighting device, and movable body
JP7170509B2 (en) 2018-11-12 2022-11-14 キヤノン株式会社 Semiconductor device and its manufacturing method, display device, photoelectric conversion device, electronic device, lighting device, and moving body
US11765927B2 (en) 2018-11-12 2023-09-19 Canon Kabushiki Kaisha Semiconductor device, method of manufacturing the same, display device, photoelectric conversion device, electronic device, illumination device, and mobile object

Similar Documents

Publication Publication Date Title
US6864629B2 (en) Organic electroluminescence (EL) cell that prevents moisture from deteriorating light-emitting characteristics and a method for producing the same
CN100499202C (en) Method of fabricating organic electroluminescent display
US6660409B1 (en) Electronic device and process for producing the same
US8638032B2 (en) Organic optoelectronic device coated with a multilayer encapsulation structure and a method for encapsulating said device
JP4469739B2 (en) Film forming device
US7470610B2 (en) Method of fabricating organic electroluminescent devices
TWI236310B (en) EL device and method for manufacturing the same
US20040113542A1 (en) Low temperature process for passivation applications
US20050218803A1 (en) Organic EL device and method of manufacturing the same
JP3524711B2 (en) Organic electroluminescence device and method of manufacturing the same
JP5241173B2 (en) Manufacturing method of organic EL element
KR20150131098A (en) Improvement of barrier film performance with n2o dilution process for thin film encapsulation
JP5079967B2 (en) Plasma encapsulation for electronic and microelectronic structural elements such as OLEDs
JP2005166400A (en) Surface protection film
KR100428447B1 (en) An organic EL panel capable of preventing infiltration of oxygen or moisture and manufacturing method therefor
US4880661A (en) Method of manufacturing a thin-film electroluminescent display element
JP2000077183A (en) Manufacture of organic electroluminescent element
US6383048B1 (en) Packaging method for organic polymer EL displays
JP2005203321A (en) Protective film and organic el device
US6103541A (en) Encapsulation method of an organic electroluminescent device
JPH08167477A (en) Organic electroluminescence element
KR19990038057A (en) Organic electroluminescent device and manufacturing method thereof
JP2000208253A (en) Organic electroluminescent element and manufacture thereof
KR100497154B1 (en) Organic light emitting display encapsulated with silicon-cavity and fabrication method thereof
KR100483165B1 (en) Method of Making Organic Electro luminescent Display

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060105