JPH02260669A - Manufacture of light emitting element - Google Patents

Manufacture of light emitting element

Info

Publication number
JPH02260669A
JPH02260669A JP1082782A JP8278289A JPH02260669A JP H02260669 A JPH02260669 A JP H02260669A JP 1082782 A JP1082782 A JP 1082782A JP 8278289 A JP8278289 A JP 8278289A JP H02260669 A JPH02260669 A JP H02260669A
Authority
JP
Japan
Prior art keywords
gas
film
light emitting
layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1082782A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kawakami
和彦 河上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP1082782A priority Critical patent/JPH02260669A/en
Publication of JPH02260669A publication Critical patent/JPH02260669A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To enable a light emitting element of this design to display its excellent light emitting characteristic by a method wherein an amorphous carbon film is used as a light emitting layer, and an amorphous silicon carbide layer is used as an injection layer of holes and electrons. CONSTITUTION:A reaction gas of a mixed gas of CH4, SiH4, and B2H6 diluted with an H2 gas is introduced into a vacuum chamber 71, a high frequency voltage is applied to the mixed gas, and the decomposed gas is polymerized on a substrate 8 for the formation of a P-type a-SiC film 3. Then, the chamber 71 is vacuumed, the substrate 8 is transferred into a chamber 72, hydrocarbon gas and H2 gas are introduced into the chamber 72, a high frequency voltage is applied to the above mixed gas to form an a-C:H light emitting layer 4 on the layer 3 in lamination, then the chamber 72 is vacuumed, the substrate 8 is transferred into a chamber 73, a PH3 gas is used in the chamber 73 in place of a B2H6 gas utilized in the chamber 71 to form an N-type a-SiC film 5, an electrode film 6 is formed thereon, and thus a P-i-N type light emitting element is obtained. This single light emitting layer is formed in an amorphous superlattice structure, a C2H4 a-C:H, N film is used as a well layer which serves as a recombination section of electrons and holes, and a CH4 a-C:H film is used as a barrier layer.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明はアモルファス半導体よりなる発光素子の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method of manufacturing a light emitting device made of an amorphous semiconductor.

B1発明の概要 本発明は、発光層の両面に夫々正孔注入層及び電子注入
層を積層してなる発光素子において、スパッタ不純物導
入プラズマCVD法により得られたアモルファス炭素系
膜を発光層として用い、プラズマCVD法により得られ
たアモルファス炭化ケイ素膜を正孔及び電子の各注入層
として用いることによって、 発光層の発光特性が良好であり、しかもこの特性を十分
に引出せるようにしたものである。
B1 Summary of the Invention The present invention provides a light emitting device in which a hole injection layer and an electron injection layer are laminated on both sides of a light emitting layer, in which an amorphous carbon-based film obtained by a sputter impurity introduction plasma CVD method is used as a light emitting layer. By using an amorphous silicon carbide film obtained by the plasma CVD method as the hole and electron injection layers, the light-emitting layer has good light-emitting properties, and these properties can be fully brought out. .

C0従来の技術 従来、発光材料としては、発光ダイオードの材料である
GaAs、GaAsP、GaP、GaA&As、Zn5
exTe+−x、ZnSなどがある。
C0 Conventional technology Conventionally, light-emitting materials include GaAs, GaAsP, GaP, GaA&As, and Zn5, which are materials for light-emitting diodes.
Examples include exTe+-x and ZnS.

しかしながら、このような従来の発光材料にあっては、
例えばGaPではビーク波長(発光エネルギーがピーク
となる波長)が698nm、光学的エネルギーギャップ
が1,76eVというように、ピーク波長、光学的エネ
ルギーギャップは、その発光材料に固有のものである。
However, in such conventional luminescent materials,
For example, in GaP, the peak wavelength (the wavelength at which the emission energy peaks) is 698 nm and the optical energy gap is 1.76 eV, and the peak wavelength and optical energy gap are unique to the luminescent material.

このため発光素材としての発光特性を変えたいときは、
所要の特性を有する発光材料を選択することが必要とな
り、ともすると所要のを−ク波長、光学的エネルギーギ
ャップに由来する特性を得られない場合が生ずる問題点
があった。
Therefore, when you want to change the luminescent properties of a luminescent material,
It is necessary to select a luminescent material having the required characteristics, and there is a problem in that there are cases in which the required characteristics due to the wavelength and optical energy gap cannot be obtained.

こうしたことからプラズマCVD法によるアモルファス
炭素系物質を生成し、これを発光材料とし発光効率の良
いpin型発光素子への適用を試みた。というのも生成
されるアモルファス炭素系物質は、大きな光学的バンド
ギャップ(以下Ego)を有する(3 eV以上、耐熱
的には250 ’Cまで、そのギャップは変化しない)
と共に任意の光学的エネルギーギャップ及び発光特性を
製膜条件のコントロールにより得られる。また、この膜
は、Egoの大小により、強力なフォトルミネッセンス
(PL)が観察されることからE g oを種々選択す
ることにより赤から青までの色をチューナプルに出すこ
とが出来、アモルファスの特徴を生かした大面積はフラ
ットパネルデイスプレィと応用を広げることの出来る発
光材料であるからである。
For these reasons, an attempt was made to generate an amorphous carbon-based material using the plasma CVD method, use it as a light-emitting material, and apply it to a pin-type light-emitting element with high luminous efficiency. This is because the amorphous carbon-based material produced has a large optical band gap (hereinafter referred to as Ego) (3 eV or more, the gap does not change up to 250'C in terms of heat resistance).
In addition, arbitrary optical energy gaps and emission characteristics can be obtained by controlling film forming conditions. In addition, strong photoluminescence (PL) is observed in this film depending on the size of Ego, so by selecting various Ego, colors from red to blue can be emitted from the tuner pull. This is because it is a light-emitting material that can be used in flat panel displays and other applications due to its large surface area that takes advantage of its characteristics.

D1発明が解決しようとする課題 しかしながら、このような物質をpin型発光素子の電
子・正孔注入層であるptn型半導体層に用いようとす
ると、目標特性であるEg、>2゜(leV、ρ(抵抗
率)≦10’Ω・cmの特性を有する膜を作製すること
が難しいため、注入層としてアモルファス炭化ケイ素膜
を用いたpin型発光素子を作製し、目で見える電界発
光を確認した。しかしながらE g oに対してi層(
発光層)の抵抗率がまだ高いこととp、n層(注入層)
との接合性が十分でない事等のため、人間の視感度の小
さい青領域の発光強度がまだ十分でなくまた素子特性に
バラつきがあるなどのため製品化の障害になっている。
D1 Problems to be Solved by the Invention However, when attempting to use such a material in a PTN semiconductor layer, which is an electron/hole injection layer of a PIN light emitting device, the target characteristics of Eg > 2° (leV, Since it is difficult to create a film with the characteristic of ρ (resistivity) ≦10'Ω・cm, we created a pin-type light emitting device using an amorphous silicon carbide film as the injection layer and confirmed visible electroluminescence. However, for E go, the i layer (
The resistivity of the light emitting layer) is still high, and the p and n layers (injection layers)
Due to insufficient bonding properties with the LED, the luminescence intensity in the blue region, where human visibility is low, is still insufficient, and device characteristics vary, which is an obstacle to commercialization.

81課題を解決するための手段 そこで、本発明は、発光層の両面に夫々正孔注入層及び
電子注入層を積層してなる発光素子を製造する方法にお
いて、 炭化水素ガスと水素化ケイ素ガスとp型不純物ガスとを
含む低圧の反応ガスを真空容器内でグロー放電させて分
解ガスを重合させるプラズマ化学的蒸着法を行い、これ
によりp型のアモルファス炭化ケイ素膜よりなる正孔注
入層を生成する工程と、 一種類の炭化水素ガスと水素ガスとの混合ガスを用いて
得らげる前記薄膜について、膜厚と薄膜の特性との関係
を予め調べることにより、膜厚の大きさによって薄膜の
特性が変化しない臨界膜厚を求めると共に、製膜開始時
から膜厚が前記臨界膜厚になるまでの時間T0を求めて
おき、前記一種類の炭化水素ガス及び当該炭化水素ガス
よりも分解効率の高い他の種類の炭化水素ガスの混合炭
化水素ガスと水素ガスとの混合ガスを真空容器内に導入
して製膜を開始し、その後炭化水素ガスと水素ガスとの
体積比を固定したまま、前記能の種類の炭化水素ガスの
導入量を前記時間T0経過後またはその付近にて零にな
るように減少させて水素化アモルファス炭素超格子膜で
なる発光層を生成する工程と、 炭化水素ガスと水素化ケイ素ガスとn型不純物ガスとを
含む低圧の反応ガスを真空容器内でグロー放電させて分
解ガスを重合させるプラズマ化学的蒸着法を行い、これ
によりn型のアモルファス炭化ケイ素膜よりなる電子注
入層を生成する工程とからなることを、その解決手段と
している。
81 Means for Solving the Problems Therefore, the present invention provides a method for manufacturing a light emitting device in which a hole injection layer and an electron injection layer are laminated on both sides of a light emitting layer. A plasma chemical vapor deposition method is performed in which a low-pressure reactive gas containing a p-type impurity gas is caused to glow discharge in a vacuum container and the decomposed gas is polymerized, thereby creating a hole injection layer made of a p-type amorphous silicon carbide film. By investigating the relationship between film thickness and thin film properties in advance for the thin film obtained using a mixed gas of one type of hydrocarbon gas and hydrogen gas, the thin film can be adjusted depending on the film thickness. In addition to determining the critical film thickness at which the characteristics of A mixture of other types of highly efficient hydrocarbon gases A mixed gas of hydrocarbon gas and hydrogen gas was introduced into a vacuum container to start film formation, and then the volume ratio of hydrocarbon gas to hydrogen gas was fixed. a step of producing a light-emitting layer made of a hydrogenated amorphous carbon superlattice film by reducing the amount of introduced hydrocarbon gas of the above-mentioned type so that it becomes zero after or near the elapse of the time T0; and carbonization. A plasma chemical vapor deposition method is performed in which a low-pressure reaction gas containing hydrogen gas, silicon hydride gas, and n-type impurity gas is glow-discharged in a vacuum container to polymerize the decomposed gas, thereby forming an n-type amorphous silicon carbide film. The method for solving this problem consists of a step of generating an electron injection layer consisting of:

F8作用 p型a−SiC/i型a−C:H/n型a−8iCのp
in型発光素子において、プラズマCvD法で作製する
i層を超格子構造とし、例えばCH4系a−C:Hより
なるバリア層、CtHh系よりなる井戸層から構成され
ているアモルファス超格子の井戸層に窒素ガスを混入し
C,H,系a−C:H,N膜とすることでPL−EL強
度が増加する。
F8 action p type a-SiC/i type a-C: H/n type a-8iC p
In an in-type light emitting device, the i layer produced by plasma CVD has a superlattice structure, and is an amorphous superlattice well layer composed of, for example, a barrier layer made of CH4-based a-C:H and a well layer made of CtHh-based. By mixing nitrogen gas into the C, H, system a-C:H, N film, the PL-EL intensity increases.

また、超格子膜作製において初期電力をコンピュータコ
ントロールする方法をとれば、p/i。
Furthermore, if a computer control method is used to control the initial power in superlattice film fabrication, p/i.

i / n及びバリア層/井戸層の接合、界面が良好と
なる。これにより、デバイス間の特性のバラツキを防止
することが可能となる。
The junction and interface between i/n and barrier layer/well layer are improved. This makes it possible to prevent variations in characteristics between devices.

G、実施例 以下、本発明に係る発光素子の製造方法の詳細を図面に
示す実施例に基づいて説明する。
G. Examples Hereinafter, details of the method for manufacturing a light emitting device according to the present invention will be explained based on examples shown in the drawings.

第1図は本発明に係る方法で作成された発光素子の実施
例を示す構成図である。第1図中1は例えば63cm”
程度の面積をもつガラス基板、2は酸化錫よりなる透明
電極、3はB 3−をドーパントした30nm程度の厚
さのp型のアモルファス炭化ケイ素膜(以下ra−9i
C膜」という。)よりなる正孔注入層、4は300 n
mの厚さのアモルファス炭素系膜(以下ra−C:H膜
またはa−C:H,N膜」という。)よりなる発光層、
5はP5°をドーパントした50nm程度の厚さのn型
のa−SiC膜よりなる電子注入層、6はアルミニウム
電極である。
FIG. 1 is a block diagram showing an example of a light emitting device manufactured by the method according to the present invention. For example, 1 in Figure 1 is 63 cm.
2 is a transparent electrode made of tin oxide, 3 is a p-type amorphous silicon carbide film doped with B 3- and having a thickness of about 30 nm (hereinafter referred to as RA-9I).
It is called "C membrane". ), 4 is 300 n
a light-emitting layer made of an amorphous carbon-based film (hereinafter referred to as ra-C:H film or a-C:H,N film) with a thickness of m;
5 is an electron injection layer made of an n-type a-SiC film doped with P5° and has a thickness of about 50 nm, and 6 is an aluminum electrode.

次にこのような発光素子の製造方法について第2図を参
照しながら説明する。同図中7は真空容器であり、連続
する3つの真空室7I〜73に区画されている。先ずC
H4,SiH4及びB t Heの混合ガスをH,ガス
により約10倍に希釈した反応ガスを第1の真空室7I
に導入すると共にこのガスに高周波電源E1により高周
波電圧を印加し、グロー放電によって生成する分解ガス
を基板8上にて重合させ、以ってp型のa−SiC膜を
得る。
Next, a method for manufacturing such a light emitting device will be explained with reference to FIG. In the figure, 7 is a vacuum container, which is divided into three consecutive vacuum chambers 7I to 73. First, C
A reaction gas obtained by diluting a mixed gas of H4, SiH4, and BtHe about 10 times with H, gas is added to the first vacuum chamber 7I.
At the same time, a high frequency voltage is applied to this gas by a high frequency power source E1, and the decomposed gas generated by glow discharge is polymerized on the substrate 8, thereby obtaining a p-type a-SiC film.

即ち、このa−9iC膜はプラズマCVD(Chemi
cal Vapor Deposition)法により
生成されたものである。続11て真空室7.を真空引き
した後真空状態を破ることな(a−SiC膜を形成した
基板8を第2の真空室7.に移し、この中に炭化水素ガ
ス、Hzガスを導入すると共に高周波電源E。
That is, this a-9iC film was produced by plasma CVD (Chemi-CVD).
cal vapor deposition) method. Continued 11. Vacuum chamber 7. After evacuating, without breaking the vacuum state (the substrate 8 on which the a-SiC film is formed is transferred to the second vacuum chamber 7., hydrocarbon gas and Hz gas are introduced into it, and a high frequency power source E is turned on.

により高周波電圧を印加して、プラズマCVD法により
、以下の発明に従ったa−C:H発光層を前記a−8i
C膜上に積層生成する。続いて真空室7.を真空引きし
た後に真空状態を破ることなくこれらの膜を形成した基
板8を第3の真空室7、に移し、B、H,ガスの代わり
にPH,ガスを用いた他は第1の真空室71にて適用し
た方法と同様にしてn型のa−3iC膜を得、その後こ
のλSiC膜上に電極膜を形成することによってpi−
n型の発光素子が得られる。なお第2図中91〜9.は
磁気シールにより回転可能に設けられたサスセプタ、1
0,11.12はヒータ、E、。
A high frequency voltage was applied to form the a-8i light emitting layer according to the following invention by plasma CVD method.
A layer is formed on the C film. Next, vacuum chamber 7. After evacuating, the substrate 8 on which these films were formed was transferred to the third vacuum chamber 7 without breaking the vacuum state, and the same vacuum was used as in the first vacuum except that PH gas was used instead of B, H, and gases. An n-type a-3iC film is obtained in the same manner as the method applied in chamber 71, and then a pi-3iC film is formed by forming an electrode film on this λSiC film.
An n-type light emitting element is obtained. Note that 91 to 9 in Figure 2. 1 is a susceptor rotatably provided by a magnetic seal;
0,11.12 is the heater, E.

E t 、 E 3は高周波電源である。Et and E3 are high frequency power supplies.

ここで第2図に示す装置を用いて発光素子を製造する場
合のp、n半導体層の製造条件を以下に挙げる。
Here, the manufacturing conditions for the p, n semiconductor layers when manufacturing a light emitting device using the apparatus shown in FIG. 2 are listed below.

正孔注入層 真空容器内ガス圧力 66.7Pa(0,5Torr)
基板温度        200℃ CLガス:5IH4ガス    l:IB、HJス:(
CHJス÷5i11.’Jjス)   3:1000高
周波電源電力    40W (人力電極面積に対しO,13W/am”)b*電子注
入 層空容器内ガス圧力 66.7Pa(0,5Torr)
基板温度       200℃ CH,ガス:5IH4ガス    l:IPHJス:(
CH4jス+5illJス)   5.8:1000高
周波電源電力    40W (入力電極面積に対しO,13Y/c++1)次に発光
層について述べる。
Gas pressure inside the hole injection layer vacuum container: 66.7 Pa (0.5 Torr)
Substrate temperature 200℃ CL gas: 5IH4 gas l: IB, HJ: (
CHJsu÷5i11. 'Jj Su) 3:1000 High frequency power supply power 40W (O,13W/am'' for the area of the manual electrode)b*Gas pressure in the empty container of the electron injection layer 66.7Pa (0.5Torr)
Substrate temperature 200℃ CH, gas: 5IH4 gas l: IPHJ gas: (
CH4j+5illJ) 5.8:1000 High frequency power supply power 40W (O, 13Y/c++1 for input electrode area) Next, the light emitting layer will be described.

従来は、炭化水素ガス、Htガスを第゛2図の真空室7
.に導入し、高周波電源E、により高周波源を印加して
プラズマCVD法によりa −C: H膜をp型a−8
iC:H膜上に積層し発光層としていた。また、炭化水
素ガスの水素希釈度を50%。
Conventionally, hydrocarbon gas and Ht gas were stored in the vacuum chamber 7 in Figure 2.
.. The a-C:H film was converted into p-type a-8 by plasma CVD method by applying a high-frequency source using a high-frequency power source E.
It was laminated on the iC:H film to serve as a light emitting layer. In addition, the hydrogen dilution of hydrocarbon gas is 50%.

基板温度200℃、槽内圧力13.3Pa (0,1T
o r r) 、人力電力18W、電極間距離2cmの
基本条件で炭化水素ガスとしてCH,、C,H。
Substrate temperature 200℃, chamber pressure 13.3Pa (0.1T
o r r), CH, C, H as hydrocarbon gas under the basic conditions of 18 W of human power and 2 cm distance between electrodes.

を用いた場合、図3のような特性を示し、またC1)(
4系は光学ギャップEgoに対してPLピークエネルギ
ーが第4図のように変化した。図から判るようにE g
 oはCH4系がC,H,系より大きく、PL強度は逆
にCx H−系のほうが強く、また同一のE g oで
比較した場合、抵抗率はCH,系のほうがC,H,系よ
うも約1〜0.5桁(Ω・cm単位)小さい事が分って
いる。そこで従来の問題点を改善するために、単一な発
光層をアモルファス超格子構造とした。その超格子構造
は、上記の事実を踏まえ、電子、正孔の再結合部である
井戸層には強いPLを示すCt H−系a−C:H,N
膜を用い、バリア層には抵抗率の小さいCH,系λ−C
:H膜を用いた。また、p層からの正孔、n層からの電
子の注入効率を高めるためにp/i、i/n接合部のi
層には、バリア層が来るように作製した。
When using C1)(
In the 4th system, the PL peak energy changed as shown in FIG. 4 with respect to the optical gap Ego. As you can see from the figure, E g
o is larger in the CH4 system than in the C, H, system, and conversely, the PL intensity is stronger in the Cx H- system, and when compared with the same E g o, the resistivity is higher in the CH, system than in the C, H, system. It is known that it is about 1 to 0.5 orders of magnitude smaller (in Ωcm units). Therefore, in order to improve the conventional problems, the single light-emitting layer was made to have an amorphous superlattice structure. Based on the above facts, the superlattice structure is based on the Ct H- system a-C:H,N which exhibits strong PL in the well layer which is the recombination part of electrons and holes.
CH film with low resistivity and λ-C system are used for the barrier layer.
:H film was used. In addition, in order to increase the injection efficiency of holes from the p layer and electrons from the n layer, the i of the p/i and i/n junctions is
The barrier layer was prepared as the layer.

超格子のバリア、井戸層内が均一膜となり、超格子で用
いるIOnm程度の膜の抵抗が200 nm以上の膜厚
の特性と同じになるように後記する方法を用いて各バリ
ア、井戸層を作製し、初期プラズマによる膜特性の不安
定性を是正し、従来の超格子膜に多く見られた界面の接
合不良を、界面を急峻なものとして良好な接合が得られ
るようにした。なお、界面の急峻性、平坦性は第5図に
示すX線回折より確認された。
Each barrier and well layer is formed using the method described later so that the inside of the barrier and well layers of the superlattice becomes a uniform film, and the resistance of the film of about ION nm used in the superlattice is the same as that of a film with a thickness of 200 nm or more. The team corrected the instability of the film properties caused by the initial plasma, and created a steep interface to achieve good bonding, which was common in conventional superlattice films. The steepness and flatness of the interface were confirmed by X-ray diffraction as shown in FIG.

この膜製造法を用いることによってp、n層と、i層の
接合性も良好なものが得られるようになり、電子、正孔
の注入効率の向上、デバイス間の特性のバラツキが低減
した。次に、超格子膜の製造手順を述べる。製膜はステ
ップバイ・ステップ方式と呼ばれるものである。第2図
において、p型a−9iC膜を形成した基板を真空室7
.に移動させた後、この中にCH,ガス、H,ガスを導
入し高周波電源E、によりコンピュータ制御した高・周
波電力を印加してバリア層を形成した後、高周波電源を
停止し、槽内を再び真空引きした後、C,H。
By using this film manufacturing method, it became possible to obtain good bonding properties between the p-layer, n-layer, and i-layer, improving the injection efficiency of electrons and holes, and reducing variations in characteristics between devices. Next, the manufacturing procedure of the superlattice film will be described. Film formation is a so-called step-by-step method. In FIG. 2, a substrate on which a p-type a-9iC film is formed is placed in a vacuum chamber 7.
.. After moving CH, gas, H, gas into this tank and applying computer-controlled high-frequency power using high-frequency power source E to form a barrier layer, the high-frequency power source was stopped and the inside of the tank was After evacuating again, C,H.

ガス、水素ガス、窒素ガスを導入し再びコンピュータ制
御した高周波電力を印加し、井戸層を形成する。しかる
後槽内を真空引きし、同様の手順によりバリア層を形成
し、この手順を繰り返すことによって発光層をなす超格
子膜を作製する。超格子膜を原子層制御するために製膜
速度をCH,。
Gas, hydrogen gas, and nitrogen gas are introduced, and computer-controlled high-frequency power is applied again to form a well layer. Thereafter, the inside of the tank is evacuated, a barrier layer is formed by the same procedure, and a superlattice film forming a light emitting layer is produced by repeating this procedure. In order to control the atomic layer of the superlattice film, the film formation rate is CH.

C,H,系共に0.2nm/see以下とした(CH4
はCt H4の半分の製膜速度である)。製膜条件例と
しては、 バリア層 真空槽内ガス圧 13.3Pa(0,ITo
rr)基板温度    200℃ CH,:H,1:1 高周波電力   15W 井戸層 真空槽内ガス圧 13.3Pa(0,1Tor
r)基板温度    200℃ C,H,: H,1:1.2 高周波電力   251 N、ガス濃度   0% この条件では、バリア層は3.2eV、井戸層は25e
VのE g oの膜が得られる。発光色を決めるバリア
、井戸層のEgQは製膜条件の各種の組み合わせで4.
OeV以下のものが容易に得られるが、発光素子として
用いる場合、基板温度を300℃以上に上げると室温で
の発光強度が著しく低下するため、300℃が限度であ
る。
Both C, H, and systems were set to 0.2 nm/see or less (CH4
is half the film forming speed of Ct H4). As an example of film forming conditions, barrier layer vacuum chamber gas pressure 13.3 Pa (0, ITo
rr) Substrate temperature 200℃ CH, :H, 1:1 High frequency power 15W Well layer Gas pressure in vacuum chamber 13.3Pa (0.1 Tor
r) Substrate temperature 200°C C, H,: H, 1:1.2 High frequency power 251 N, gas concentration 0% Under these conditions, the barrier layer has a voltage of 3.2 eV and the well layer has a voltage of 25 eV.
A film of E g o of V is obtained. EgQ of the barrier and well layer that determines the luminescent color can be changed by various combinations of film forming conditions.
Although a value of OeV or less can be easily obtained, when used as a light emitting element, the emission intensity at room temperature decreases significantly when the substrate temperature is raised to 300° C. or higher, so 300° C. is the limit.

上記の条件で発光層を構成し、バリア層を5nm一定と
して井戸層の厚みを変化させた時の発光層のEga及び
PLピークエネルギーは第6図の様になり、また、同一
のEL(電界発光)ピーク位置をもつ従来の発光素子と
超格子を用いた発光素子を比較すると、ピーク強度の増
加が見られ、第7図のように、半値幅の減少が見られた
The Ega and PL peak energies of the light emitting layer when the light emitting layer is constructed under the above conditions, the barrier layer is constant at 5 nm, and the thickness of the well layer is changed as shown in Figure 6, and the same EL (electric field When comparing a conventional light-emitting element having a peak position with a light-emitting element using a superlattice, an increase in peak intensity was observed, and as shown in FIG. 7, a decrease in half-width was observed.

バリア、井戸層の各膜厚は発光層を400nm以上にす
ると抵抗が大きくなってしまう事、強い発光を得るため
には超格子構造がlO周期以上必要であること、また量
子効果が十分あられれる必要がある事及び第4図より、
バリア層は5〜20n m 、井戸層は1〜10nm程
度にする必要がある。
If the thickness of the barrier and well layers is 400 nm or more, the resistance will increase, and in order to obtain strong light emission, the superlattice structure must have a period of 1O or more, and the quantum effect will be sufficient. From the necessity and Figure 4,
The thickness of the barrier layer needs to be about 5 to 20 nm, and the thickness of the well layer needs to be about 1 to 10 nm.

次に、井戸層作製時に上記の条件で窒素ガスを混入し製
膜を行った所、第8図のように窒素濃度に対してPLピ
ーク強度、EL(電界発光)ピーり強度が変化した。図
中の!、。、IEOは窒素濃度0%の場合の強度である
。図より窒素混入によりPL、EL強度の改善が見られ
る事は明らかであり、濃度は0.05〜20%が望まし
い。
Next, when forming the well layer by mixing nitrogen gas under the above conditions, the PL peak intensity and the EL (electroluminescence) pealing intensity changed with respect to the nitrogen concentration as shown in FIG. In the diagram! ,. , IEO is the intensity when the nitrogen concentration is 0%. It is clear from the figure that the PL and EL intensities are improved by adding nitrogen, and the concentration is preferably 0.05 to 20%.

以上、実施例について、説明したが、本発明は、構成の
要旨に不随して各種の設計変更が可能である。
Although the embodiments have been described above, various design changes can be made to the present invention depending on the gist of the configuration.

H,発明の効果 以上の説明から明らかなように、本発明に係る発光素子
の製造方法によれば、PL、EL強度を増加することが
できる。
H. Effects of the Invention As is clear from the above explanation, according to the method for manufacturing a light emitting device according to the present invention, the PL and EL intensities can be increased.

また、青領域の発光強度を改善し、発光スペクトルの半
値幅も量子効果により減少できる効果がある。
Furthermore, it has the effect of improving the emission intensity in the blue region and reducing the half-width of the emission spectrum due to quantum effects.

さらに、本発明は、膜界面の接合性を良好にする効果が
あり、デバイス間のバラツキを低減する効果がある。
Furthermore, the present invention has the effect of improving bonding properties at the film interface and has the effect of reducing variations between devices.

また、p層とi層及びi層とn層との夫々の接合部のi
層にバリア層を作製することにより、注入効率を向上す
る効率がある。
In addition, i at the junction between the p layer and the i layer and between the i layer and the n layer
There is an efficiency in improving injection efficiency by creating a barrier layer in the layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る発光素子の製造方法により作製さ
れた発光素子を示す構成図、第2図は発光素子の製造装
置を示す構成図、第3図はガス種とE g oとPL強
度との関係を示すグラフ、第4図はE g oとPLピ
ークエネルギーとの関係を示すグラフ、第5図はX線回
折を示すグラフ、第6図は井戸層の厚みを変化させたと
きの発光層のEgo及びPLピークエネルギーの関係を
示すグラフ、第7図は同一のELピーク位置をもつ従来
の発光素子と超格子を用いた発光素子のピークとを比較
したグラフ、第8図は窒素濃度に対するPLピーク強度
、ELピーク強度の変化を示すグラフである。 1・・・基板、2.6・・・電極、3・・・正孔注入層
、4・・・発光層、5・・・電子注入層、7・・・真空
容器、7〜7.・・・真空室、8・・・基板、9.〜9
3・・・サスセプタ。 外Z?5 第1図 実施例の構成図 第2図 製造装置の構成図 第5図 (井戸!!21組バリアー層4n鴫 100周期) 第6図 井P層厚(nlll) 第3図 CB。 C,H。 ガス種 第4図 Eg。 (eV) 1.5 2.0 2.5 3.0
Fig. 1 is a block diagram showing a light emitting device manufactured by the method for producing a light emitting device according to the present invention, Fig. 2 is a block diagram showing a light emitting device manufacturing apparatus, and Fig. 3 is a block diagram showing a light emitting device manufacturing method according to the present invention. Graph showing the relationship between intensity and Figure 4 is a graph showing the relationship between E g o and PL peak energy. Figure 5 is a graph showing X-ray diffraction. Figure 6 is when the thickness of the well layer is changed. Figure 7 is a graph showing the relationship between the Ego and PL peak energies of the light-emitting layer. Figure 7 is a graph comparing the peaks of a conventional light-emitting element and a light-emitting element using a superlattice, which have the same EL peak position. It is a graph showing changes in PL peak intensity and EL peak intensity with respect to nitrogen concentration. DESCRIPTION OF SYMBOLS 1... Substrate, 2.6... Electrode, 3... Hole injection layer, 4... Light emitting layer, 5... Electron injection layer, 7... Vacuum container, 7-7. ... Vacuum chamber, 8... Substrate, 9. ~9
3...Susceptor. Outside Z? 5. Fig. 1. Block diagram of the embodiment. Fig. 2. Block diagram of the manufacturing apparatus. C,H. Gas species Fig. 4Eg. (eV) 1.5 2.0 2.5 3.0

Claims (2)

【特許請求の範囲】[Claims] (1)発光層の両面に夫々正孔注入層及び電子注入層を
積層してなる発光素子を製造する方法において、 炭化水素ガスと水素化ケイ素ガスとp型不純物ガスとを
含む低圧の反応ガスを真空容器内でグロー放電させて分
解ガスを重合させるプラズマ化学的蒸着法を行い、これ
によりp型のアモルファス炭化ケイ素膜よりなる正孔注
入層を生成する工程と、 一種類の炭化水素ガスと水素ガスとの混合ガスを用いて
得られる前記薄膜について、膜厚と薄膜の特性との関係
を予め調べることにより、膜厚の大きさによって薄膜の
特性が変化しない臨界膜厚を求めると共に、製膜開始時
から膜厚が前記臨界膜厚になるまでの時間T_0を求め
ておき、前記一種類の炭化水素ガス及び当該炭化水素ガ
スよりも分解効率の高い他の種類の炭化水素ガスの混合
炭化水素ガスと水素ガスとの混合ガスを真空容器内に導
入して製膜を開始し、その後炭化水素ガスと水素ガスと
の体積比を固定したまま、前記他の種類の炭化水素ガス
の導入量を前記時間T_0経過後またはその付近にて零
になるように減少させて水素化アモルファス炭素超格子
膜でなる発光層を生成する工程と、 炭化水素ガスと水素化ケイ素ガスとn型不純物ガスとを
含む低圧の反応ガスを真空容器内でグロー放電させて分
解ガスを重合させるプラズマ化学的蒸着法を行い、これ
によりn型のアモルファス炭化ケイ素膜よりなる電子注
入層を生成する工程とからなることを特徴とする発光素
子の製造方法。
(1) In a method for manufacturing a light emitting device in which a hole injection layer and an electron injection layer are laminated on both sides of a light emitting layer, a low pressure reactive gas containing a hydrocarbon gas, a silicon hydride gas and a p-type impurity gas is used. A plasma chemical vapor deposition method is performed in which the decomposed gas is polymerized by glow discharge in a vacuum container, thereby producing a hole injection layer made of a p-type amorphous silicon carbide film, and one type of hydrocarbon gas. For the thin film obtained using a gas mixture with hydrogen gas, by investigating in advance the relationship between the film thickness and the properties of the thin film, we can determine the critical film thickness at which the properties of the thin film do not change depending on the size of the film thickness, and also The time T_0 from the start of the film until the film thickness reaches the critical film thickness is determined, and the mixed carbonization of the one type of hydrocarbon gas and another type of hydrocarbon gas with higher decomposition efficiency than the hydrocarbon gas is performed. A mixed gas of hydrogen gas and hydrogen gas is introduced into a vacuum container to start film formation, and then, while the volume ratio of hydrocarbon gas and hydrogen gas is fixed, the amount of the other type of hydrocarbon gas introduced is is reduced to zero after or around the time T_0 to produce a light-emitting layer made of a hydrogenated amorphous carbon superlattice film; a hydrocarbon gas, a silicon hydride gas, and an n-type impurity gas; A process of performing a plasma chemical vapor deposition method in which a low-pressure reactive gas containing a gas is caused to glow discharge in a vacuum container to polymerize the decomposed gas, thereby producing an electron injection layer made of an n-type amorphous silicon carbide film. A method for manufacturing a light emitting device, characterized by:
(2)前記発光層における井戸層は、窒素ガスを混入し
たプラズマ化学的蒸着法を用いて生成される特許請求の
範囲第1項記載の発光素子の製造方法。
(2) The method for manufacturing a light emitting device according to claim 1, wherein the well layer in the light emitting layer is produced using a plasma chemical vapor deposition method in which nitrogen gas is mixed.
JP1082782A 1989-03-31 1989-03-31 Manufacture of light emitting element Pending JPH02260669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1082782A JPH02260669A (en) 1989-03-31 1989-03-31 Manufacture of light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1082782A JPH02260669A (en) 1989-03-31 1989-03-31 Manufacture of light emitting element

Publications (1)

Publication Number Publication Date
JPH02260669A true JPH02260669A (en) 1990-10-23

Family

ID=13783987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1082782A Pending JPH02260669A (en) 1989-03-31 1989-03-31 Manufacture of light emitting element

Country Status (1)

Country Link
JP (1) JPH02260669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100304548B1 (en) * 1993-10-30 2001-11-22 구자홍 Super lattice type led device
JP2014175328A (en) * 2013-03-06 2014-09-22 Yamaguchi Univ n-TYPE SEMICONDUCTOR COMPOSED OF NITROGEN-CONTAINING AMORPHOUS SILICON CARBIDE AND MANUFACTURING METHOD OF THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100304548B1 (en) * 1993-10-30 2001-11-22 구자홍 Super lattice type led device
JP2014175328A (en) * 2013-03-06 2014-09-22 Yamaguchi Univ n-TYPE SEMICONDUCTOR COMPOSED OF NITROGEN-CONTAINING AMORPHOUS SILICON CARBIDE AND MANUFACTURING METHOD OF THE SAME

Similar Documents

Publication Publication Date Title
EP1178546B1 (en) Process for annealing organic light emitting devices
JPH02260669A (en) Manufacture of light emitting element
EP0244874A2 (en) Luminescent material, process for producing it and luminescent semiconductor device using it
US7923288B2 (en) Zinc oxide thin film electroluminescent devices
JPH0158839B2 (en)
JP2605834B2 (en) Light emitting device manufacturing method
JP2508015B2 (en) Method of manufacturing light emitting material
JPH03225969A (en) Manufacture of light-emitting element
JPH0217631A (en) Diamond crystal chip for light-emitting element
JPH02218180A (en) Light emitting element
JPH02224377A (en) Manufacture of light emitting element
JPH02218179A (en) Light emitting element and manufacture of amorphous material layer
JPH02218181A (en) Light emitting element
JPH02109379A (en) Manufacture of light emitting element
JPH03225970A (en) Manufacture of light-emitting element
JPH03225972A (en) Manufacture of light-emitting element
JPH02109378A (en) Manufacture of light emitting element
JPH03225971A (en) Manufacture of light-emitting element
Futagi et al. An amorphous SiC thin film visible light-emitting diode with a μc-SiC: H electron injector
JP2762910B2 (en) Luminescent material
JP3387011B2 (en) ELECTRON EMITTING ELEMENT, FIELD EMISSION DISPLAY DEVICE USING THE SAME, AND METHOD OF MANUFACTURING THEM
JPS63213375A (en) Light emitting element
JPH07106630A (en) Thin film light emitting diode
JP2002170985A (en) GREEN, BLUE OR WHITE AMORPHOUS p-i-n THIN FILM LIGHT EMITTING DIODE AND ITS FABRICATING METHOD
JPH0758360A (en) Semiconductor device and its manufacture