JPH0432797B2 - - Google Patents

Info

Publication number
JPH0432797B2
JPH0432797B2 JP58188971A JP18897183A JPH0432797B2 JP H0432797 B2 JPH0432797 B2 JP H0432797B2 JP 58188971 A JP58188971 A JP 58188971A JP 18897183 A JP18897183 A JP 18897183A JP H0432797 B2 JPH0432797 B2 JP H0432797B2
Authority
JP
Japan
Prior art keywords
weight
fiber
melting point
added
unfired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58188971A
Other languages
Japanese (ja)
Other versions
JPS6081068A (en
Inventor
Hiroshi Kano
Tsutomu Harada
Makoto Hori
Nobuhiko Kaji
Toshiaki Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP58188971A priority Critical patent/JPS6081068A/en
Priority to BR8501593A priority patent/BR8501593A/en
Priority to GB08508681A priority patent/GB2173185B/en
Priority to DE19853512379 priority patent/DE3512379C2/en
Priority to FR8505282A priority patent/FR2579977A1/en
Publication of JPS6081068A publication Critical patent/JPS6081068A/en
Publication of JPH0432797B2 publication Critical patent/JPH0432797B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/74Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
    • C04B35/76Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/013Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics containing carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、耐スポーリング性を改良した不焼
成定形耐火物に関するものである。 〔技術的背景〕 耐火性骨材と有機質バインダからなる不焼成の
定形耐火物は亀裂が発生しにくく、また、発生し
ても焼成れんがに比較して亀裂がシヤープでなく
ジグザグで拡がりにくいことから、ある程度耐食
性と耐スポーリング性を兼備するものであるが、
例えば連続鋳造用の要鋼が内孔を通るノズル用と
しては、耐スポーリング性において未だ不充分で
あつた。 〔発明の目的〕 この発明の目的は、耐火性骨材と有機質バイン
ダからなる不焼成耐火物における耐スポーリング
性を改善し、熱衝撃が大きくしかも機械的に強度
が要求される部所への適用に有用な不焼成耐火物
を提供することにある。 〔発明の構成〕 本発明の耐スポーリング性不焼成耐火物の特徴
は、耐火性骨材と有機質バインダからなる配合物
に、融点が1400℃以上の耐熱性メタルフアイバ
(以下高融点フアイバと記す)と融点が1000℃以
下のメタルフアイバ(以下低融点フアイバと記
す)との融点の大幅に異なるメタルフアイバ、さ
らに中間温度域で強度を発現しやすい粒子直径
0.5mm以下で融点1000℃以下の金属粉を組み合わ
せて添加してなる点にある。 この発明における耐火性骨材としては、例えば
シリカ、アルミナ、シリカ−アルミナ、マグネシ
ア、スピネル、クロム鉱、SiC、Si3N4、B4C、
BN、黒鉛及び無定形炭素等の炭素を任意に用い
ることができる。 有機質バインダとしては、残留炭素量が多いも
のが好ましく、さらにコストの点でフエノール、
フラン系の樹脂が好ましいが、特にこれらに限定
されるものではない。 高融点メタルフアイバとしては、普通鋼、Ni
−Cr鋼、Cr−Mo鋼、Cr鋼、Cr−V鋼等の特殊
鋼、ステンレス鋼、合金鉄等の鉄基合金のフアイ
バが好ましい。 また低融点メタルフアイバとしては、Alフア
イバ、Alフアイバを含むAl合金フアイバ、Mgフ
アイバ等を挙げることができる。 上記メタルフアイバは、直線、曲線、山形、波
形等の種々の形状で使用でき、該メタルフアイバ
の直径は0.01〜0.1mmの範囲が適しており、0.01mm
未満の太さでは、配合物中への分散が困難であ
り、0.1mmを超える太さでは耐スポーリング性の
向上が期待できない。なお、上記メタルフアイバ
は均一な太さである必要はなく種々のものを混合
して用いてもよい。 なお、上記メタルフアイバの長さは1〜10mmが
適当であり、この範囲外であると充填性不良、強
度不足となり、望ましくは2〜6mmが作業性に優
れ効果も大きい。 高融点メタルフアイバおよび低融点メタルフア
イバの耐火性骨材に対する添加量は、それぞれ1
〜9重量%の範囲内にある必要がある。1重量%
未満ではメタルフアイバ添加の効果が小となり、
また9重量%を超えるとメタルフアイバのマトリ
ツクス組織内の占有率が大きくなりすぎ、耐食性
が低下し好ましくない。 さらに、上記両メタルフアイバの合量の添加量
は、前記耐火性骨材に対し、2〜10重量%が適し
ており、2重量%未満では充分な強度と耐スポー
リング性が得られず、逆に10重量%を超えるとマ
トリツクス中の金属フアイバの比率が大きくなり
すぎ、耐火物としての性能の低下が生じ、また耐
スポーリング性の向上も顕著でない。さらに、混
合、形成作業が困難となり、良好な品質が得られ
ない。 以上の配合物にはさらに例えばAl、Mg、Zn、
Sn等の粒子直径が0.5mm以下の低融点金属粉を耐
火性骨材に対して外掛で1〜15重量%添加する必
要があり、これによつて中間温度域の強度低下を
完全に防止することができる。この低融点金属粉
と前記のメタルフアイバとを併用することによ
り、中間温度域の強度低下の防止とともに、耐ス
ポーリング性も優れた良好な不焼成定形耐火物が
得られる。 〔作用〕 メタルフアイバの長さと径の特定によつて、配
合物中への分散と作業性を容易にすると共に、耐
スポーリング性を向上せしめる。 また、高融点メタルフアイバと低融点メタルフ
アイバの耐火性骨材に対する添加量の特定による
耐食性を維持する。 さらに、上記両メタルフアイバの合量の添加量
の特定によつて、充分な強度と耐スポーリング性
を得るとともに、混合、成形作業を確保し、良好
に品質を得る。 また、さらに、特定粒子径の低融点金属粉を特
定量添加することによつて、中間温度域の強度低
下を完全に防止する。 さらには、この低融点金属粉と前記のメタルフ
アイバとを併用することにより、中間温度域の強
度低下の防止とともに、耐スポーリング性も優れ
た良好な不焼成定形耐火物が得られる。 本発明は、これらの各構成用件の作用を複合せ
しめた配合物を通常の方法で成形し硬化処理を施
すことによつて、耐スポーリング性においてとく
に優れた不焼成定形耐火物を得ることができる。 〔実施例〕 実施例 1 高融点金属フアイバと低融点金属フアイバと低
融点金属との併用の効果を、それぞれの単独添加
の効果と比較して示す。 合成ムライト(内外耐火製)35重量%と焼結ア
ルミナ60重量%と粘土5重量%とからなる耐火性
骨材に対して、5重量%のフエノール樹脂を添加
混合した配合物に、直径0.09mm、長さ6mmのスチ
ールフアイバを外掛(耐火性骨材に対して)3重
量%と直径0.03mm、長さ3mmのAlフアイバ2重量
%、さらに0.5mm以下のAl粉末を外掛けで2重量
%添加混合して成形し、200℃で24時間の硬化処
理を施し、スライデイングノズルの下部ノズル用
不焼成耐火物を得た。 比較例 1−1 Alフアイバを添加せず、他は実施例1と同様
にして、スライデイングノズルの下部ノズル用不
焼成耐火物を得た。 比較例 1−2 スチールフアイバを添加せず他は実施例1と同
様にして、スライデイングノズルの下部ノズル用
不焼成耐火物を得た。 比較例 1−3 0.5mm以下のAl粉末を添加せず他は実施例1と
同様にして、スライデイングノズルの下部ノズル
用不焼成耐火物を得た。 実施例1と比較例1−1、1−2、1−3で得
た不焼成耐火物の物性の第1表に示す。同表から
明らかなように、実施例1の耐火性は比較例1−
1、1−2の耐火物に比較して、亀裂発生時間が
遅く、亀裂の発達も遅いことが確認された。ま
た、比較例3は中間温度域(800℃)での強度が
不十分であつた。
[Industrial Application Field] This invention relates to an unfired shaped refractory with improved spalling resistance. [Technical background] Unfired shaped refractories made of refractory aggregate and organic binder are less prone to cracking, and even if they do occur, cracks are less likely to spread in a zigzag pattern than in fired bricks. , which has both corrosion resistance and spalling resistance to some extent,
For example, the spalling resistance is still insufficient for use in a nozzle in which the essential steel for continuous casting passes through an inner hole. [Object of the invention] The object of the invention is to improve the spalling resistance of unfired refractories made of refractory aggregate and organic binder, and to improve the spalling resistance of unfired refractories made of refractory aggregates and organic binders, and to improve the spalling resistance of unfired refractories made of refractory aggregates and organic binders. The object of the present invention is to provide unfired refractories useful for applications. [Structure of the Invention] The feature of the spalling-resistant unfired refractory of the present invention is that a heat-resistant metal fiber with a melting point of 1400°C or higher (hereinafter referred to as high-melting point fiber) is added to the composition consisting of a refractory aggregate and an organic binder. ) and metal fibers with melting points of 1000℃ or less (hereinafter referred to as low melting point fibers), which have significantly different melting points, and particle diameters that tend to develop strength in intermediate temperature ranges.
It is made by adding a combination of metal powders that are 0.5 mm or less and have a melting point of 1000°C or less. Examples of the refractory aggregate in this invention include silica, alumina, silica-alumina, magnesia, spinel, chromite, SiC, Si 3 N 4 , B 4 C,
Carbons such as BN, graphite and amorphous carbon can optionally be used. As the organic binder, one with a large amount of residual carbon is preferable, and from the viewpoint of cost, phenol,
Furan-based resins are preferred, but are not particularly limited to these. High melting point metal fibers include ordinary steel, Ni
- Fibers made of special steel such as Cr steel, Cr-Mo steel, Cr steel, and Cr-V steel, stainless steel, and iron-based alloys such as ferroalloy are preferred. Examples of the low melting point metal fiber include Al fiber, Al alloy fiber containing Al fiber, and Mg fiber. The above-mentioned metal fiber can be used in various shapes such as straight line, curved line, chevron shape, wave shape, etc., and the diameter of the metal fiber is suitably in the range of 0.01 to 0.1 mm, and 0.01 mm.
If the thickness is less than 0.1 mm, it will be difficult to disperse it in the formulation, and if the thickness exceeds 0.1 mm, no improvement in spalling resistance can be expected. Note that the metal fibers do not need to have a uniform thickness, and a mixture of various metal fibers may be used. The length of the metal fiber is preferably 1 to 10 mm, and if it is outside this range, the filling properties will be poor and the strength will be insufficient.The length of the metal fiber is preferably 2 to 6 mm, which is excellent in workability and has a large effect. The amount of high melting point metal fiber and low melting point metal fiber added to the refractory aggregate is 1
It needs to be within the range of ~9% by weight. 1% by weight
Below this, the effect of adding metal fiber will be small.
On the other hand, if it exceeds 9% by weight, the occupancy of the metal fiber in the matrix structure becomes too large, resulting in a decrease in corrosion resistance, which is not preferable. Furthermore, the total amount of both metal fibers added is preferably 2 to 10% by weight relative to the refractory aggregate, and if it is less than 2% by weight, sufficient strength and spalling resistance cannot be obtained. On the other hand, if it exceeds 10% by weight, the proportion of metal fibers in the matrix becomes too large, resulting in a decrease in performance as a refractory, and no significant improvement in spalling resistance. Furthermore, mixing and forming operations become difficult, making it difficult to obtain good quality. The above formulations further include Al, Mg, Zn,
It is necessary to add 1 to 15% by weight of low-melting metal powder such as Sn with a particle diameter of 0.5 mm or less to the refractory aggregate, which completely prevents strength loss in the intermediate temperature range. be able to. By using this low melting point metal powder in combination with the metal fiber described above, it is possible to obtain a good unfired shaped refractory that prevents a decrease in strength in the intermediate temperature range and has excellent spalling resistance. [Function] By specifying the length and diameter of the metal fiber, dispersion into the compound and workability are facilitated, and spalling resistance is improved. Furthermore, corrosion resistance is maintained by specifying the amounts of high melting point metal fibers and low melting point metal fibers added to the refractory aggregate. Furthermore, by specifying the total amount of both metal fibers added, sufficient strength and spalling resistance can be obtained, mixing and molding operations can be ensured, and good quality can be obtained. Furthermore, by adding a specific amount of low melting point metal powder with a specific particle size, a decrease in strength in the intermediate temperature range can be completely prevented. Furthermore, by using this low melting point metal powder in combination with the metal fiber described above, a good unfired shaped refractory can be obtained that prevents a decrease in strength in the intermediate temperature range and has excellent spalling resistance. The present invention aims to obtain an unfired shaped refractory with particularly excellent spalling resistance by molding and hardening a compound that combines the effects of each of these constituent conditions using a conventional method. I can do it. [Examples] Example 1 The effect of using a high melting point metal fiber, a low melting point metal fiber, and a low melting point metal in combination is shown in comparison with the effect of adding each of them alone. A mixture with a diameter of 0.09 mm was added to a fireproof aggregate consisting of 35% by weight of synthetic mullite (made by Naigai Fireproof), 60% by weight of sintered alumina, and 5% by weight of clay, with the addition of 5% by weight of phenolic resin. , 3% by weight of steel fibers with a length of 6 mm (based on the refractory aggregate), 2% by weight of Al fibers with a diameter of 0.03 mm and a length of 3 mm, and 2% by weight of Al powder with a diameter of 0.5 mm or less. The mixture was added and mixed, molded, and hardened at 200°C for 24 hours to obtain an unfired refractory for the lower nozzle of a sliding nozzle. Comparative Example 1-1 An unfired refractory for a lower nozzle of a sliding nozzle was obtained in the same manner as in Example 1 except that no Al fiber was added. Comparative Example 1-2 An unfired refractory for a lower nozzle of a sliding nozzle was obtained in the same manner as in Example 1 except that no steel fiber was added. Comparative Example 1-3 An unfired refractory for a lower nozzle of a sliding nozzle was obtained in the same manner as in Example 1 except that no Al powder of 0.5 mm or less was added. Table 1 shows the physical properties of the unfired refractories obtained in Example 1 and Comparative Examples 1-1, 1-2, and 1-3. As is clear from the table, the fire resistance of Example 1 is lower than that of Comparative Example 1-
It was confirmed that compared to refractories Nos. 1 and 1-2, the crack initiation time was delayed and the crack development was also slow. Furthermore, Comparative Example 3 had insufficient strength in the intermediate temperature range (800°C).

【表】【table】

【表】 実施例 2 高融点フアイバと低融点フアイバの併用による
効果を示すための実施例であつて、比較例とし
て、それぞれの単独配合の場合と、フアイバが規
定のものより細い場合の例と比較したものであ
る。 石英ガラス15重量%と電融アルミナ60重量%と
鱗状黒鉛20重量%とSi粉末とSiCの含量5重量%
からなる耐火骨材に、フエノール樹脂5重量%と
粒直径0.2mm以下のアルミニウム粉末を1重量%
添加混合し、さらに直径0.1mm、長さ6mmのステ
ンレスフアイバを耐火性骨材に対して5重量%と
直径0.1mm、長さ3mmのAlフアイバ3重量%とを
添加混合して成形し、200℃で24時間の硬化処理
を施し、取鍋用の不焼成ロングノズルを得た。 比較例 2−1 Alフアイバを添加せずステンレスフアイバの
みを8重量%添加し、他は実施例2と同様にし
て、不焼成耐火物を得た。 比較例 2−2 ステンレスフアイバを添加せず、Alフアイバ
のを8重量%添加した不焼成耐火物を得た。 比較例 2−3 直径0.008mm、長さ6mmのステンレスフアイバ
5重量%と、直径0.008mm、長さ3mmのアルミニ
ウムフアイバ3重量%を添加して、他は実施例2
と同様にして不焼成ロングノノズルを得た。但
し、各フアイバを混練物中に添加する、バラバラ
にならず、フアイバの団粒が発生した。 実施例2と比較例2−1、2−2、2−3で得
た不焼成耐火物の物性の第2表に示す。同表の結
果より明らかなように、実施例2の耐火物は亀裂
の発生がなく、耐スポーリング性に優れているこ
とが確認された。また、300tの取鍋での実用テス
トにおいても、実施例2によるロングノズルは6
回のチヤージにおいても亀裂の発生がなく使用さ
れ、現行の焼成品と遜色ない実績であつた。 比較例2−1も、テーブル評価では良好な耐ス
ポーリング性を示したが、中間温度域での強度不
足のため、実炉使用中に折損が生じた。
[Table] Example 2 This is an example to demonstrate the effect of using a high melting point fiber and a low melting point fiber in combination, and as a comparative example, a case where each is used alone, and an example where the fiber is thinner than the specified one. This is a comparison. 15% by weight of quartz glass, 60% by weight of fused alumina, 20% by weight of scaly graphite, and 5% by weight of Si powder and SiC content.
5% by weight of phenolic resin and 1% by weight of aluminum powder with a particle diameter of 0.2 mm or less in a fireproof aggregate consisting of
Then, 5% by weight of stainless steel fibers with a diameter of 0.1 mm and a length of 6 mm and 3% by weight of Al fibers with a diameter of 0.1 mm and a length of 3 mm were added and mixed with respect to the refractory aggregate, and molded into 200 A hardening treatment was performed at ℃ for 24 hours to obtain an unfired long nozzle for a ladle. Comparative Example 2-1 An unfired refractory was obtained in the same manner as in Example 2 except that 8% by weight of only stainless steel fiber was added without adding Al fiber. Comparative Example 2-2 An unfired refractory was obtained in which 8% by weight of Al fiber was added without adding stainless steel fiber. Comparative Example 2-3 5% by weight of stainless steel fiber with a diameter of 0.008 mm and a length of 6 mm and 3% by weight of an aluminum fiber with a diameter of 0.008 mm and a length of 3 mm were added, and the rest were as in Example 2.
An unfired long nozzle was obtained in the same manner as above. However, when each fiber was added to the kneaded mixture, the fibers did not fall apart and aggregates of the fibers were generated. Table 2 shows the physical properties of the unfired refractories obtained in Example 2 and Comparative Examples 2-1, 2-2, and 2-3. As is clear from the results in the same table, it was confirmed that the refractory of Example 2 did not generate cracks and had excellent spalling resistance. In addition, in a practical test using a 300t ladle, the long nozzle according to Example 2
It was used without any cracks even after being charged several times, and its performance was comparable to that of current fired products. Comparative Example 2-1 also showed good spalling resistance in the table evaluation, but due to insufficient strength in the intermediate temperature range, breakage occurred during actual furnace use.

【表】【table】

【表】 実施例 3 フアイバの特定範囲内の添加量の効果を示す実
施例である。 焼結アルミナ80重量%、合成ムライト10重量
%、カーボン5重量%からなる耐火性骨材にフエ
ノール樹脂5重量%を添加混合した配合物に、耐
火性骨材に対し直径0.06mm、長さ3mmのステンレ
スフアイバを2.5重量%と直径0.03mm、長さ1.5mm
のAlフアイバを4重量%、0.2〜0mmアルミニウ
ム粉末を外掛けで10重量%添加混合して形成し、
200℃で24時間の硬化処理を施し、不焼成スライ
デイングノズルプレートれんがを得た。 比較例 3−1 同一直径、同一長さのステンレスフアイバ5重
量%とAlフアイバ7重量%、メタルフアイバの
合量で10重量%以上使用し、実施例3と同様にし
て不焼成プレートを得たが、混練中に団粒が発生
した。 比較例 3−2 ステンレスフアイバを添加せず、他は実施例3
と同様にして不焼成プレートを得た。 比較例 3−3 ステンレスフアイバ0.5重量%とAlフアイバ0.3
重量%、メタルフアイバの合量で1重量%以下の
添加量で実施例3と同様にして不焼成プレートを
得た。 比較例 3−4 アルミニウム粉末の添加量を0.5重量%として、
実施例3と同様にして不焼成プレートを得た。 比較例 3−5 アルミニウム粉末の添加量を17重量%として、
他は実施例3と同様にして不焼成プレートを得
た。 実施例3と比較例3−1〜5で得た不焼成プレ
ートの物性と使用実績を第3表に示す。 同表に示すように、実施例3においては、特定
長さ、特定太さの高融点メタルフアイバと低融点
メタルフアイバを適正量添加した場合にのみ良好
な混練性、成形性が得られ、しかも、強度、耐ス
ポーリング性の良好なバランスが達成できるとい
う効果が確認できた。
[Table] Example 3 This is an example showing the effect of adding fiber within a specific range. A mixture of 80% by weight of sintered alumina, 10% by weight of synthetic mullite, and 5% by weight of carbon is mixed with 5% by weight of phenolic resin. 2.5% by weight of stainless steel fiber, diameter 0.03mm, length 1.5mm
It is formed by adding and mixing 4% by weight of Al fiber and 10% by weight of 0.2~0mm aluminum powder on the outside.
A hardening treatment was performed at 200°C for 24 hours to obtain an unfired sliding nozzle plate brick. Comparative Example 3-1 An unfired plate was obtained in the same manner as in Example 3, using 5% by weight of stainless steel fibers, 7% by weight of Al fibers, and 10% by weight or more of metal fibers with the same diameter and length. However, aggregates were generated during kneading. Comparative Example 3-2 No stainless fiber added, other than Example 3
An unfired plate was obtained in the same manner as above. Comparative example 3-3 Stainless fiber 0.5% by weight and Al fiber 0.3%
An unfired plate was obtained in the same manner as in Example 3, except that the total amount of metal fibers was 1% by weight or less. Comparative Example 3-4 When the amount of aluminum powder added was 0.5% by weight,
An unfired plate was obtained in the same manner as in Example 3. Comparative Example 3-5 The amount of aluminum powder added was 17% by weight,
Otherwise, an unfired plate was obtained in the same manner as in Example 3. Table 3 shows the physical properties and usage results of the unfired plates obtained in Example 3 and Comparative Examples 3-1 to 3-5. As shown in the table, in Example 3, good kneadability and moldability were obtained only when appropriate amounts of high melting point metal fibers and low melting point metal fibers of a specific length and thickness were added. It was confirmed that a good balance between strength and spalling resistance could be achieved.

【表】 実施例 4 適正な太さの高融点メタルフアイバと低融点メ
タルフアイバの併用の効果を示す実施例であつ
て、比較例として高融点メタルフアイバ単独の場
合と、フアイバが規定のものより太い場合の例と
を比較したものである。 高純度海水マグネシア75重量%と焼結スピネル
20重量%とカーボン5重量%とからなる耐火性骨
材に2.5重量%のフエノール樹脂を添加混合した
配合物に、耐火性骨材に対し外掛で直径0.06mm、
長さ6mmのステンレスフアイバ4重量%と直径
0.09mm、長さ3mmのAl−Mg(Mg≒50重量%)合
金フアイバ3重量%とを添加混合して成形し、硬
化処理後塩基性不焼成プレートを得た。 比較例 4−1 ステンレスフアイバを添加せず、他は実施例4
と同様にして不焼成プレートを得た。 比較例 4−2 直径0.12mm、長さ6mmのステンレスフアイバ4
重量%、直径0.12mm、長さ3mmのAl−Mg合金フ
アイバ3重量%を添加した他は、実施例4と同様
にして不焼成プレートを得た。 比較例 4−3 直径0.12mm、長さ6mmのステンレスフアイバ8
重量%、直径0.12mm、長さ3mmのAl−Mg合金フ
アイバ6重量%添加した他は、実施例4と同様に
して不焼成プレートを得た。 第4表に実施例4と比較例4−1、4−2、4
−3で得た物性を示す。 同表に示すように、フアイバの太さは規定の範
囲のものが良好な耐スポーリング性を示し、規定
のものより太いフアイバを添加した場合は、耐ス
ポーリング性が低下し、太いフアイバを過剰に添
加しても耐スポーリング性は改善されず、品質の
低下を招く。
[Table] Example 4 This is an example showing the effect of using a high melting point metal fiber and a low melting point metal fiber of appropriate thickness in combination, and as a comparative example, a case where the high melting point metal fiber alone is used and a case where the fiber is different from the specified one. This is a comparison with an example of a thick case. High purity seawater magnesia 75% by weight and sintered spinel
A mixture of fire-resistant aggregate consisting of 20% by weight and 5% by weight of carbon and 2.5% by weight of phenolic resin was added with a diameter of 0.06 mm at the outside of the fire-resistant aggregate.
4% by weight stainless steel fiber with length 6mm and diameter
3% by weight of Al-Mg (Mg≈50% by weight) alloy fiber having a length of 0.09 mm and 3 mm was added and mixed, and after hardening treatment, a basic unfired plate was obtained. Comparative Example 4-1 No stainless fiber added, other than Example 4
An unfired plate was obtained in the same manner as above. Comparative example 4-2 Stainless fiber 4 with a diameter of 0.12 mm and a length of 6 mm
An unfired plate was obtained in the same manner as in Example 4, except that 3% by weight of Al--Mg alloy fibers having a diameter of 0.12 mm and a length of 3 mm were added. Comparative example 4-3 Stainless fiber 8 with a diameter of 0.12 mm and a length of 6 mm
An unfired plate was obtained in the same manner as in Example 4, except that 6% by weight of Al--Mg alloy fibers having a diameter of 0.12 mm and a length of 3 mm were added. Table 4 shows Example 4 and Comparative Examples 4-1, 4-2, and 4.
The physical properties obtained in -3 are shown. As shown in the same table, fibers with a specified thickness range exhibit good spalling resistance, and if a fiber thicker than the specified one is added, the spalling resistance decreases and the thicker fiber Even if added in excess, spalling resistance will not be improved and quality will deteriorate.

【表】【table】

【表】 実施例 5 電融マグネシア45重量%、高純度海水マグネシ
ア35重量%、鱗状黒鉛20重量%からなる耐火性骨
材に2.8重量%のフエノール樹脂を添加混合した
配合物に、耐火性骨材に対し外掛で直径0.06mm、
長さ6mmのステンレスフアイバ3重量%と、直径
0.03mm、長さ3mmのAlフアイバ3重量%と、さら
に、0.25mm以下のAl−Mg合金2重量%を添加混
合して成形し、硬化処理を施し転炉用の羽口れん
がを得た。 比較例 5−1 実施例5において、添加した各メタルフアイバ
の直径は同一であるが、長さが15mmのものを用
い、他は同一条件で転炉用の羽口れんがを得た。
但し、混練中にメタルフアイバが絡まり団粒が発
生し、分散が不均一であつた。 比較例 5−2 実施例5において添加した各メタルフアイバの
直径は同一であるが、長さが15mmのものを各々
1.5重量%に減量し、その他は同一の条件で転炉
用の羽口れんがを得た。但し、比較例5−2と同
様、混練中にメタルフアイバが絡まり団粒が発生
した。 比較例 5−3 実施例5と同様の各メタルフアイバをそれぞれ
6重量%添加し、他は同一条件で転炉用の羽口れ
んがを得た。但し、メタルフアイバが多過ぎ、6
mm長のフアイバであるにもかかわらず、混練中に
団粒が発生した。 比較例 5−4 実施例5において添加した各メタルフアイバの
直径は同一であるが、長さが0.8mmのものを各々
3重量%添加し、他は同一条件で転炉用羽口れん
がを得た。 比較例 5−5 実施例5において添加した各メタルフアイバの
直径は同一であるが、長さが0.8mmのものを各26
重量%添加し、他は同一条件で転炉用羽口れんが
を得た。 第5表に実施例5と比較例5−1、5−2、5
−3、5−4、5−5の物性を示す。 比較例5−1、5−2、5−3においては、溶
鋼に対する耐食性が実施例5に比べて劣り、実炉
使用に供することはできなかつた。
[Table] Example 5 Refractory bone was added to a mixture of refractory aggregate consisting of 45% by weight of fused magnesia, 35% by weight of high-purity seawater magnesia, and 20% by weight of scaly graphite, with the addition of 2.8% by weight of phenolic resin. Diameter 0.06mm outside the material.
3% by weight stainless fiber with length 6mm and diameter
3% by weight of Al fibers of 0.03 mm and 3 mm in length and 2% by weight of Al-Mg alloy of 0.25 mm or less were added and mixed, molded, and hardened to obtain tuyere bricks for a converter. Comparative Example 5-1 In Example 5, tuyere bricks for a converter were obtained under the same conditions except that the metal fibers added had the same diameter and length of 15 mm.
However, during kneading, the metal fibers became entangled and aggregates were generated, resulting in non-uniform dispersion. Comparative Example 5-2 The diameter of each metal fiber added in Example 5 was the same, but the length was 15 mm.
Tuyere bricks for a converter were obtained under the same conditions except that the weight was reduced to 1.5% by weight. However, like Comparative Example 5-2, metal fibers were entangled during kneading and aggregates were generated. Comparative Example 5-3 Tuyere bricks for a converter were obtained under the same conditions as in Example 5 except that 6% by weight of each metal fiber was added. However, there are too many metal fibers, 6
Even though the fiber was mm long, aggregates were generated during kneading. Comparative Example 5-4 The diameter of each metal fiber added in Example 5 was the same, but 3% by weight of each metal fiber with a length of 0.8 mm was added, and tuyere bricks for a converter were obtained under the same conditions. Ta. Comparative Example 5-5 The diameter of each metal fiber added in Example 5 was the same, but the length was 0.8 mm.
% by weight was added, and tuyere bricks for a converter were obtained under the same conditions. Table 5 shows Example 5 and Comparative Examples 5-1, 5-2, and 5.
-3, 5-4, and 5-5 physical properties are shown. Comparative Examples 5-1, 5-2, and 5-3 had inferior corrosion resistance to molten steel compared to Example 5, and could not be used in an actual furnace.

【表】【table】

〔発明の総合効果〕[Overall effect of the invention]

本発明は、特定直径、特定長さのフアイバ状低
融点メタルと、フアイバ状高融点メタルを併用す
ることにより、比較的低温では、フアイバ状メタ
ルによる繊維強化を一層効果的にする、フアイバ
状低融点メタルは、燐片状低融点メタルあるいは
低融点メタルアトマイズ粉が反応を完了する温度
以上で反応を開始し、強度発現温度域を拡大する
ことにが可能となり、フアイバ状高融点メタル
は、フアイバ状低融点メタルが反応を完了する温
度以上でもフアイバとしての形態を維持し、高温
域での組織の繊維強化を達成させる作用が複合さ
れて、耐スポーリング性においてとくに優れた不
焼成定形耐火物を得ることができる。
The present invention uses a fiber-like low melting point metal with a specific diameter and a specific length, and a fiber-like high melting point metal to make fiber reinforcement by the fiber-like metal more effective at relatively low temperatures. The melting point metal starts the reaction above the temperature at which the scaly low melting point metal or the low melting point metal atomized powder completes the reaction, making it possible to expand the temperature range in which strength is developed. This is an unfired shaped refractory with particularly excellent spalling resistance, as it maintains its fiber shape even above the temperature at which the low melting point metal completes its reaction, and achieves fiber reinforcement in the structure at high temperatures. can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 耐火性骨材と有機質バインダからなる配合物
に、耐火性骨材に対し、直径0.01〜0.1mm、長さ
1〜9mmで融点1400℃以上の耐熱性メタルフアイ
バと、直径0.01〜0.1mm、長さ1〜9mmで融点
1000℃以下のメタルフアイバとを、それぞれ1〜
9重量%、合量にして2〜10重量%と、粒子直径
0.5mm以下で融点が1000℃以下の金属粉を1〜15
重量%添加した後、硬化処理を施したことを特徴
とする耐スポーリング性不焼成耐火物。
1. A mixture consisting of refractory aggregate and organic binder, heat-resistant metal fiber with a diameter of 0.01 to 0.1 mm, length of 1 to 9 mm, and a melting point of 1400°C or higher, and a diameter of 0.01 to 0.1 mm, Melting point at length 1-9mm
1~1000℃ or less metal fiber and
9% by weight, 2-10% by weight in total, particle diameter
1 to 15 metal powders with a size of 0.5 mm or less and a melting point of 1000℃ or less
A spalling-resistant unfired refractory characterized by being subjected to a hardening treatment after adding % by weight.
JP58188971A 1983-10-07 1983-10-07 Antispalling non-bake refractories Granted JPS6081068A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58188971A JPS6081068A (en) 1983-10-07 1983-10-07 Antispalling non-bake refractories
BR8501593A BR8501593A (en) 1983-10-07 1985-04-03 REFRACTORIES CONTAINED IN CARBON ADDED WITH METALLIC FIBERS OBTAINED IN THE CUT THROUGH VIBRATION
GB08508681A GB2173185B (en) 1983-10-07 1985-04-03 Carbon-containing refractories
DE19853512379 DE3512379C2 (en) 1983-10-07 1985-04-04 Refractory material containing carbon and process for its manufacture
FR8505282A FR2579977A1 (en) 1983-10-07 1985-04-05 Carbon-contg. refractory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58188971A JPS6081068A (en) 1983-10-07 1983-10-07 Antispalling non-bake refractories

Publications (2)

Publication Number Publication Date
JPS6081068A JPS6081068A (en) 1985-05-09
JPH0432797B2 true JPH0432797B2 (en) 1992-06-01

Family

ID=16233127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58188971A Granted JPS6081068A (en) 1983-10-07 1983-10-07 Antispalling non-bake refractories

Country Status (3)

Country Link
JP (1) JPS6081068A (en)
DE (1) DE3512379C2 (en)
FR (1) FR2579977A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081068A (en) * 1983-10-07 1985-05-09 黒崎窯業株式会社 Antispalling non-bake refractories
JPH07115957B2 (en) * 1989-12-08 1995-12-13 東芝セラミックス株式会社 Refractory manufacturing method
DE19643111C2 (en) * 1995-10-20 2003-04-03 Hans Wienand Use of stones for the steel industry
DE19919264A1 (en) * 1999-04-28 2000-11-02 Moeckel Wolfgang Refractory bricks, especially silica bricks, are produced from a mixture containing crushed silica glass

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565348A (en) * 1978-11-07 1980-05-16 Kurosaki Refract Co Ltd Refractory
JPS57106581A (en) * 1980-12-18 1982-07-02 Kurosaki Refractories Co Lower portion nozzle for highly anti-spalling non-baked sliding nozzle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130608A (en) * 1978-04-01 1979-10-11 Kawasaki Steel Co Steel wireecontaining magnesia carbon brick
US4208214A (en) * 1978-04-21 1980-06-17 General Refractories Company Refractory compositions
DE3069915D1 (en) * 1979-12-13 1985-02-14 Japan Res Dev Corp Production of short metal fibers
JPS6081068A (en) * 1983-10-07 1985-05-09 黒崎窯業株式会社 Antispalling non-bake refractories

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565348A (en) * 1978-11-07 1980-05-16 Kurosaki Refract Co Ltd Refractory
JPS57106581A (en) * 1980-12-18 1982-07-02 Kurosaki Refractories Co Lower portion nozzle for highly anti-spalling non-baked sliding nozzle

Also Published As

Publication number Publication date
JPS6081068A (en) 1985-05-09
FR2579977A1 (en) 1986-10-10
DE3512379C2 (en) 1996-05-30
DE3512379A1 (en) 1986-10-09
FR2579977B1 (en) 1991-08-23

Similar Documents

Publication Publication Date Title
US5318933A (en) Carbon-containing carbon bonded refractories with improved physical properties
JPH0432797B2 (en)
JPS6348828B2 (en)
JPH08259340A (en) Magnesia-carbon-based castable refractory
KR100508521B1 (en) A castable refractories composition containing carbon
JP3197680B2 (en) Method for producing unburned MgO-C brick
JP3351998B2 (en) Sliding nozzle plate and method of manufacturing the same
JPH039066B2 (en)
KR101672470B1 (en) Refractory for slag dart, slag dart including the same and manufacturing method of slag dart
JPH08175877A (en) Castable refractory
JP2004141899A (en) Sliding nozzle plate for ladle
JPH0450178A (en) Ladle-lining carbon-containing amorphous refractories
JPS608988B2 (en) Immersion nozzle composition for casting
JPH0319183B2 (en)
JP2544046B2 (en) Non-fired refractory with high spooling resistance
JPH06220517A (en) Sleeve brick for steel tapping hole in converter
JPH02141480A (en) Castable refractory
JPS6051671A (en) Castable refractories
JPS59107961A (en) Carbon-containing refractories
JPH033631B2 (en)
JPS621345B2 (en)
JPH03205368A (en) Castable alumina-spinel refractory
JPH07291710A (en) Graphite containing refractory
JPH0543662B2 (en)
JPH04292461A (en) Production of carbon-containing refractory having definite shape