JPH0432528A - Method for melting carbide dispersing type titanium base alloy - Google Patents

Method for melting carbide dispersing type titanium base alloy

Info

Publication number
JPH0432528A
JPH0432528A JP14073690A JP14073690A JPH0432528A JP H0432528 A JPH0432528 A JP H0432528A JP 14073690 A JP14073690 A JP 14073690A JP 14073690 A JP14073690 A JP 14073690A JP H0432528 A JPH0432528 A JP H0432528A
Authority
JP
Japan
Prior art keywords
melting
carbide
titanium
raw material
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14073690A
Other languages
Japanese (ja)
Inventor
Yoshihito Sugimoto
杉本 由仁
Wataru Takahashi
渉 高橋
Yoshiaki Shida
志田 善明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14073690A priority Critical patent/JPH0432528A/en
Publication of JPH0432528A publication Critical patent/JPH0432528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To reduce unit consumptions of a crucible and electric power by melting raw material for melting containing carbide in an induction heating melting method using the graphite crucible. CONSTITUTION:The main raw material, auxiliary raw material and carbide are charged into the graphite crucible 4 at inside from a raw material charging chamber 7, and the melting furnace 1 is kept to under vacuum or inert gas atmosphere of Ar, etc., and the raw material is melted with high frequency current induced from the high frequency induction coil 6. The carbide is TiC, ZrC, SiC, WC, etc. By this method, carbon is infiltrated from interface between inner surface of the graphite crucible and the molten metal, and interface between the carbide surface and the molten metal, but the quantity from the latter is by far more than that from the former. Therefore, compared with the conventional melting method, which titanium carbide is developed with the carbon infiltrated only from the graphite crucible, this can be melted for shorter time and erosion of the graphite crucible is a little with this method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高延性で耐摩耗性に優れた炭化物分散型チタ
ン基合金の溶解方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for melting a carbide-dispersed titanium-based alloy having high ductility and excellent wear resistance.

(従来の技術) チタン又はチタン合金(以下、本明細書ではこれらを総
称して「チタン基台金」という)は、比強度が高く、耐
食性および耐熱性にも優れることから、航空機用金属材
料や化学工業用金属材料として用途が拡大しつつあるが
、一方では耐摩耗性が十分でなく、機械部品の摺動部な
どに用いるには問題がある。
(Prior Art) Titanium or titanium alloy (hereinafter collectively referred to as "titanium base metal" in this specification) has high specific strength and excellent corrosion resistance and heat resistance, so it is used as a metal material for aircraft. Although its use is expanding as a metal material for the chemical industry, it does not have sufficient wear resistance, and there are problems with its use in sliding parts of mechanical parts.

そこで、近年、耐摩耗性を改善した新しいチタン基合金
が開発されている。例えば、特開昭6468437号公
報には、チタン又はチタン合金マトリックス中に炭化チ
タンが均一に分散晶出した炭化物分散型チタン基台金が
開示されでいる。この炭化物分散型チタン基台金は、炭
化物の共存によって耐摩耗性は優れているが、特開昭6
4 、68437号公報記載の炭化物分散型合金は、タ
ングステンアーク溶解法によって溶製されているために
溶解能率や製造コストに問題がある。
Therefore, in recent years, new titanium-based alloys with improved wear resistance have been developed. For example, JP-A-6468437 discloses a carbide-dispersed titanium base metal in which titanium carbide is uniformly dispersed and crystallized in a titanium or titanium alloy matrix. This carbide-dispersed titanium base metal has excellent wear resistance due to the coexistence of carbides, but
The carbide-dispersed alloy described in No. 4, No. 68437 is manufactured by a tungsten arc melting method, and therefore has problems in melting efficiency and manufacturing cost.

タングステンアーク溶解法のような消耗式電極アーク溶
解法では、消耗式電極を作製するのにスポンジチタンや
合金元素等の原料をコンパクトプレスして成形体を作製
し、これを電子ビーム溶接で多数個をつなくという複雑
な工程を経なければならず、また、成形体の強度を確保
するうえからチタン又はチタン合金のスクラップ使用量
を制限しなければならない。さらには、1次溶解のみで
は合金成分がインゴ・7ト内で均一に分布しないために
少なくとも2回以上の溶解が必要である。このようなこ
とから、消耗式電極アーク溶解法は工業的および経済的
に不利である。
In consumable electrode arc melting methods such as tungsten arc melting, consumable electrodes are produced by compact pressing raw materials such as titanium sponge and alloy elements to create compacts, which are then welded into large numbers by electron beam welding. In addition, the amount of scrap titanium or titanium alloy used must be limited in order to ensure the strength of the molded body. Furthermore, since the alloy components are not uniformly distributed within the ingot with only the first melting, at least two meltings are required. For these reasons, the consumable electrode arc melting method is industrially and economically disadvantageous.

他方、安価で生産性のよい溶解法として、鉄鋼材料やN
i基合金、Co基合金の溶製に用いられている黒鉛系坩
堝を用いる誘導加熱溶解法があり、特開平1−2220
26号公報にはこの溶解法で炭化物分散型チタン基台金
を溶解する方法が開示されている。この特開平1−22
2026号公報記載の発明は耐摩耗性の改善を目的とし
たものではなく、チタン基合金の延性を高めるために、
グラファイト坩堝を用い、α相中への固溶限以上の量の
炭素を含有させながら高周波溶解を行い、冷却過程にお
いて固溶炭素を炭化チタンとして析出させるものである
。この発明の熔解方法では、前記固溶限以上の量の炭素
はグラファイト坩堝から浸入するが、炭化物分散型チタ
ン基合金の溶製において、炭化チタンの析出に必要な炭
素の全てを黒鉛系坩堝から浸入する炭素で確保するよう
ムこすると、坩堝の浸食が激しくなり、坩堝の寿命が損
なわれて溶解費の内の坩堝原単位が高くなる。また、炭
素量が高く、炭化チタンの分散量の多いものを製造する
場合には、溶解時間が長くなり、溶解電力原単位が高く
なる。
On the other hand, as a low-cost and highly productive melting method, it is possible to melt steel materials and
There is an induction heating melting method using a graphite crucible that is used for melting I-based alloys and Co-based alloys, and is disclosed in JP-A-1-2220.
Publication No. 26 discloses a method of dissolving a carbide-dispersed titanium base metal using this melting method. This Unexamined Publication No. 1-22
The invention described in Publication No. 2026 is not aimed at improving wear resistance, but in order to increase the ductility of titanium-based alloy.
Using a graphite crucible, high-frequency melting is performed while containing carbon in an amount exceeding the solid solubility limit in the alpha phase, and the solute carbon is precipitated as titanium carbide during the cooling process. In the melting method of the present invention, carbon in an amount exceeding the solid solubility limit infiltrates from the graphite crucible, but in melting a carbide-dispersed titanium-based alloy, all of the carbon necessary for precipitation of titanium carbide is removed from the graphite crucible. If the infiltrated carbon is used to secure the melt, the crucible will be severely eroded, the life of the crucible will be shortened, and the crucible consumption rate of the melting cost will increase. Furthermore, when producing a material with a high carbon content and a large amount of titanium carbide dispersed, the melting time becomes longer and the melting power consumption becomes higher.

(発明が解決しようとする課題) 本発明の課題は、従来の熔解方法における問題点を解消
することにある。即ち、本発明の目的はチタン又はチタ
ン合金素地中にチタン炭化物が均一に分散した炭化物分
散型チタン基合金を能率よく且つ経済的に溶解すること
ができる方法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to solve the problems in conventional melting methods. That is, an object of the present invention is to provide a method that can efficiently and economically melt a carbide-dispersed titanium-based alloy in which titanium carbide is uniformly dispersed in a titanium or titanium alloy matrix.

(課題を解決するための手段) 黒鉛系坩堝を使用する誘導加熱溶解法は安価で溶解能率
に優れるが、特開平1−222026号公報記載の溶解
方法の場合には坩堝の寿命が短く、溶解時間も長くなる
という欠点がある。これは炭化チタンの析出に必要な炭
素を黒鉛系坩堝から浸入する炭素で確保しているからで
ある。ところが、本発明者らは、黒鉛系坩堝から浸入す
る炭素はそのまま補助的に利用し、これとは別に炭化物
を炭素源として用いれば、炭化チタンの析出に必要な炭
素の大部分は炭化物から得られるので、溶解時間が短縮
し、坩堝の浸食も減少する結果、坩堝寿命が長くなるこ
とを確tごした。
(Means for solving the problem) The induction heating melting method using a graphite-based crucible is inexpensive and has excellent melting efficiency, but in the case of the melting method described in JP-A-1-222026, the life of the crucible is short and the melting The disadvantage is that it takes a long time. This is because the carbon necessary for the precipitation of titanium carbide is secured by the carbon that enters from the graphite crucible. However, the present inventors have found that if the carbon that enters from the graphite crucible is used as an auxiliary, and if carbide is used separately as a carbon source, most of the carbon required for the precipitation of titanium carbide can be obtained from the carbide. As a result, the melting time is shortened and erosion of the crucible is reduced, resulting in a longer crucible life.

本発明は[炭化物を含む溶解原料を真空又は不活性雰囲
気下において、黒鉛系坩堝を使用する誘導加熱溶解法で
溶解することを特徴とする炭化物分散型チタン基合金の
熔解方法、Jを要旨とする。
The present invention relates to [a method for melting a carbide-dispersed titanium-based alloy, characterized in that a melting raw material containing carbides is melted in a vacuum or an inert atmosphere by an induction heating melting method using a graphite crucible; do.

本発明において、炭化物分散型チタン基合金とはチタン
又はチタン合金素地中にチタン炭化物が晶出又は析出し
て分散しているチタン基合金をいい、チタン合金素地は
βチタン相、αチタン相、α+βチタン相のいずれかで
ある。
In the present invention, a carbide-dispersed titanium-based alloy refers to a titanium-based alloy in which titanium carbide is crystallized or precipitated and dispersed in a titanium or titanium alloy matrix, and the titanium alloy matrix has a β titanium phase, an α titanium phase, It is either α+β titanium phase.

以下、添付図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は、本発明方法を実施する溶解から鋳造までの装
置の一例を示した概略説明図である。
FIG. 1 is a schematic explanatory diagram showing an example of an apparatus from melting to casting that implements the method of the present invention.

第1図において、■は溶解炉であり、この溶解P1の内
に坩堝2と鋳型3が配置されている。図示の坩堝2の場
合は、内側の黒鉛系坩堝4と外側のカルシア系坩堝5と
から構成されている。外側のカルシア系坩堝5は、熱伝
導性のよい内側の黒鉛系坩堝を保温するためのものであ
って、零発ツの溶解方法では必ずしも必要ではない。6
は高周波誘導コイル、7は原料装入室、8は溶解原料、
9はサンプリング棒である。
In FIG. 1, ``■'' is a melting furnace, and a crucible 2 and a mold 3 are placed in this melting furnace P1. The illustrated crucible 2 is composed of an inner graphite crucible 4 and an outer calcia crucible 5. The outer calcia-based crucible 5 is for keeping the inner graphite-based crucible, which has good thermal conductivity, warm, and is not necessarily necessary in the zero-start melting method. 6
is a high-frequency induction coil, 7 is a raw material charging chamber, 8 is a melted raw material,
9 is a sampling rod.

前記溶解原料8とは、主原料、副原料および炭素源の炭
化物であって、主原料とはスポンジチタン又はチタンス
クランプ、副層#4とはV −AI母合金、Mo−へ1
母合金、純AI、純Mo、純v1純W、純Fe、純Cr
、純Sn、純Zrなど、炭化物とは、TiC1ZrC,
SiC,MO2C1vc、 w2c、、wc、叶v C
2、NbCなとである。これらの炭化物は、1種又は2
種以上を使用することができるが、その中でもβ安定化
元素と炭素が結びついた炭化物であるhO□C1VC,
W2C,WC,Cr=Ctおよび〜bcの場合には、チ
タン炭化物を生成させるための炭素源として用いること
ができると同時にMo、 V、 W、 Cr、Nbなど
のβ安定化元素の副原料としても用いることができる。
The melted raw material 8 is a main raw material, an auxiliary raw material, and a carbide of a carbon source, where the main raw material is titanium sponge or titanium scrap, and the sublayer #4 is V-AI master alloy, Mo-1
Mother alloy, pure AI, pure Mo, pure v1 pure W, pure Fe, pure Cr
, pure Sn, pure Zr, etc. Carbides include TiC1ZrC,
SiC, MO2C1vc, w2c,, wc, Kano v C
2. It is NbC. These carbides are one or two types.
Among them, hO□C1VC, which is a carbide in which a β-stabilizing element and carbon are combined, can be used.
In the case of W2C, WC, Cr=Ct and ~bc, it can be used as a carbon source for producing titanium carbide and at the same time as an auxiliary raw material for β-stabilizing elements such as Mo, V, W, Cr, Nb, etc. can also be used.

また、これらのβ安定化元素と炭素が結びついた炭化物
は比重が高いものの、副原料として用いた場合には純金
属より比重が小さくなるため、偏析の軽減に効果がある
。さらに、W2CおよびWCは純Wより融点が500〜
600’C程度も低いので、3400°Cの高融点を有
する純Wの代わりに用いれば溶は残りも軽減することが
できる。
Further, although carbides in which these β-stabilizing elements and carbon are combined have a high specific gravity, when used as an auxiliary raw material, the specific gravity is lower than that of pure metals, so it is effective in reducing segregation. Furthermore, W2C and WC have a melting point of 500~500% higher than that of pure W.
Since it is as low as 600'C, if it is used in place of pure W, which has a high melting point of 3400°C, the residual melting can be reduced.

本発明の方法においては、これらの主原料、副原料およ
び炭化物を原料装入室7から内側の黒鉛系坩堝4内に装
入し、高周波誘導コイル6から流れる高周波電流により
溶解する。このとき、黒鉛系坩堝4内に主原料、副原料
および炭化物を同時に装入して溶解してもよいが、主原
料のスポンジチタンまたはチタンスクラップのみを装入
し、これが熔解した後、その溶湯中に副原料および炭化
物を装入して溶解してもよい。この方が短い時間でン容
解することができる。
In the method of the present invention, these main raw materials, auxiliary raw materials, and carbide are charged into the inner graphite crucible 4 from the raw material charging chamber 7 and melted by high frequency current flowing from the high frequency induction coil 6. At this time, the main raw material, auxiliary raw material, and carbide may be simultaneously charged and melted in the graphite crucible 4, but only the main raw material, titanium sponge or titanium scrap, may be charged, and after this is melted, the molten metal Auxiliary raw materials and carbide may be charged and dissolved therein. This way, it can be understood in a shorter time.

溶解は溶解炉】を真空又はAr、 He等の不活性ガス
雰囲気に保って行う。大気中で溶解するとチタン基合金
の著しい酸化のため粘性が高くなりすぎ、溶解が困難と
なる。真空下で溶解するのであれば、真空度を10−”
tollより良くすれば問題なく溶解することができる
。不活性ガス雰囲気下で溶解するのであれば、不活性ガ
ス雰囲気の圧力としては減圧、常圧、加圧のいずれの状
態にしてもよい。
Melting is carried out in a melting furnace kept in vacuum or in an inert gas atmosphere such as Ar or He. When dissolved in the atmosphere, the viscosity becomes too high due to significant oxidation of the titanium-based alloy, making it difficult to dissolve. If melting under vacuum, the degree of vacuum should be 10-”
If it is better than toll, it can be dissolved without any problem. As long as it is dissolved under an inert gas atmosphere, the pressure of the inert gas atmosphere may be reduced pressure, normal pressure, or increased pressure.

熔解により溶湯中へ炭素が浸入する。本発明の溶解方法
では炭素は黒鉛系坩堝の内表面と溶湯間の界面および炭
化物表面と溶湯間の界面とから浸入するが、その量は後
者の方が温かに多い。炭化物表面と溶湯間の接触面積は
坩堝と溶湯間の接触面積より著しく大きく、溶融中への
炭素の浸入は炭化物の方が支配的となり、黒鉛系坩堝か
らの炭素の浸入は著しく小さい。このため、黒鉛系坩堝
のみから浸入する炭素でチタン炭化物を生成させていた
従来の溶解方法に比べ、短い時間で溶解することができ
て、しかも黒鉛系坩堝の浸食が少ないので坩堝寿命も長
いのである。
Carbon infiltrates into the molten metal due to melting. In the melting method of the present invention, carbon enters from the interface between the inner surface of the graphite crucible and the molten metal and the interface between the carbide surface and the molten metal, but the amount of carbon is larger in the latter because it is warmer. The contact area between the carbide surface and the molten metal is significantly larger than the contact area between the crucible and the molten metal, and the intrusion of carbon into the molten metal is dominated by the carbide, while the intrusion of carbon from the graphite crucible is significantly smaller. For this reason, compared to the conventional melting method that generates titanium carbide using carbon that enters only from a graphite-based crucible, it can be melted in a shorter time, and the graphite-based crucible suffers less erosion, resulting in a longer crucible life. be.

溶解後は、第1図に示すように坩堝】と同し雰囲気下に
置かれた鋳型3に鋳込むことで、チタン炭化物が分散し
た炭化物分散型チタン基合金のインゴットとなる。
After melting, the ingot is cast into a mold 3 placed in the same atmosphere as the crucible, as shown in FIG. 1, to form an ingot of a carbide-dispersed titanium-based alloy in which titanium carbide is dispersed.

インゴットは、その合金素地をβチタン相、αチタン相
又はβ+αチタン相のいずれにしてもよいが、βチタン
相を合金素地とした場合には、他のものに比べ、著しく
耐摩耗性が良好である。βチタン相を合金素地とする場
合には、炭化物にはβ安定化元素と炭素とが結びついた
Mo2C1VC1W2C,WC,Cr+Cz 、NbC
を用いるのがよい。
The alloy base of the ingot may be either a β titanium phase, an α titanium phase, or a β+α titanium phase, but when the alloy base is a β titanium phase, it has significantly better wear resistance than other ingots. It is. When β titanium phase is used as the alloy base, carbides include Mo2C1VC1W2C, WC, Cr+Cz, NbC, in which β stabilizing elements and carbon are combined.
It is better to use

これらの炭化物を用いて、Mo、 W、■、Cr、 F
eおよびNbの含有量が下記式を満足するように添加す
れば、合金素地をβチタン相とすることができる。
Using these carbides, Mo, W, ■, Cr, F
If the contents of e and Nb are added so as to satisfy the following formula, the alloy matrix can be made into a β titanium phase.

Mo +0.6W+0.8V+1.5(1:r+3.O
Fe十〇、2Nb≧12(wt%) 以下、実施例により本発明を更に説明する。
Mo +0.6W+0.8V+1.5(1:r+3.O
Fe 〇, 2Nb≧12 (wt%) The present invention will be further explained below with reference to Examples.

(実施例1) 容Nt17kgの高周波誘導加熱炉中に第1図に示すご
とく外側にカルシア系坩堝を有する黒鉛坩堝をセットし
、同じく黒鉛の鋳型を準備した。内側の黒鉛坩堝は、内
径:110mm、外径: 260a+m、厚み:25m
m、濶さ: 275mmである。
(Example 1) A graphite crucible having a calcia crucible on the outside as shown in FIG. 1 was set in a high frequency induction heating furnace having a capacity of Nt 17 kg, and a graphite mold was also prepared. The inner graphite crucible has an inner diameter of 110mm, an outer diameter of 260a+m, and a thickness of 25m.
m, width: 275 mm.

原料には、主原料としてスポンジチタンおよびTi−6
AI−4Vスクラツプを準備し、副原料として門o−A
I母合金、V−AI母合金、純門〇粉末、純■フレーク
、純W粉末、AIブロンク、電解Cr、電解Fe、 T
i解Sn、スポンジジルコニウムおよび純Nb1l末を
準備し、炭化物として門。2C1vc、w、c、WC,
Cr:+Cz、NbC,ZrCおよびTiCを!#備し
た。
Raw materials include sponge titanium and Ti-6 as main raw materials.
Prepare AI-4V scrap and use it as an auxiliary raw material
I master alloy, V-AI master alloy, pure gate 〇 powder, pure ■ flake, pure W powder, AI bronc, electrolytic Cr, electrolytic Fe, T
Prepare Sn, sponge zirconium and pure Nb1 powder and treat it as a carbide. 2C1vc, w, c, WC,
Cr: +Cz, NbC, ZrC and TiC! # Prepared.

これらを第1表に示す配合量に秤量した後、スポンジチ
タン又はTi  6Al  4Vスクラツプを黒鉛坩堝
に装入し、下記の工程で溶解して鋳造し、目標炭素量が
1.1重量%のインゴットを製造した。
After weighing these into the amounts shown in Table 1, titanium sponge or Ti 6Al 4V scrap was charged into a graphite crucible, melted and cast in the following steps, and an ingot with a target carbon content of 1.1% by weight was produced. was manufactured.

溶解は第1表に示す材料毎に黒鉛坩堝を使用し、その黒
鉛坩堝の浸食が進み、穴があくまで繰り返し行った。
A graphite crucible was used for each material shown in Table 1, and the melting was repeated until the graphite crucible became eroded and a hole appeared.

(a)真空排気、Ar置換を1回行い、再度真空排気し
た後、500 LorrまでArガスを導入し、通電を
開始する。
(a) After performing evacuation and Ar substitution once, and evacuation again, Ar gas is introduced up to 500 Lorr, and energization is started.

(b)最大出力25に一1周波数4kHzまで1時間か
けて通電する。
(b) Apply current to the maximum output of 25 and a frequency of 4 kHz for 1 hour.

(C1前記出力で溶解し、溶は落ちを確認した後、原料
装入室より副原料と炭化物を溶湯中に装入し、10分ご
とにサンプリングを行い、炭素量が1.0重量%を超え
たところで溶湯を黒鉛鋳型に鋳造し、1201径X 2
90mm長さのインゴットを作製する。
(C1 After melting at the above output and confirming that the melt has dropped, charge the auxiliary raw materials and carbide into the molten metal from the raw material charging chamber, and perform sampling every 10 minutes until the carbon content is 1.0% by weight.) At the point beyond which the molten metal is cast into a graphite mold, 1201 diameter x 2
An ingot with a length of 90 mm is produced.

比較例として、炭化物を添加しないで溶解し、同一寸法
のインゴットに鋳造したものも作製した。
As a comparative example, an ingot of the same size was produced by melting without adding carbide.

鋳造後はインゴットの中央部(全長の172、半径の1
)2表面から入ったところ)から試験片を採取し、成分
分析を行った。また、同じ位置から20mm角×311
11厚のブロックを切り出し、X線解析により構成相を
調べた。第2表に成分分析結果、構成相および溶解回数
を示す。なお、成分分析結果は全溶解の平均値を示した
After casting, the central part of the ingot (total length 172, radius 1
) 2 A test piece was taken from the surface (entered from the surface) and analyzed for its components. Also, from the same position, 20mm square x 311
A block with a thickness of 11 mm was cut out, and the constituent phases were examined by X-ray analysis. Table 2 shows the component analysis results, constituent phases, and number of dissolutions. In addition, the component analysis results showed the average value of total dissolution.

(以下、余白) 第2表から、Nα1〜No、 17の本発明例では全て
10分の溶解でほぼ目標の炭素量に達しており、溶解回
数も50回以上と多いことがわかる。これに対してN(
118〜NO,20、N(122〜No、24およびN
u26の比較例では、目標炭素量となるまでに50〜6
0分の溶解時間を要し、熔解回数も著しく少ない。また
、No、21およびNo、25は10分で溶解した比較
例であるが、このものは10分の溶解では炭素量が低く
、目標の1.1重量%に全く達しておらず、チタン炭化
物が析出していない。
(Hereinafter, blank space) From Table 2, it can be seen that in all of the examples of the present invention, Nα1 to No. 17, the target carbon content was almost reached after 10 minutes of melting, and the number of times of melting was as many as 50 or more. On the other hand, N(
118~No, 20, N (122~No, 24 and N
In the comparative example of U26, it took 50 to 6 to reach the target carbon content.
It requires a dissolution time of 0 minutes and the number of times of dissolution is extremely small. In addition, No. 21 and No. 25 are comparative examples that were dissolved in 10 minutes, but after 10 minutes of dissolution, the carbon content was low and did not reach the target of 1.1% by weight at all, resulting in titanium carbide. is not precipitated.

(発明の効果) 実施例に示した如く、炭素源として炭化物を用い、黒鉛
系坩堝で誘導加熱溶解する本発明方法は、黒鉛系坩堝の
浸食量が少なく、短時間で所望の炭化物分散型チタン基
合金を溶解することができる。
(Effects of the Invention) As shown in the examples, the method of the present invention, which uses carbide as a carbon source and melts it by induction heating in a graphite crucible, has a small amount of erosion of the graphite crucible, and can produce desired carbide-dispersed titanium in a short time. Base alloys can be melted.

このため、従来のように坩堝原単位や電力原単位が過度
に高くならないので、製造コストは安価である。
For this reason, the crucible consumption rate and power consumption rate do not become excessively high unlike in the past, so the manufacturing cost is low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法を実施する溶解から鋳造までの装
置の一例を示した概略説明図である。 1:溶解炉、2:坩堝、3;鋳型、4:黒鉛Y・坩堝、
5:カルシア系坩堝、6.高周波誘導コイル、7.原料
装入室、8:溶解原料、9:サンプリング棒。
FIG. 1 is a schematic explanatory diagram showing an example of an apparatus from melting to casting that implements the method of the present invention. 1: Melting furnace, 2: Crucible, 3: Mold, 4: Graphite Y crucible,
5: Calcia crucible, 6. High frequency induction coil, 7. Raw material charging chamber, 8: Dissolved raw material, 9: Sampling rod.

Claims (1)

【特許請求の範囲】[Claims]  炭化物を含む溶解原料を真空又は不活性雰囲気下にお
いて、黒鉛系坩堝を使用する誘導加熱溶解法で溶解する
ことを特徴とする炭化物分散型チタン基合金の溶解方法
A method for melting a carbide-dispersed titanium-based alloy, which comprises melting a melting raw material containing carbides in a vacuum or an inert atmosphere by an induction heating melting method using a graphite crucible.
JP14073690A 1990-05-30 1990-05-30 Method for melting carbide dispersing type titanium base alloy Pending JPH0432528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14073690A JPH0432528A (en) 1990-05-30 1990-05-30 Method for melting carbide dispersing type titanium base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14073690A JPH0432528A (en) 1990-05-30 1990-05-30 Method for melting carbide dispersing type titanium base alloy

Publications (1)

Publication Number Publication Date
JPH0432528A true JPH0432528A (en) 1992-02-04

Family

ID=15275516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14073690A Pending JPH0432528A (en) 1990-05-30 1990-05-30 Method for melting carbide dispersing type titanium base alloy

Country Status (1)

Country Link
JP (1) JPH0432528A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077290A (en) * 2004-09-09 2006-03-23 Toho Titanium Co Ltd Method for producing titanium ingot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077290A (en) * 2004-09-09 2006-03-23 Toho Titanium Co Ltd Method for producing titanium ingot

Similar Documents

Publication Publication Date Title
US5284620A (en) Investment casting a titanium aluminide article having net or near-net shape
US8668760B2 (en) Method for the production of a β-γ-TiAl base alloy
EP2531627B1 (en) Systems and methods for forming and processing alloy ingots
US5897830A (en) P/M titanium composite casting
US7381366B2 (en) Apparatus for the production or refining of metals, and related processes
CN1962179A (en) Direct rolling of cast gamma titanium aluminide alloys
CN109161697A (en) A method of non-metallic inclusion in control powder metallurgy high-temperature alloy master alloy
Bomberger et al. The melting of titanium
AU2018249909B2 (en) Titanium master alloy for titanium-aluminum based alloys
JPS59143031A (en) Manufacture of copper chromium molten alloy as contact for vacuum circuit breaker
CN109913702A (en) A kind of preparation process of the nickel base superalloy with high-content refractory element
US20060230876A1 (en) Method for producing alloy ingots
Chronister et al. Induction skull melting of titanium and other reactive alloys
JPH06287661A (en) Production of smelted material of refractory metal
JPH0432528A (en) Method for melting carbide dispersing type titanium base alloy
Breig et al. Induction skull melting of titanium aluminides
RU2630157C2 (en) Method to produce electrodes of alloys based on titanium aluminide
JP4164780B2 (en) Consumable electrode type remelting method of super heat-resistant alloy
JPH0332447A (en) Method and apparatus for melting and casting metal
US5103458A (en) Electric arc remelting
RU2770807C1 (en) Method for producing blanks from low-alloy copper-based alloys
JP3721709B2 (en) Ti scrap processing method
JPS58217651A (en) Preparation of material for storing hydrogen
Noesen Consumable Electrode Melting of Reactive Metals
RU2154683C1 (en) Method of production of ingots by vacuum arc autocrucible melting