JPH0432525A - Method for plasma-melting active metal - Google Patents
Method for plasma-melting active metalInfo
- Publication number
- JPH0432525A JPH0432525A JP13778890A JP13778890A JPH0432525A JP H0432525 A JPH0432525 A JP H0432525A JP 13778890 A JP13778890 A JP 13778890A JP 13778890 A JP13778890 A JP 13778890A JP H0432525 A JPH0432525 A JP H0432525A
- Authority
- JP
- Japan
- Prior art keywords
- melting
- plasma
- raw material
- wall material
- active metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002844 melting Methods 0.000 title claims abstract description 89
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 64
- 239000002184 metal Substances 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims description 31
- 230000008018 melting Effects 0.000 claims abstract description 88
- 239000000463 material Substances 0.000 claims abstract description 81
- 239000002994 raw material Substances 0.000 claims abstract description 51
- 150000001805 chlorine compounds Chemical class 0.000 claims description 11
- 150000002739 metals Chemical class 0.000 claims description 10
- 238000005520 cutting process Methods 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 6
- 239000010936 titanium Substances 0.000 abstract description 5
- 229910052719 titanium Inorganic materials 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 4
- 230000001678 irradiating effect Effects 0.000 abstract 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 12
- 239000000126 substance Substances 0.000 description 7
- 238000005266 casting Methods 0.000 description 5
- 238000011109 contamination Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000009970 fire resistant effect Effects 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 244000201986 Cassia tora Species 0.000 description 1
- 108091006629 SLC13A2 Proteins 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- NCAIGTHBQTXTLR-UHFFFAOYSA-N phentermine hydrochloride Chemical compound [Cl-].CC(C)([NH3+])CC1=CC=CC=C1 NCAIGTHBQTXTLR-UHFFFAOYSA-N 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000010313 vacuum arc remelting Methods 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〕
本発明は、スポンジ材および/または切屑材を含む活性
金属のプラズマ溶解方法に係わり、詳細にはチタン、ジ
ルコニウム等、あるいは希土類元素等の活性金属からな
る鋳塊を得るに際して、スプラソシュ現象と呼ばれる溶
滴飛散現象、原料の飛散による製品歩留りの低下、スポ
ンジ状活性金属に残留している塩化物等の蒸発による真
空排気系統の汚染等をはじめとする種々のトラブルを効
果的に防止することのできる活性金属のプラズマ溶解方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for plasma melting active metals including sponge materials and/or swarf materials. When obtaining a metal ingot, there are many problems such as the droplet scattering phenomenon called the splash phenomenon, a decrease in product yield due to scattering of raw materials, and contamination of the vacuum exhaust system due to evaporation of chlorides etc. remaining in the sponge-like active metal. The present invention relates to a method for plasma melting active metals that can effectively prevent various troubles caused by such problems.
スポンジチタン等の活性金属の溶解には、従来より真空
アーク再溶解法(以下VAR法と称する)が汎用されて
いる。このVAR法は、予め活性金属からなる電極を製
造し、高真空下(10−2〜103torr程度)で電
極と水冷るつぼ内熔湯間にアークを発生させ、アーク熱
により電極を溶解させる方法である。ところがこのVA
R法では上述したように溶解に先立ち活性金属からなる
電極を製造する必要があり、また電極製造を含めて工程
が煩雑で生産性が低いという難点があった。Vacuum arc remelting method (hereinafter referred to as VAR method) has been widely used for melting active metals such as titanium sponge. This VAR method is a method in which an electrode made of an active metal is manufactured in advance, an arc is generated between the electrode and molten metal in a water-cooled crucible under high vacuum (approximately 10-2 to 103 torr), and the electrode is melted by the arc heat. be. However, this VA
As mentioned above, in the R method, it is necessary to manufacture an electrode made of an active metal prior to melting, and the process including electrode manufacturing is complicated and productivity is low.
一方、近年、真空技術の進歩および高エネルギ利用技術
の発達に伴いプラズマ溶解方法を利用したプラズマ溶解
・鋳造方法がvE案され注目されている。この方法は、
不活性ガス雰囲気下、または真空下(760〜1O−2
torr程度)で溶解原料にプラズマを照射して溶解し
、得られた溶湯を順次水冷鋳型へ供給して鋳塊を得る方
法である。この方法であれば、電極を製造することなく
、スクラップ等の切屑状活性金属原料(以下切屑材と称
する)やスポンジ状活性金属原料(以下スポンジ材と称
する)をそのままの形態で溶解原料としてプラズマ?容
解することができる。On the other hand, in recent years, with the progress of vacuum technology and the development of high energy utilization technology, a plasma melting/casting method using a plasma melting method has been proposed and is attracting attention. This method is
Under an inert gas atmosphere or under vacuum (760~1O-2
In this method, a molten raw material is irradiated with plasma at a temperature of about 10.5 torr (about 1.5 torr) to melt the raw material, and the resulting molten metal is sequentially supplied to a water-cooled mold to obtain an ingot. With this method, without manufacturing electrodes, active metal raw materials in the form of scraps (hereinafter referred to as scrap materials) or active metal raw materials in the form of sponges (hereinafter referred to as sponge materials) can be used as melted raw materials in plasma as they are. ? can be understood.
ところで、上記プラズマ溶解・鋳造方法は種々の長所を
有する反面、特にスポンジチタンの如きスポンジ材を溶
解原料として用いた場合には、溶解時に溶湯が発砲状態
を呈しつつ飛散するという極めて好ましくない現象(ス
プランシュ現象と称する)が発生し、同時に溶解原料か
ら多量の塩化物(MgC1z、 NaC1等)が蒸発
し、溶解炉の内壁、真空排気系統の排気弁や排気ポンプ
などに付着する。またスクラップ等を小さな切屑状に加
工した切屑材を溶解原料として用いた場合には、切屑材
にプラズマを照射した際、プラズマの噴射力によって小
さく加工された切屑材が飛散する現象が発生する。この
ような弊害により、溶解時における歩留りの低下を招く
ばかりでなく、飛散した溶滴、塩化物および蒸発物等が
溶解炉の内壁等に付着して高真空引きを阻害したり、プ
ラズマ照射千等に付着して操業上のトラブルを誘発する
、あるいは真空排気系統の油拡散ポンプやロークリポン
プ等のオイルを汚染するといった多くのトラブルを引き
起こす。By the way, although the plasma melting/casting method described above has various advantages, especially when a sponge material such as sponge titanium is used as a melting raw material, it causes an extremely undesirable phenomenon in which the molten metal scatters while exhibiting a foaming state during melting ( At the same time, a large amount of chlorides (MgC1z, NaC1, etc.) evaporates from the melted raw materials and adheres to the inner walls of the melting furnace, the exhaust valves and exhaust pumps of the vacuum exhaust system, etc. In addition, when chips made by processing scraps into small chips are used as a raw material for melting, when the chips are irradiated with plasma, a phenomenon occurs in which the chips processed into small pieces are scattered due to the blasting force of the plasma. These problems not only cause a decrease in yield during melting, but also cause scattered droplets, chlorides, evaporated substances, etc. to adhere to the inner walls of the melting furnace, obstructing high vacuuming, and preventing plasma irradiation. It causes many troubles, such as adhering to the oil, etc., and causing operational problems, or contaminating the oil in the oil diffusion pump, lorry pump, etc. of the vacuum exhaust system.
特にIjgC]。は吸湿性が高いので、操業中断時に溶
解炉内を大気に曝すと象、速に吸湿し、操業再開時の真
空引きを著しく阻害する。よって上記のトラブルを避け
るためには頻繁に付着物の除去等のメンテナンス作業を
しなければならない。Especially IjgC]. Because it has a high hygroscopicity, if the inside of the melting furnace is exposed to the atmosphere when operations are interrupted, it will quickly absorb moisture, which will significantly impede vacuuming when operations are resumed. Therefore, in order to avoid the above-mentioned troubles, maintenance work such as removing deposits must be performed frequently.
そこで、本発明は、上記問題点を解決するためになした
ものであって、その目的は、スポンジ材および/または
切屑材を含む活性金属原料をプラズマ溶解するに際し、
スポンジ材、切屑材および溶湯小滴等が広い範囲に飛散
するのを防止し溶解歩留りを向上させ、かつ塩化物およ
び蒸発物等の付着による操業上のトラブルを防止すると
共に、付着物の除去等のメンテナンスを容易にし安定し
た操業を保証し得る活性金属のプラズマ溶解方法を提供
しようとするものである。Therefore, the present invention has been made to solve the above-mentioned problems, and its purpose is to:
Prevents sponge material, chips, molten metal droplets, etc. from scattering over a wide area, improves melting yield, prevents operational troubles due to adhesion of chlorides and evaporated substances, and removes adhesion. The purpose of the present invention is to provide a method for plasma melting active metals that can facilitate maintenance and ensure stable operation.
〔課題を解決するための手段]
上記目的を達成するため、本発明に係わる活性金属のプ
ラズマ溶解方法の第一の発明は、スポンジ材および/ま
たは切屑材を含む活性金属原料をプラズマ溶解する方法
であって、溶解用容器におけるプラズマ照射領域を囲繞
する如く、内側面に原料と同種の活性金属からなる部材
を装備した耐熱性壁材を溶解用容器上に立設してプラズ
マ溶解するものである。また第二の発明は、スポンジ材
および/または切屑材を含む活性金属原料をプラズマ溶
解する方法であって、溶解用容器におけるプラズマ照射
領域を囲繞する如く耐熱性壁材を溶解用容器上に立設す
ると共に、この耐熱性壁材内に通じる排気系統を設けて
プラズマ溶解するものである。[Means for Solving the Problems] In order to achieve the above object, the first invention of the method for plasma melting active metal according to the present invention is a method for plasma melting active metal raw materials including sponge material and/or chip material. In this method, plasma melting is performed by installing a heat-resistant wall material on the inside surface of the melting container, which is equipped with a member made of the same type of active metal as the raw material, so as to surround the plasma irradiation area of the melting container. be. The second invention is a method for plasma melting an active metal raw material including sponge material and/or swarf material, in which a heat-resistant wall material is erected on the melting container so as to surround the plasma irradiation area in the melting container. At the same time, an exhaust system leading to the inside of this heat-resistant wall material is provided for plasma melting.
上記第一の発明では、内側面に原料と同種の活性金属か
らなる部材を装備した耐熱性壁材を、溶解用容器におけ
るプラズマ照射領域を囲繞する如く溶解用容器上に立設
することにより、プラズマ照射によって飛散する溶湯の
小滴、スポンジ材および/または切屑材の小片は、耐熱
性壁材の内側面に装備した部材に付着捕捉される他、大
部分は溶解用容器内に還流されるので、溶解炉内への飛
散が防止され溶解歩留りが向上すると共に、小片等の飛
散物の付着による操業上のトラブルも低減される。さら
に、飛散した溶湯の小滴や、スポンジ材および/または
切屑材の小片を付着捕捉させた部材は、溶解毎に取り替
え切屑材に加工して同種の活性金属の別溶解時に溶解す
ることができ、より溶解歩留りを向上させたプラズマ溶
解が行える。また、塩化物および蒸発物等も、一部が耐
熱性壁材の内側面に装備した部材、あるいは耐熱性壁材
の内側面に捕捉されるので、これらの溶解炉内への付着
も少なくなり操業上のトラブルが低減できる。In the first invention, a heat-resistant wall material whose inner surface is equipped with a member made of the same type of active metal as the raw material is erected on the melting container so as to surround the plasma irradiation area of the melting container. Small droplets of molten metal, small pieces of sponge material and/or scrap material scattered by plasma irradiation are attached to and captured by a member installed on the inner surface of the heat-resistant wall material, and most of them are returned to the melting container. Therefore, scattering into the melting furnace is prevented, the melting yield is improved, and operational troubles due to adhesion of flying particles such as small pieces are also reduced. Furthermore, parts that have attached and captured scattered droplets of molten metal and small pieces of sponge material and/or swarf material can be replaced after each melting process and processed into swarf material, which can then be melted during another melting of the same type of active metal. , plasma melting with improved melting yield can be performed. In addition, some of the chlorides and evaporated substances are captured by the members installed on the inner surface of the heat-resistant wall material or by the inner surface of the heat-resistant wall material, so their adhesion to the inside of the melting furnace is reduced. Operational troubles can be reduced.
上記第二の発明では、耐熱性壁材を溶解用容器における
プラズマ照射頭載を囲繞する如く溶解用容器上に立設す
ると共に、耐熱性壁材内に通じる排気系統を装備するこ
とにより、プラズマ照射によって飛散する溶湯の小滴、
スポンジ材および/または切屑材の小片は、耐熱性壁材
に付着捕捉される他、大部分は溶解用容器内に還流され
るので、溶解炉内への飛散が防止され溶解歩留りが向上
すると共に、小片等の飛散物の付着による操業上のトラ
ブルも低減される。溶解炉内壁への飛散が防止され溶解
歩留りが向上する。また、特にスポンジチタンの如きス
ポンジ材を用いた場合に発生する塩化物および蒸発物等
は排気系統より排出され、従ってこれらによる溶解炉内
および真空排気系統等への付着汚染が防止され、これに
より操業上のトラブルが防止されると共に、付着物の除
去等のメンテナンスが容易になる。また、前記排気系統
内には塩化物等捕捉用トランプを交換可能に装備すると
よい。これにより排気系統が保護され排気系統のメンテ
ナンスが容易になる。さらに、耐熱性壁材の内側面には
原料と同種の活性金属からなる部材を装備するとよい。In the second invention, the heat-resistant wall material is erected on the melting container so as to surround the plasma irradiation head in the melting container, and an exhaust system that communicates with the heat-resistant wall material is installed. Small droplets of molten metal scattered by irradiation,
Small pieces of sponge material and/or chips are trapped on the heat-resistant wall material, and most of them are returned to the melting container, preventing them from scattering into the melting furnace and improving the melting yield. Operational troubles due to adhesion of scattered objects such as small pieces are also reduced. Scattering to the inner wall of the melting furnace is prevented and the melting yield is improved. In addition, chlorides and evaporated substances generated especially when using sponge materials such as sponge titanium are discharged from the exhaust system, thus preventing them from adhering and contaminating the melting furnace and the vacuum exhaust system. Operational troubles are prevented, and maintenance such as removal of deposits becomes easier. Further, it is preferable that a tramp for capturing chlorides, etc. is provided in the exhaust system so as to be replaceable. This protects the exhaust system and facilitates maintenance of the exhaust system. Furthermore, it is preferable to equip the inner surface of the heat-resistant wall material with a member made of the same type of active metal as the raw material.
これにより第一の発明で述べたと同様に、プラズマ照射
によって飛散する溶湯の小滴、スポンジ材および/また
は切屑材の小片が付着捕捉でき、この部材を、溶解毎に
取り替え切屑材に加工して同種の活性金属の別溶解時に
溶解することにより、より溶解歩留りを向上させたプラ
ズマ溶解が行える。As a result, as described in the first invention, small droplets of molten metal, small pieces of sponge material and/or scrap material scattered by plasma irradiation can be attached and captured, and this member can be replaced every time melting and processed into scrap material. Plasma melting with improved melting yield can be achieved by melting the same type of active metal during separate melting.
尚、耐熱性壁材の内側面に装備する原料と同種の活性金
属からなる部材の形態は、特に限定するものではないが
、素材を筒状に機械加工したものあるいは板状のスクラ
ップ材を耐熱性壁材の内側面に装備してもよい。The form of the member made of the same type of active metal as the raw material to be installed on the inner surface of the heat-resistant wall material is not particularly limited, but it may be machined into a cylindrical shape or heat-resistant plate-shaped scrap material. It may be installed on the inner surface of the wall material.
(実 施 例〕 以下、本発明の実施例を図面を参照して説明する。(Example〕 Embodiments of the present invention will be described below with reference to the drawings.
実−施一」[−上
第1図は、本発明に係わるプラズマ溶解方法を適用した
プラズマ溶解・鋳造装置の概略断面説明図である。回に
おいて、 1はシールドケース、2はプラズマトーチ、
3は原料供給ホッパ、4は原料溶解用容器、5は真空排
気系統、6は円筒型耐熱性壁材、7は鋳片引抜装置、8
は直流電源、9はプラズマ炎、10は鋳片、11は活性
金属原料、12は金属溶湯、13はシュータ−114は
原料と同一組成の壁材を各々示す。Embodiment 1 [-Above FIG. 1 is a schematic cross-sectional explanatory diagram of a plasma melting/casting apparatus to which the plasma melting method according to the present invention is applied. In times 1, 1 is the shield case, 2 is the plasma torch,
3 is a raw material supply hopper, 4 is a container for melting raw materials, 5 is a vacuum exhaust system, 6 is a cylindrical heat-resistant wall material, 7 is a slab drawing device, 8
1 is a DC power supply, 9 is a plasma flame, 10 is a slab, 11 is an active metal raw material, 12 is a molten metal, 13 is a shooter, and 114 is a wall material having the same composition as the raw material.
このように構成された装置を使用し、先ず、シールドケ
ース]内を、真空排気系統5を作動させて真空雰囲気下
のもとてArガスを封入し大気圧近くにした後、再び真
空排気系統5により減圧不活性ガス雰囲気にする。この
後、Mg還元スポンジチタン20%(塩化物含有量50
0ppm) 、および切削屑80%を略均等に混合した
活性金属原料11を、原料供給ホッパ3よりシュータ−
13を介して鋳型を兼用する原料溶解用容器4に投入し
ながらプラズマトーチ2によりプラズマ溶解を行った。Using the device configured as described above, first, the inside of the shield case is operated with the vacuum exhaust system 5 to fill it with Ar gas under a vacuum atmosphere to bring it to near atmospheric pressure, and then the inside of the shield case is closed to the vacuum exhaust system 5 again. 5 to create a reduced pressure inert gas atmosphere. After this, Mg reduced sponge titanium 20% (chloride content 50%)
0 ppm) and 80% of cutting waste are mixed almost evenly into an active metal raw material 11 from a raw material supply hopper 3 into a shooter.
Plasma melting was performed using the plasma torch 2 while charging the raw material into the raw material melting container 4, which also served as a mold, through the tube 13.
溶解後、耐火性壁材6の表面を観察した結果、金属溶湯
12に近い原料と同一組成の壁材】4の下方部ではプラ
ズマ炎9による飛散した切屑材が積層しており、スプラ
ッシュ現象による飛散した溶湯の付着は壁材14の下方
部で多く見られ、上方部Cコ行くにつれてその量は少な
くなり、この例では丸型溶解用容器4の直径が100m
mであり、耐火性壁材6の飛散溶湯は溶湯湯面から48
0mm高さではほとんど見られなく、従って耐火性壁材
6の高さとしては溶解用容器4の内径の5倍以上で十分
に飛散物の捕捉が可能である。また壁材14に覆い隠さ
れている耐火性壁材6の内側部分では飛散i8湯の付着
は全く無く、壁材14に覆い呼されていない壁材6の上
部においては若干の飛散溶湯の付着が見られた。さらに
耐火性壁材6の上方部では上方へ蒸発して行く塩化物等
の汚染が多く見られ、壁材14の溶湯表面近くでは塩化
物等の汚染は耐火性壁材6の上方部に比べて少なかった
。またこの壁材6を設置することでシールドケース1、
プラズマトーチ2、原料供給ホッパ3、真空排気系統5
への塩化物等の1発物による汚染は壁材6を設置しない
場合に比べかなり低減された。この時の溶解歩留りは、
溶製された鋳塊重量を供給原料重量で除し百分率で表す
と、壁材14を設けなかった場合の93%に比べ5%向
上して98%であった。After melting, the surface of the refractory wall material 6 was observed, and it was found that in the lower part of the wall material 4 which had the same composition as the raw material near the molten metal 12, chips scattered by the plasma flame 9 were stacked, and the material was due to the splash phenomenon. The adhesion of the scattered molten metal is often seen in the lower part of the wall material 14, and the amount decreases as it goes to the upper part C. In this example, the diameter of the round melting container 4 is 100 m.
m, and the scattered molten metal of the fire-resistant wall material 6 is 48 m from the molten metal surface.
They are hardly seen at a height of 0 mm, and therefore, the height of the fireproof wall material 6 should be at least five times the inner diameter of the melting container 4 to sufficiently capture the scattered objects. In addition, there is no adhesion of scattered I8 molten metal on the inner part of the fireproof wall material 6 that is covered and hidden by the wall material 14, and some amount of scattered molten metal adheres to the upper part of the wall material 6 that is not covered by the wall material 14. It was observed. Furthermore, in the upper part of the fire-resistant wall material 6, there is a lot of contamination such as chloride that evaporates upward, and near the surface of the molten metal of the wall material 14, the contamination of chloride, etc. is higher than in the upper part of the fire-resistant wall material 6. There weren't many. Also, by installing this wall material 6, the shield case 1,
Plasma torch 2, raw material supply hopper 3, vacuum exhaust system 5
The contamination caused by single-shot substances such as chloride was considerably reduced compared to the case where the wall material 6 was not installed. The melting yield at this time is
When the weight of the melted ingot was divided by the weight of the feed material and expressed as a percentage, it was 98%, an improvement of 5% compared to 93% when the wall material 14 was not provided.
尚、上記実施例では耐火性壁材6の形状として円筒型の
ものを例に説明したが、形状が角筒型(四角形または多
角形)であってもよい。また第2回に示すように、上方
部15の形状は円錐状あるいはL字状に絞ったもの、ま
たは単に蓋をした形状であってもよい。In the above embodiment, the shape of the fireproof wall material 6 has been described as being cylindrical, but the shape may be a rectangular tube (quadrangular or polygonal). Further, as shown in the second part, the shape of the upper part 15 may be a conical shape, a constricted L-shape, or a simply capped shape.
実−五一別−1
第3図は、本発明に係わるプラズマ溶解方法を適用した
別態様のプラズマ溶解・鋳造装置の概略断面説明図であ
る。図において、1はシールドケース、2a、 2bは
プラズマトーチ、3は原料供給ホッパ、4は原料溶解用
容器、5は炉内の真空排気系統、6は耐熱性壁材、7は
鋳片引抜装置、8a。Figure 3 is a schematic cross-sectional view of another embodiment of a plasma melting/casting apparatus to which the plasma melting method according to the present invention is applied. In the figure, 1 is a shield case, 2a and 2b are plasma torches, 3 is a raw material supply hopper, 4 is a container for melting raw materials, 5 is a vacuum exhaust system in the furnace, 6 is a heat-resistant wall material, and 7 is a slab drawing device , 8a.
8bは直流電源、9はプラズマ炎、10は鋳片、11は
活性金属原料、12は金属溶湯、13はシュータ−15
は水冷鋳型、16は水冷せき、17は塩化物捕捉用トラ
ップ、18は耐熱性壁材6内の排気系統を各々示し、塩
化物捕捉用トラップ17は、耐熱性壁材6の開口部に接
続して設けられた排気系統1日の排気管路19内に装備
され、排気系統18の吸引によって活性金属原料11特
にスポンジ材に残留しているMgC1z、 NaCl
等の塩化物を捕捉するものである。8b is a DC power supply, 9 is a plasma flame, 10 is a slab, 11 is an active metal raw material, 12 is a molten metal, 13 is a shooter 15
16 indicates a water-cooled mold, 16 indicates a water-cooled weir, 17 indicates a chloride trap, and 18 indicates an exhaust system within the heat-resistant wall material 6. The chloride capture trap 17 is connected to an opening in the heat-resistant wall material 6. The exhaust system 18 is installed in the exhaust pipe line 19, and the active metal raw material 11, especially the sponge material, remains in the active metal raw material 11, especially MgC1z and NaCl, by the suction of the exhaust system 18.
It captures chlorides such as
このように構成された装置を使用し、先ず、シールドケ
ースl内を、真空排気系統5を作動させて真空雰囲気下
のもとでArガスを封入し大気圧近くにした後、再び真
空排気系統5により減圧不活性′ガス雰囲気にする。こ
の後、Na還元スポンジチタン85%(塩化物含有31
500ppm) 、および切削屑15%を略均等に混合
した活性金属原料11を、原料供給ホッパ3よりシュー
タ−13を介して原料溶解用容器4に投入しながらプラ
ズマトーチ2aからのプラズマ炎9を原料11に照射し
てプラズマ溶解を行った。この溶解により得られた溶湯
12を、溶滓等の浮遊物の流出を水冷せき16で防ぎな
がら水冷鋳型15に注湯すると共に、水冷鋳型15に注
湯された溶湯上面をプラズマトーチ2bで加熱しつつ鋳
造した。Using the apparatus configured in this way, first, the vacuum exhaust system 5 is activated to fill the inside of the shield case l with Ar gas under a vacuum atmosphere to bring it to near atmospheric pressure, and then the vacuum exhaust system 5 is turned on again. 5 to create a reduced pressure inert gas atmosphere. After this, Na reduction sponge titanium 85% (chloride content 31%)
500 ppm) and 15% of cutting waste are mixed almost evenly into the raw material melting container 4 from the raw material supply hopper 3 via the chute 13, and the plasma flame 9 from the plasma torch 2a is used as the raw material. 11 to perform plasma melting. The molten metal 12 obtained by this melting is poured into a water-cooled mold 15 while preventing floating substances such as molten slag from flowing out with a water-cooled weir 16, and the top surface of the molten metal poured into the water-cooled mold 15 is heated with a plasma torch 2b. It was then cast.
このような形式の活性金属のプラズマ溶解方法であって
も、上記実施例1と同様に、飛散するスポンジ材や溶湯
は壁材6によって捕捉され、壁材6の下方部内面に多く
積層していた。またこの時の溶解歩留りは、比較のため
に壁材6を設けずに行った場合の溶解歩留りが塩化物の
蒸発が大きく85%であったのに対し、94%と大きく
向上していた。また塩化物捕捉用トラ・7プ17は、円
筒二重管構造からなり表面積380 cfの着脱容品な
カセット方式のものを排気系統18の排気管路19内に
装備して使用したが、その表面には塩化物等の蒸発物が
多量に付着捕捉されていた。尚、塩化物捕捉用トラ・7
プ17の構造は上記に限定されるものではなく、例えば
多数の貫通孔を有する多孔板等が適用できる。Even in this type of plasma melting method for active metals, as in the first embodiment, the scattered sponge material and molten metal are captured by the wall material 6, and many of them are stacked on the inner surface of the lower part of the wall material 6. Ta. Further, the dissolution yield at this time was 85% when the wall material 6 was not provided for comparison, due to the large amount of evaporation of chloride, whereas the dissolution yield was significantly improved to 94%. In addition, the trap 17 for trapping chloride was a removable cassette type with a cylindrical double pipe structure and a surface area of 380 cf, and was installed in the exhaust pipe line 19 of the exhaust system 18. A large amount of evaporated matter such as chloride was attached and trapped on the surface. In addition, Tora・7 for chloride capture
The structure of the plate 17 is not limited to the above, and for example, a perforated plate having a large number of through holes can be used.
[発明の効果〕
上述したように、本発明に係わる活性金属のプラズマ溶
解方法によれば、溶解原料としてスポンジ材および/ま
たは切屑材を含む活性金属原料を用いて、これら原料の
飛散による溶解歩留りを低下させることなく、溶解効率
を向上させたプラズマ溶解ができる。さらに、飛散する
原料や?8湯、および溶湯からの塩化物等の蒸発物のプ
ラズマトーチや炉内壁等への付着が効果的に抑制でき、
真空排気装置の故障やプラズマトーチ詰まり、および付
着物の異なる溶湯内への落下といった操業上のトラブル
が減少し、また塩化物等の回収除去が容易にでき、生産
性が向上できる。[Effects of the Invention] As described above, according to the plasma melting method for active metals according to the present invention, active metal raw materials containing sponge material and/or swarf materials are used as melting raw materials, and the melting yield is reduced due to scattering of these raw materials. Plasma melting with improved melting efficiency can be performed without reducing the melting efficiency. Furthermore, what about the raw materials that fly away? 8. The adhesion of evaporated substances such as chlorides from molten metal and molten metal to the plasma torch, furnace inner wall, etc. can be effectively suppressed.
Operational troubles such as breakdowns in the vacuum exhaust system, clogging of the plasma torch, and falling of deposits into different molten metals are reduced, and chlorides and the like can be easily recovered and removed, improving productivity.
第F図は、本発明に係わるプラズマ溶解方法を適用した
プラズマ溶解・鋳造装置の概略断面説明図、第2図は、
本発明に係わる耐熱性壁材の断面説明図、第3図は、本
発明に係わるプラズマ溶解方法を適用した別態様のプラ
ズマ溶解・鋳造装置の概略断面説明図である。
1 シールドケース 3 原料供給ホッパ2 2a、
2b プラズマトーチ
4 原料溶解用容器 5 真空排気系統6 耐熱性壁
材 7 鋳片引抜装置8、8a、 8b 直流
電源 9 プラズマ炎10 鋳片 11
活性金属原料12 金属溶湯 13
シュータ−14原料と同一組成の壁材
15 水冷鋳型 16 水冷せき17
塩化物捕捉用トラップ
18 排気系統 19 排気管路特許出願
人 株式会社神戸製鋼所FIG.
FIG. 3, a cross-sectional explanatory view of a heat-resistant wall material according to the present invention, is a schematic cross-sectional view of another embodiment of a plasma melting/casting apparatus to which the plasma melting method according to the present invention is applied. 1 shield case 3 raw material supply hopper 2 2a,
2b Plasma torch 4 Raw material melting container 5 Vacuum exhaust system 6 Heat-resistant wall material 7 Slab drawing device 8, 8a, 8b DC power supply 9 Plasma flame 10 Slab 11
Active metal raw material 12 Molten metal 13
Shooter 14 Wall material with the same composition as the raw material 15 Water-cooled mold 16 Water-cooled weir 17
Chloride trap 18 Exhaust system 19 Exhaust pipe patent applicant Kobe Steel, Ltd.
Claims (4)
原料をプラズマ溶解する方法であって、溶解用容器にお
けるプラズマ照射領域を囲繞する如く、内側面に原料と
同種の活性金属からなる部材を装備した耐熱性壁材を溶
解用容器上に立設してプラズマ溶解することを特徴とす
る活性金属のプラズマ溶解方法。(1) A method of plasma melting active metal raw materials including sponge materials and/or cutting materials, in which a member made of the same type of active metal as the raw materials is equipped on the inner surface so as to surround the plasma irradiation area in the melting container. A plasma melting method for active metals, which comprises placing a heat-resistant wall material upright on a melting container and performing plasma melting.
原料をプラズマ溶解する方法であって、溶解用容器にお
けるプラズマ照射領域を囲繞する如く耐熱性壁材を溶解
用容器上に立設すると共に、この耐熱性壁材内に通じる
排気系統を設けてプラズマ溶解することを特徴とする活
性金属のプラズマ溶解方法。(2) A method of plasma melting active metal raw materials including sponge material and/or swarf material, in which a heat-resistant wall material is erected on the melting container so as to surround the plasma irradiation area in the melting container, and A plasma melting method for active metals, which is characterized in that plasma melting is carried out by providing an exhaust system leading into this heat-resistant wall material.
ていることを特徴とする第2請求項に記載の活性金属の
プラズマ溶解方法。(3) The method for plasma melting active metals according to claim 2, characterized in that the exhaust system is equipped with a trap for capturing chlorides, etc.
なる部材が装備されていることを特徴とする第2請求項
または第3請求項に記載の活性金属のプラズマ溶解方法
。(4) A method for plasma melting an active metal according to claim 2 or 3, characterized in that a member made of the same type of active metal as the raw material is provided on the inner surface of the heat-resistant wall material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13778890A JPH0432525A (en) | 1990-05-28 | 1990-05-28 | Method for plasma-melting active metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13778890A JPH0432525A (en) | 1990-05-28 | 1990-05-28 | Method for plasma-melting active metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0432525A true JPH0432525A (en) | 1992-02-04 |
Family
ID=15206863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13778890A Pending JPH0432525A (en) | 1990-05-28 | 1990-05-28 | Method for plasma-melting active metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0432525A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05291227A (en) * | 1992-01-14 | 1993-11-05 | Kokusai Denki Erutetsuku:Kk | Piezoelectrically driven ultrasonic cleaning apparatus |
-
1990
- 1990-05-28 JP JP13778890A patent/JPH0432525A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05291227A (en) * | 1992-01-14 | 1993-11-05 | Kokusai Denki Erutetsuku:Kk | Piezoelectrically driven ultrasonic cleaning apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11108556A (en) | Straight furnace floor-type furnace for refining titanium | |
US20120230860A1 (en) | Purification process | |
JP5215168B2 (en) | Method and apparatus for secondary refining slag regeneration and recycling in steelmaking process by electric arc furnace | |
WO2010068140A1 (en) | Method and apparatus for electron-beam or plasma-jet melting of metal from a crystallizer into a crystallizer | |
RU2355791C2 (en) | Method of manufacturing of high reactivity metals and alloys ingots and vacuum-arc-refining furnace for manufacturing of reactivity metals and alloys ingots | |
JPH0432525A (en) | Method for plasma-melting active metal | |
JPH06235028A (en) | Method of melting aluminum scrap and removing float dregs | |
US5171357A (en) | Vacuum processing of particulate reactive metal | |
JPS6277429A (en) | Electron beam melting method | |
US4033760A (en) | Aluminum dross recovery method | |
JPH04504283A (en) | Medium pressure electron beam furnace | |
JPS62156233A (en) | Electron beam melting method | |
JP2005343779A (en) | Refining apparatus for scrap silicon using electron beam | |
JPH03271333A (en) | Plasma melting method for active metal | |
JPH11242098A (en) | Device and method for melting and ingot-making | |
JPH0421727A (en) | Method and apparatus for producing titanium cast ingot | |
JPS6277430A (en) | Electron beam melting and casting apparatus | |
JPS6277427A (en) | Electron beam melting and casting apparatus | |
JPS6277428A (en) | Electron beam melting method for material containing spongy active metal | |
JP3568469B2 (en) | Aluminum dross processing equipment | |
JPH0622533Y2 (en) | Vacuum melting device | |
JP4652537B2 (en) | Method for melting titanium or titanium alloy scrap | |
JP4142419B2 (en) | Melting furnace cleaning method and apparatus | |
JPH0159341B2 (en) | ||
JP5318520B2 (en) | Titanium alloy ingot melting method |