JPH04324919A - Manufacture of helical coil - Google Patents

Manufacture of helical coil

Info

Publication number
JPH04324919A
JPH04324919A JP9561691A JP9561691A JPH04324919A JP H04324919 A JPH04324919 A JP H04324919A JP 9561691 A JP9561691 A JP 9561691A JP 9561691 A JP9561691 A JP 9561691A JP H04324919 A JPH04324919 A JP H04324919A
Authority
JP
Japan
Prior art keywords
conductor
coil
cylindrical body
helical coil
helical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9561691A
Other languages
Japanese (ja)
Other versions
JP2588316B2 (en
Inventor
Akinori Nagata
永田 晃則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9561691A priority Critical patent/JP2588316B2/en
Publication of JPH04324919A publication Critical patent/JPH04324919A/en
Application granted granted Critical
Publication of JP2588316B2 publication Critical patent/JP2588316B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To easily-manufacture a highly strong helical coil having high conductivity and high dimentional accuracy. CONSTITUTION:A flat-square type wire-drawn conductor 13 is spirally wound on a cylindrical body 16, and after the wire-drawn conductor 13 and the cylindrical body 16 have been coupled into one body, the above-mentioned wound conductor 17 is machined, and a helical coil 22 is manufactured.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は強磁界を発生させるため
の常電導用ヘリカルコイルの製造方法に係り、特に高強
度で高導電率を有し、大型で高寸法精度のヘリカルコイ
ルの製造方法に関する。
[Industrial Application Field] The present invention relates to a method for manufacturing a normally conductive helical coil for generating a strong magnetic field, and in particular a method for manufacturing a helical coil having high strength, high conductivity, large size, and high dimensional accuracy. Regarding.

【0002】0002

【従来の技術】核融合装置において、発生したプラズマ
を閉込めるために必要とされる磁界強度は、10〜20
テスラ以上になると予想されており、そのような強磁界
に耐える電導導体製コイルの開発が急がれている。これ
までの各種核融合装置では、常電導導体(銅線)のコイ
ルを用いているために、膨大な電力を消費している。こ
のため、電力の消費のない超電導線材によるコイルの開
発が不可欠である。
[Prior Art] In a nuclear fusion device, the magnetic field strength required to confine the generated plasma is 10 to 20
It is expected that the magnetic field will exceed Tesla's, and there is an urgent need to develop a coil made of electrically conductive material that can withstand such a strong magnetic field. Various nuclear fusion devices to date use coils made of normally conducting conductors (copper wires), which consume enormous amounts of power. For this reason, it is essential to develop coils using superconducting wires that consume no power.

【0003】ところで、強磁界に耐える高性能な超電導
導体の開発のためには、各種導体を開発して強磁界発生
装置の中に入れ、臨界電流密度(Jc)、上部臨界磁界
、交流損等を調べる必要がある。
By the way, in order to develop high-performance superconducting conductors that can withstand strong magnetic fields, various types of conductors are developed and put into a strong magnetic field generator, and critical current density (Jc), upper critical magnetic field, AC loss, etc. need to be investigated.

【0004】上記強磁界発生装置は、一般に図7に示す
ように水冷マグネットコイル1の外側に超電導マグネッ
トコイル2を同心状に配置して構成される。水冷マグネ
ットコイル1の磁界の中心部3において、両マグネット
コイル1,2によって発生する磁界の和が最大になり、
例えば30テスラ以上の強磁界を発生させることができ
る。
The strong magnetic field generator described above is generally constructed by arranging a superconducting magnet coil 2 concentrically outside a water-cooled magnet coil 1, as shown in FIG. At the center 3 of the magnetic field of the water-cooled magnet coil 1, the sum of the magnetic fields generated by both magnet coils 1 and 2 becomes maximum,
For example, a strong magnetic field of 30 Tesla or more can be generated.

【0005】この水冷マグネットコイル1には、ポリヘ
リックス型とビッター型およびモノヘリックス型の3つ
の型があるが、本発明はポリヘリックス型コイルの製造
方法に関するものである。
There are three types of water-cooled magnet coil 1: a polyhelix type, a bitter type, and a monohelix type, and the present invention relates to a method for manufacturing a polyhelix type coil.

【0006】ポリヘリックス型コイルは、平角線で形成
した複数個の単層ヘリカルコイルを同心環状に組合せ、
各単層コイルを相互に電気的に並・直列に接続した多層
ヘリカルコイルである。そして、隣接する各層の間隙に
冷却水を流して冷却する構造が一般に採用されている。 この多層ヘリカルコイルが独立に支持されているものと
すれば、それぞれのコイルに生じる円周方向の引張り応
力は、電流密度、コイルの半径および磁界の積に比例す
る。したがって、ヘリカルコイルの導体としては、でき
るだけ円周方向の強度、特に耐力が高く導電率の大きな
導体が要求され、例えばCuまたはCu合金等が使用さ
れる。
[0006] Polyhelix type coils are made by combining a plurality of single-layer helical coils made of rectangular wire in a concentric ring shape.
This is a multilayer helical coil in which each single layer coil is electrically connected in parallel and in series. Generally, a structure is adopted in which cooling water is allowed to flow into the gaps between adjacent layers for cooling. Assuming that the multilayer helical coils are independently supported, the circumferential tensile stress generated in each coil is proportional to the product of current density, coil radius, and magnetic field. Therefore, the conductor of the helical coil is required to have as much strength in the circumferential direction as possible, especially a conductor with high yield strength and high electrical conductivity; for example, Cu or a Cu alloy is used.

【0007】すなわち、ハイブリッドマグネットにおい
て、強磁界例えば40〜50テスラを得ようとすると水
冷マグネットに作用する円周方向の応力は非常に高くな
るため、ヘリカルコイル導体の耐力として45Kg/m
m 2以上を満足しなければならない。さらにコンパク
ト化するには90%(IACS) 以上の導電率が要求
される。
That is, in a hybrid magnet, when trying to obtain a strong magnetic field of, for example, 40 to 50 Tesla, the stress in the circumferential direction acting on the water-cooled magnet becomes extremely high, so the proof stress of the helical coil conductor is 45 kg/m.
m2 or more must be satisfied. For further compactness, a conductivity of 90% (IACS) or higher is required.

【0008】従来、このようなヘリカルコイル導体は、
例えば図8(a),(b),(c),(d)に示すよう
な工程で製造されていた。すなわち、純銅あるいは銅合
金製の棒状銅4から冷間引抜き加工によって、矩形伸線
5を得、巻線機を用いて円筒体6に螺旋状に巻き付けた
状態の巻き付けヘリカルコイル導体7が形成される。そ
して、円筒体6との巻き付け拘束を解除すると自由膨脹
によりスプリングバックしたヘリカルコイル導体8が得
られる。
Conventionally, such a helical coil conductor is
For example, they were manufactured using the steps shown in FIGS. 8(a), (b), (c), and (d). That is, a rectangular drawn wire 5 is obtained by cold drawing from a rod-shaped copper 4 made of pure copper or a copper alloy, and a wound helical coil conductor 7 is formed by winding the wire helically around a cylindrical body 6 using a winding machine. Ru. Then, when the winding restraint with the cylindrical body 6 is released, a helical coil conductor 8 which is spring-backed due to free expansion is obtained.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、従来の
かかる巻線方式によってヘリカルコイル導体を純銅ある
いは析出硬化型銅合金であるCu− Cr,Cu− C
r− Zr合金で成形しても、0.2%耐力は40kg
/mm 2 程度までしか得られず、強度的に不十分で
ある。また、アルミナ分散強化銅を用いると強度、電気
特性共に十分な特性を有しているが、巻き付けによりコ
イル導体の外周部は引張り、内周部は圧縮の応力を受け
るため、図9に示すように外周部ではコイル導体の厚さ
方向に縮み、円周方向では膨らんで台形状の断面形状と
なる。このため、導体の各ターン間8a,8b,8c,
……に挿入する絶縁物の面圧が局部的に著しく高くなり
、絶縁物の破壊を引き起こすこともある。また、面圧の
大きさが不均一となるため、コイルに撓み状の曲げ変形
が生じるため、コイル軸方向の圧縮磁界によりコイルが
座屈し、コイル全体の破壊が生じることもある。
[Problems to be Solved by the Invention] However, according to the conventional winding method, the helical coil conductor is made of pure copper or precipitation hardening copper alloys such as Cu-Cr, Cu-C.
Even when molded with r-Zr alloy, the 0.2% yield strength is 40 kg.
/mm 2 , which is insufficient in terms of strength. In addition, when alumina dispersion-strengthened copper is used, it has sufficient strength and electrical properties, but the outer periphery of the coil conductor is subjected to tensile stress and the inner periphery is subjected to compressive stress due to winding, as shown in Figure 9. At the outer periphery, the coil conductor contracts in the thickness direction and expands in the circumferential direction, forming a trapezoidal cross-sectional shape. Therefore, between each turn of the conductor 8a, 8b, 8c,
The surface pressure of the insulator inserted into the ... may locally become extremely high, causing breakdown of the insulator. Furthermore, since the magnitude of the surface pressure is non-uniform, bending deformation occurs in the coil, which may cause the coil to buckle due to the compressive magnetic field in the axial direction of the coil, resulting in destruction of the entire coil.

【0010】そこで、この台形状の変形を機械加工によ
って修正するために、図10に示すように各ターン間を
低融点材料10、例えば鉛、亜鉛等の合金等で固定し、
機械加工してもその固定部の剛性と強度が低いために精
度よく加工することが困難である。また、スプリングに
よって膨脹した径の中に挿入する加工のための加工用中
子9と各ターン間8a,8b,8c……を接着剤により
接着しても機械加工するに要するだけの強度が得られな
い等の問題点があり、巻線方式によるコイルの成形には
限界があり、特に大型コイルの成形には不向きであった
Therefore, in order to correct this trapezoidal deformation by machining, each turn is fixed with a low melting point material 10, such as an alloy of lead, zinc, etc., as shown in FIG.
Even if machined, it is difficult to process accurately because the rigidity and strength of the fixed part are low. Furthermore, even if the machining core 9 for machining inserted into the diameter expanded by the spring and the respective turns 8a, 8b, 8c, etc. are bonded with adhesive, the strength required for machining can be obtained. There are problems such as the inability to form coils using the wire winding method, and there are limits to forming coils using the wire winding method, making it particularly unsuitable for forming large coils.

【0011】さらに、巻線方式ではコイルのスプリング
バック量が大きく、設計通りの内外径寸法のコイルを得
ることは困難である。特に巻き始めと中間部あるいは最
終部との径がスプリングバックにより大きく異なること
を防止することは難しく、その上機械加工によって内外
径を仕上げようとしても巻き付けによる内部の残留応力
が大きいため、加工変形が著しく所定の寸法に仕上げる
ことが困難であるという大きな問題があった。また、寸
法精度を高くするために、導体の機械加工代を大きく取
らなければならず、このため材料の歩留りが低下すると
共に、加工工数が増大してしまう欠点もあった。
Furthermore, in the wire winding method, the amount of springback of the coil is large, and it is difficult to obtain a coil with the designed inner and outer diameter dimensions. In particular, it is difficult to prevent large differences in diameter between the start of winding and the middle or end of the winding due to springback, and even if you try to finish the inner and outer diameters by machining, the internal residual stress caused by winding is large, resulting in machining deformation. There was a major problem in that it was extremely difficult to finish it to a predetermined size. Furthermore, in order to increase the dimensional accuracy, a large machining allowance for the conductor must be taken, which has the drawback of lowering the yield of materials and increasing the number of machining steps.

【0012】本発明は上記の問題点を解決するためにな
されたものであり、より高強度で高い導電率を有し、そ
の上高い寸法精度を備えたヘリカルコイルを容易に得る
ことができるヘリカルコイルの製造方法を提供すること
を目的とする。 [発明の構成]
The present invention has been made in order to solve the above problems, and provides a helical coil that can easily obtain a helical coil that has higher strength, higher conductivity, and also has higher dimensional accuracy. The purpose of the present invention is to provide a method for manufacturing a coil. [Structure of the invention]

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
、第1の本発明に係るヘリカルコイルの製造方法は、矩
形断面形状の伸線導体を円筒体に螺旋状に巻き付け、伸
線導体と円筒体とを一体に接合した後、前記巻き付け導
体を機械加工して螺旋状導体を成形する。
[Means for Solving the Problems] In order to achieve the above object, a method for manufacturing a helical coil according to a first aspect of the present invention is to spirally wind a drawn wire conductor having a rectangular cross-sectional shape around a cylindrical body. After joining the cylindrical body together, the wound conductor is machined to form a spiral conductor.

【0014】また、第2の本発明に係るヘリカルコイル
の製造方法は、矩形断面形状の伸線導体を円筒体に螺旋
状に巻き付け、固定した状態で、巻き付け導体と円筒を
同時に高温下で焼鈍加熱し、その後円筒体から巻き付け
導体を取り除き、機械加工して螺旋状導体を成形する。
[0014] Furthermore, in the method for manufacturing a helical coil according to the second aspect of the present invention, a drawn wire conductor having a rectangular cross section is spirally wound around a cylindrical body, and in a fixed state, the wound conductor and the cylinder are simultaneously annealed at a high temperature. After heating, the wrapped conductor is removed from the cylinder and machined to form a helical conductor.

【0015】[0015]

【作用】上記第1の発明によるヘリカルコイルの製造方
法によれば、長尺の伸線状導体を円筒体に巻き付けて一
体に接合するため、導体のコイルターン間の側面ばかり
でなく、導体の内周側と円筒体が一体化されるため、巻
き付けによって変形した導体の断面形状を機械加工によ
って均一な矩形断面に仕上げることが可能である。これ
によりコイルの曲げ座屈や各ターン間の絶縁材料の破壊
を防止することが可能である。
[Operation] According to the method for manufacturing a helical coil according to the first invention, since the long drawn wire conductor is wound around the cylindrical body and joined together, not only the sides between the coil turns of the conductor but also the side surfaces of the conductor are Since the inner peripheral side and the cylindrical body are integrated, it is possible to finish the cross-sectional shape of the conductor, which has been deformed by winding, into a uniform rectangular cross-section by machining. This makes it possible to prevent bending buckling of the coil and destruction of the insulating material between each turn.

【0016】また上記第2の発明によるヘリカルコイル
の製造方法によれば、長尺の伸線状導体を円筒体に巻き
付けたまま高温加熱処理されるため、巻き付けに伴う残
留応力が殆ど消失し、残留応力に起因するスプリングバ
ック量が極めて小さくなり、スプリングバック量を見込
んだヘリカルコイルの製造が容易になると共に、コイル
内外径の寸法精度の向上を図り得る。
Further, according to the method for manufacturing a helical coil according to the second aspect of the invention, since the long drawn wire conductor is heated at high temperature while being wound around the cylindrical body, the residual stress caused by the winding almost disappears. The amount of springback caused by residual stress becomes extremely small, making it easy to manufacture a helical coil that takes into account the amount of springback, and improving the dimensional accuracy of the coil's inner and outer diameters.

【0017】[0017]

【実施例】以下本発明の実施例を図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings.

【0018】図1は本発明によるヘリカルコイルの製造
方法の第1の実施例を説明するための工程図を示すもの
である。第1の実施例では、図1(a)に示すようにマ
トリッリスとして銅を強化材としてアルミナ粒子11を
用いたアルミナ分散強化銅を円形の棒状に形成した棒状
伸銅12を用意する。次にこの棒状伸銅12を冷間引抜
き加工によって図1(b)に示す長尺の矩形伸線導体1
3を形成する。
FIG. 1 shows a process diagram for explaining a first embodiment of the method for manufacturing a helical coil according to the present invention. In the first example, as shown in FIG. 1(a), a rod-shaped copper elongation 12 is prepared in which alumina dispersion-strengthened copper is formed into a circular rod shape using alumina particles 11 using copper as a reinforcing material as a matrix. Next, this rod-shaped copper elongation 12 is cold-drawn to form a long rectangular drawn wire conductor 1 as shown in FIG. 1(b).
form 3.

【0019】次にこの矩形伸線導体13の1つの面上に
図1(c)に示すようにろう箔剤14を置き、スポット
ウエルダーで複数点をスポットウエルド15する。この
ようにして得られたろう箔剤14付の導体13´をコイ
ル巻線機を用いて図1(d)に示すように円筒体16の
外周上に所定の張力を掛けながら一定のピッチで螺旋状
に巻き付け、両端を固定用金具18で固定することによ
って、巻き付け導体17が得られる。
Next, a wax foil 14 is placed on one surface of this rectangular drawn wire conductor 13 as shown in FIG. 1(c), and spot welds 15 are performed at a plurality of points using a spot welder. The conductor 13' with the wax foil 14 thus obtained is spirally wound at a constant pitch while applying a predetermined tension on the outer periphery of the cylindrical body 16 as shown in FIG. 1(d) using a coil winding machine. A wrapped conductor 17 is obtained by winding the conductor 17 into a shape and fixing both ends with fixing fittings 18.

【0020】次に円筒体16と巻き付け導体17等に付
着している不純物や汚れを脱脂浄化した後、図1(e)
に示すように加熱炉19の中に入れ、ヒータ20により
650〜850 ℃の温度で加熱することにより、巻き
付け導体17の内周側は円筒体16と一体に接合される
。これらを加熱炉19の中から取出して冷却後、図1(
f)に示すように巻き付け導体17の各ターン17a,
17b,……,17f間を切削用バイト21で機械加工
し、巻き付けによって変形した断面形状を矩形に仕上げ
、その後巻き付け導体の外周および円筒体16の付いて
いる内周側を仕上げ加工し、円筒体16を除去すること
により、図1(g)に示すようなヘリカルコイル22が
得られる。
Next, after degreasing and cleaning impurities and dirt adhering to the cylindrical body 16 and the wrapped conductor 17, etc., as shown in FIG.
As shown in FIG. 2, the inner peripheral side of the wrapped conductor 17 is integrally joined to the cylindrical body 16 by placing it in a heating furnace 19 and heating it at a temperature of 650 to 850° C. with a heater 20. After taking these out from the heating furnace 19 and cooling them,
f), each turn 17a of the wrapped conductor 17,
17b, . . . , 17f are machined using a cutting tool 21, the cross-sectional shape deformed by winding is finished into a rectangular shape, and then the outer periphery of the wound conductor and the inner periphery side where the cylindrical body 16 is attached are finished, and a cylindrical shape is formed. By removing the body 16, a helical coil 22 as shown in FIG. 1(g) is obtained.

【0021】上記実施例のような工程でヘリカルコイル
を製造すれば、棒状伸銅12から冷間加工によって、さ
らに断面積の小さな矩形状伸線導体13としているため
、引張り強度特性が向上すると同時に、任意の断面形状
の導体とすることができる。また、ヘリカルコイル22
の導体の高さ、直径共に自由に選ぶことが可能であり、
長尺の伸線導体13を用いることにより、大型で高強度
のヘリカルコイルの製造が可能になる。
If a helical coil is manufactured by the process described in the above embodiment, the rectangular drawn wire conductor 13 with a smaller cross-sectional area is formed by cold working from the rod-shaped copper elongation 12, so that the tensile strength characteristics are improved and at the same time , the conductor can have any cross-sectional shape. In addition, the helical coil 22
The height and diameter of the conductor can be freely selected.
By using the long drawn wire conductor 13, it is possible to manufacture a large-sized, high-strength helical coil.

【0022】図2は矩形状伸線導体13を円筒体16に
巻き付けたときのコイル導体断面の変化量を示したもの
である。外周側の縮み量と内周側の膨み量を表している
。コイル導体の変形量は導体の厚さに比例し、コイルの
直径に反比例して増加するため、各ターン間に入れる絶
縁物の厚さを変えることによって、この導体の変形量を
吸収することは容易なことではない。したがって、コイ
ル導体側を加工し、各ターン間の面は一様に絶縁物に接
触するようにしなければならない。
FIG. 2 shows the amount of change in the cross section of the coil conductor when the rectangular drawn wire conductor 13 is wound around the cylindrical body 16. It represents the amount of shrinkage on the outer circumference side and the amount of swelling on the inner circumference side. Since the amount of deformation of a coil conductor increases in proportion to the thickness of the conductor and inversely proportional to the diameter of the coil, it is possible to absorb this amount of deformation by changing the thickness of the insulator inserted between each turn. It's not easy. Therefore, the coil conductor side must be processed so that the surface between each turn contacts the insulator uniformly.

【0023】また、円筒体16に巻き付けられた導体1
7を加熱することにより、巻き付け導体17と円筒体1
6間のろう剤14が液相状になって両者が接合されるた
めには、熱膨脹によって両者に隙間が生じないようにし
なければならない。そのためには高温状態におけるコイ
ル導体の線膨脹係数よりも円筒体16のそれが少々大き
めの材料を用いる。例えばJIS  SUS304等で
ある。
[0023] Also, the conductor 1 wound around the cylindrical body 16
By heating 7, the wrapped conductor 17 and the cylindrical body 1
In order for the brazing agent 14 between the two parts to be in a liquid phase and to bond the two parts, it is necessary to prevent a gap from forming between the two parts due to thermal expansion. For this purpose, a material is used for the cylindrical body 16 whose coefficient of linear expansion is slightly larger than that of the coil conductor in a high temperature state. For example, JIS SUS304.

【0024】ろう箔剤としては高温不活性あるいは真空
中で用いることのできるCu− Ag系であればいずれ
でも良いが、特に加熱温度条件に制限を付けるのであれ
ば、Agの量が調整されたもの、あるいは他の元素の添
加されたものを用いる。また、接合性を良好にするため
、事前に円筒体の表面をNi等でメッキしておくことも
一つの方法である。
[0024] The wax foil may be any Cu-Ag type material that is inert at high temperatures or can be used in vacuum, but if the heating temperature conditions are particularly limited, the amount of Ag may be adjusted. or those to which other elements are added. Further, in order to improve the bondability, one method is to plate the surface of the cylindrical body with Ni or the like in advance.

【0025】コイル導体を加熱すると、冷間加工によっ
て向上した強度特性は消失するのが一般的であるが、本
実施例で用いたアルミナ分散強化銅の場合は強度低下が
小さいという特徴がある。各工程における導体材料の0
.2%耐力と導電率の測定値を表に示すと次の通りであ
る。
When a coil conductor is heated, the strength characteristics improved by cold working generally disappear, but the alumina dispersion strengthened copper used in this example is characterized by a small decrease in strength. 0 of conductor material in each process
.. The measured values of 2% proof stress and electrical conductivity are shown in the table below.

【0026】[0026]

【表1】[Table 1]

【0027】このように矩形伸線導体とすることにより
、耐力は大幅に向上するが、導電率は低下する。しかし
、コイル導体を加熱しても耐力は棒状伸銅12と伸線導
体13の中間値程度までにしか低下せず、導体としての
十分な強さを有していることが分かる。また、導電率は
加熱することにより3%程向上し、特性改善されること
も分かる。即ち、高温度の加熱処理を実施しても、冷間
加工には強度の改善効果は十分に活かされ、しかも電気
的特性は冷間加工後よりも向上するという利点がある。
[0027] By forming the rectangular drawn conductor in this way, the yield strength is greatly improved, but the electrical conductivity is lowered. However, even when the coil conductor is heated, its yield strength decreases only to an intermediate value between that of the rod-shaped copper elongation 12 and the drawn wire conductor 13, indicating that it has sufficient strength as a conductor. It can also be seen that the electrical conductivity increases by about 3% by heating, and the characteristics are improved. That is, even if high-temperature heat treatment is performed, cold working has the advantage that the effect of improving strength is fully utilized, and the electrical properties are improved more than after cold working.

【0028】上記実施例では円筒体の表面は平滑状のま
まであるが、コイル導体の巻き付けを容易にするため、
円筒体の表面にコイル巻き付け用の案内溝を設け、この
溝底にろう箔剤をスポットウエルドしても同一の効果を
得ることができる。また、上記実施例では不活性ガス雰
囲気中で使用するろう剤を用いたが、大気中加熱で接合
可能なろう剤を用いても良い。
In the above embodiment, the surface of the cylindrical body remains smooth, but in order to facilitate winding of the coil conductor,
The same effect can be obtained by providing a guide groove for coil winding on the surface of the cylindrical body and spot welding a wax foil to the bottom of the groove. Further, in the above embodiments, a brazing agent that is used in an inert gas atmosphere is used, but a brazing agent that can be bonded by heating in the atmosphere may also be used.

【0029】また、上記のコイル巻き付け用の案内溝と
コイル導体の隙間にろう剤を巻き付けて加熱しても前述
とほぼ同様の効果を得ることが可能である。また、ろう
剤を用いずに加熱温度と時間を調整し、拡散接合しても
良い。
Furthermore, substantially the same effect as described above can be obtained by wrapping a brazing agent around the gap between the coil winding guide groove and the coil conductor and heating it. Alternatively, diffusion bonding may be performed by adjusting the heating temperature and time without using a brazing agent.

【0030】次に本発明によるヘリカルコイルの製造方
法の第2の実施例を図3を参照して説明する。第2の実
施例では、図3(a)に示すようにマトリックスとして
用いられる銅の中に強化材としてのアルミナ粒子23を
分散させたアルミナ分散強化銅を棒状に成形した棒状伸
銅24を用意する。次にこの棒状伸銅24を冷間成形加
工によって図3(b)に示す長尺の矩形状伸線銅25を
形成する。ここで、強化材としてはセラミックスや金属
の微粒子、短繊維、ウイスカ等を用いることも可能であ
る。
Next, a second embodiment of the method for manufacturing a helical coil according to the present invention will be described with reference to FIG. In the second embodiment, as shown in FIG. 3(a), a rod-shaped copper elongation 24 is prepared by forming alumina dispersion-strengthened copper into a rod shape in which alumina particles 23 as a reinforcing material are dispersed in copper used as a matrix. do. Next, this rod-shaped drawn copper wire 24 is cold-formed to form a long rectangular drawn copper wire 25 shown in FIG. 3(b). Here, it is also possible to use ceramic or metal fine particles, short fibers, whiskers, etc. as the reinforcing material.

【0031】このようにして得られた矩形状の伸線導体
25を図3(c)に示すようにコイル巻線機を用いて円
筒体26に所定の張力を掛けながら巻き付け、導体の始
端部と終端部を固定金具27で固定し、巻き付け状態の
ヘリカルコイル導体28を得る。
As shown in FIG. 3(c), the rectangular drawn conductor 25 thus obtained is wound around a cylindrical body 26 while applying a predetermined tension using a coil winding machine, and the starting end of the conductor is and the terminal end portions are fixed with fixing fittings 27 to obtain a helical coil conductor 28 in a wound state.

【0032】次に円筒体26とヘリカルコイル導体28
に付着している不純物や汚れを脱脂浄化した後、図3(
d)に示すように円筒体26に巻き付けた状態のまま熱
処理炉29の中に入れ、ヒータ30により700〜90
0℃の温度で1〜3時間加熱焼鈍することにより、コイ
ル導体25内の巻き付け加工による残留応力は消失され
る。その後円筒体28に固定されている固定金具27を
取外してもスプリングバック量の少ないヘリカルコイル
導体31が得られる。ヘリカル導体31の機械加工は、
加熱焼鈍処理後、円筒体26から除去した後に内周部に
ついて実施する。
Next, the cylindrical body 26 and the helical coil conductor 28
After degreasing and purifying the impurities and dirt attached to the
As shown in d), it is placed in the heat treatment furnace 29 while being wrapped around the cylindrical body 26, and heated to a temperature of 700 to 900
By heating and annealing at a temperature of 0° C. for 1 to 3 hours, the residual stress in the coil conductor 25 due to the winding process is eliminated. After that, even if the fixing fitting 27 fixed to the cylindrical body 28 is removed, a helical coil conductor 31 with a small amount of springback can be obtained. The machining of the helical conductor 31 is as follows:
After the heating annealing treatment, the inner peripheral portion is subjected to the annealing after being removed from the cylindrical body 26.

【0033】図3(b)に示す矩形状の伸線導体を用い
ると、図4に示すように円筒体26に巻き付けた伸線導
体の外周部の厚さは減少し、逆に内周部は増加するよう
な断面変形が生じる。そこで、予め伸線導体を得る工程
で上記のような断面変形とは反対方向の異形断面、すな
わち図5(a)に示すようにコイル導体の外周部を厚肉
に、内周部を薄肉にした台形状伸線32を成形する。こ
の導体を円筒体26に巻き付けると図5(b)に示すよ
うに矩形断面形状のヘリカルコイル導体33が得られる
When the rectangular drawn wire conductor shown in FIG. 3(b) is used, the thickness of the outer periphery of the drawn wire conductor wound around the cylindrical body 26 decreases as shown in FIG. A cross-sectional deformation occurs that increases. Therefore, in the process of obtaining a wire-drawn conductor in advance, a modified cross section in the opposite direction to the cross-sectional deformation described above, that is, the outer peripheral part of the coil conductor is made thicker and the inner peripheral part is made thinner, as shown in FIG. A trapezoidal drawn wire 32 is formed. When this conductor is wound around the cylindrical body 26, a helical coil conductor 33 having a rectangular cross section is obtained as shown in FIG. 5(b).

【0034】このような第2の実施例によれば、棒状伸
銅24から冷間加工によって、より断面積の小さな矩形
状伸線導体22とするため、引張り強度特性が向上する
と同時に、任意形状の導体断面形状とすることが可能な
ため、ヘリカルコイル導体31の高さ、径共に任意に設
定することが可能であり、高強度で大型のヘリカルコイ
ルの製造ができる。
According to the second embodiment, the rectangular drawn wire conductor 22 having a smaller cross-sectional area is obtained by cold working the rod-shaped copper wire 24, so that the tensile strength characteristics are improved and at the same time, it is possible to form an arbitrary shape. Since it is possible to make the conductor cross-sectional shape, the height and diameter of the helical coil conductor 31 can be arbitrarily set, and a large-sized helical coil with high strength can be manufactured.

【0035】図6は巻線方式による従来のコイル成形と
本発明の第2の実施例のコイル成形によるコイルバック
量を比較したものである。従来の未焼鈍法では、コイル
導体内の残留応力が導体の耐力以上に達しているため、
スプリングバック量がコイル径の5〜15%と大きく、
その上同一コイル径でもスプリングバック量のバラツキ
が大きい。このため、設計寸法の内外径コイルの製作が
難しかったが、第2の実施例の焼鈍工程を設けることに
より、導体内の残留応力は最高加熱温度における引張り
耐力相当まで低下するため、巻き付けコイルの直径に対
するスプリングバック量は1〜2%以内で、且つそのバ
ラツキが小さいため、スプリングバック量を予想し、所
定寸法のコイルを得ることが極めて容易になる。
FIG. 6 compares the amount of coil back between conventional coil forming using a wire winding method and coil forming according to the second embodiment of the present invention. In the conventional unannealed method, the residual stress within the coil conductor exceeds the yield strength of the conductor.
The amount of springback is large at 5-15% of the coil diameter.
Furthermore, even with the same coil diameter, the amount of springback varies greatly. For this reason, it was difficult to manufacture a coil with the inner and outer diameters of the designed dimensions, but by providing the annealing process of the second embodiment, the residual stress in the conductor is reduced to the tensile strength equivalent at the maximum heating temperature, so the wrapped coil Since the amount of springback with respect to the diameter is within 1 to 2% and the variation thereof is small, it is extremely easy to predict the amount of springback and obtain a coil of a predetermined size.

【0036】また、第2の実施例のようにコイル導体を
焼鈍しても、第1の実施例と同様にアルミナ分散強化銅
の場合は強度低下が小さいという特徴があるので、高温
度による焼鈍処理を実施しても、冷間加工による強度の
改善効果が十分に活かされ、しかも電気的特性は冷間加
工後よりも向上する。
Furthermore, even if the coil conductor is annealed as in the second embodiment, alumina dispersion-strengthened copper is characterized by a small decrease in strength, as in the first embodiment, so annealing at high temperatures is Even if the treatment is carried out, the strength improvement effect due to cold working is fully utilized, and the electrical properties are improved compared to after cold working.

【0037】上記第2の実施例では円筒体にコイル導体
を巻き付けた状態で加熱焼鈍処理しているが、図3(d
)に示すスプリングバック後のヘリカルコイル導体を焼
鈍処理することにより、その後の機械加工による寸法精
度が内部残留応力の除去により向上させることができる
。この場合、図6に示すように径寸法のバラツキを抑え
ることはできないが、機械的、電気的な特性としては第
1の実施例と同様のものが得られる。
In the second embodiment, the cylindrical body is heated and annealed with the coil conductor wound around it.
) By annealing the helical coil conductor after springback shown in ), the dimensional accuracy of subsequent machining can be improved by removing internal residual stress. In this case, as shown in FIG. 6, although it is not possible to suppress variations in diameter dimensions, mechanical and electrical properties similar to those of the first embodiment can be obtained.

【0038】なお、前述した第1の実施例および第2の
実施例では、コイル素材としてアルミナ分散強化銅また
は純銅を用いた例で示したが、本発明は他のコイル材料
として短繊維、ウイスカ、粒子等を混入した合金や銅合
金製の導体を用いても良い。また、強化繊維として炭化
けい素、炭素、ボロン、有機物系、金属系を用いても同
様の効果を得ることができる。
In the first and second embodiments described above, alumina dispersion-strengthened copper or pure copper was used as the coil material, but the present invention also uses other coil materials such as short fibers and whiskers. A conductor made of an alloy mixed with particles or the like or a copper alloy may also be used. Furthermore, similar effects can be obtained by using silicon carbide, carbon, boron, organic matter, or metal as reinforcing fibers.

【0039】[0039]

【発明の効果】以上述べたように本発明によれば、より
高強度で高い導電率を有し、その上高い寸法精度を備え
たヘリカルコイルを容易に得ることができるヘリカルコ
イルの製造方法を提供できる。
[Effects of the Invention] As described above, the present invention provides a method for manufacturing a helical coil that can easily produce a helical coil having higher strength, higher conductivity, and higher dimensional accuracy. Can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明によるヘリカルコイルの製造方法を説明
するための第1の実施例を示す工程図。
FIG. 1 is a process diagram showing a first example for explaining the method for manufacturing a helical coil according to the present invention.

【図2】同実施例において、巻き付けによる導体断面の
変形量を示す曲線図。
FIG. 2 is a curve diagram showing the amount of deformation of the conductor cross section due to winding in the same example.

【図3】本発明によるヘリカルコイルの製造方法を説明
するための第2の実施例を示す工程図。
FIG. 3 is a process diagram showing a second example for explaining the method for manufacturing a helical coil according to the present invention.

【図4】同実施例において、矩形状断面の導体を円筒体
に巻き付けたときの断面の変形状態を示す図。
FIG. 4 is a diagram showing a deformed state of the cross section when a conductor with a rectangular cross section is wound around a cylindrical body in the same embodiment.

【図5】同実施例において、台形状の異形断面をした伸
線導体とこれを円筒体に巻き付けた状態を示す図。
FIG. 5 is a diagram showing a drawn wire conductor with a trapezoidal irregular cross section and a state in which it is wound around a cylindrical body in the same embodiment.

【図6】同実施例における成形法と従来の成形法でのス
プリングバック量を比較して示す曲線図。
FIG. 6 is a curve diagram showing a comparison of the amount of springback between the molding method in the same example and the conventional molding method.

【図7】ハイブリッド・マグネットの説明図。FIG. 7 is an explanatory diagram of a hybrid magnet.

【図8】従来のヘリカルコイルの製造方法を説明するた
めの工程図。
FIG. 8 is a process diagram for explaining a conventional helical coil manufacturing method.

【図9】図8のコイル導体巻き付け工程における導体断
面の変形状態を示す図。
9 is a diagram showing a deformed state of a conductor cross section in the coil conductor winding step of FIG. 8; FIG.

【図10】各コイルのターン間を硬化剤で固定する従来
方法を説明するための図。
FIG. 10 is a diagram for explaining a conventional method of fixing the turns of each coil with a hardening agent.

【符号の説明】[Explanation of symbols]

11……アルミナ粒子、12……棒状伸銅、13……矩
形状伸線、14……ろう箔剤、15……スポットウエル
ド、16……円筒体、17……巻き付け導体、18……
固定金具、19……加熱炉、20……ヒータ、21……
切削バイト、22……ヘリカルコイル。
11... Alumina particles, 12... Rod-shaped copper elongation, 13... Rectangular wire drawing, 14... Brazing foil, 15... Spot weld, 16... Cylindrical body, 17... Wound conductor, 18...
Fixing fittings, 19... Heating furnace, 20... Heater, 21...
Cutting tool, 22...Helical coil.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  矩形断面形状の伸線導体を円筒体に螺
旋状に巻き付け、伸線導体と円筒体とを一体に接合した
後、前記巻き付け導体を機械加工して螺旋状導体を得る
ことを特徴とするヘリカルコイルの製造方法。
1. A wire drawn conductor having a rectangular cross section is spirally wound around a cylindrical body, the wire drawn conductor and the cylindrical body are integrally joined, and then the wound conductor is machined to obtain a spiral conductor. Features: Manufacturing method for helical coils.
【請求項2】  矩形断面形状の伸線導体を円筒体に螺
旋状に巻き付け、固定した状態で、巻き付け導体と円筒
体を同時に高温下で焼鈍加熱し、その後円筒体から巻き
付け導体を取り除き、機械加工して螺旋状導体を得るこ
とを特徴とするヘリカルコイルの製造方法。
[Claim 2] A drawn wire conductor with a rectangular cross section is spirally wound around a cylindrical body, and in a fixed state, the wound conductor and the cylindrical body are simultaneously annealed and heated at a high temperature, and then the wound conductor is removed from the cylindrical body and machined. A method for manufacturing a helical coil, characterized by processing it to obtain a helical conductor.
JP9561691A 1991-04-25 1991-04-25 Method of manufacturing helical coil Expired - Lifetime JP2588316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9561691A JP2588316B2 (en) 1991-04-25 1991-04-25 Method of manufacturing helical coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9561691A JP2588316B2 (en) 1991-04-25 1991-04-25 Method of manufacturing helical coil

Publications (2)

Publication Number Publication Date
JPH04324919A true JPH04324919A (en) 1992-11-13
JP2588316B2 JP2588316B2 (en) 1997-03-05

Family

ID=14142484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9561691A Expired - Lifetime JP2588316B2 (en) 1991-04-25 1991-04-25 Method of manufacturing helical coil

Country Status (1)

Country Link
JP (1) JP2588316B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040895A (en) * 2008-08-07 2010-02-18 Denso Corp Method of manufacturing reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040895A (en) * 2008-08-07 2010-02-18 Denso Corp Method of manufacturing reactor

Also Published As

Publication number Publication date
JP2588316B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
CN109643593B (en) Diffusion barrier for metallic superconducting wire
US4109374A (en) Superconductor composite and method of making the same
JPH06349347A (en) High-temperature superconductor and usage method of said high-temperature superconductor
JPH03138341A (en) Manufacture of wire electrode for use in electrical discharge cutting-off
US3570118A (en) Method of producing copper clad superconductors
US3239919A (en) Method of producing high energy permanent magnets
US3355796A (en) Manufacture of clad rods, wires and the like
JPH04324919A (en) Manufacture of helical coil
JP5100533B2 (en) Superconducting conductor connection method, connection structure, connection member
JP2021516428A (en) Diffusion barrier for metal superconducting wires
US20210249160A1 (en) Wire having a hollow micro-tubing and method therefor
JP5598825B2 (en) Nb3Al superconducting wire manufacturing method
JPH034503A (en) Manufacture of helical coil conductor
JP2009004128A (en) BRONZE-PROCESS Nb3Sn SUPERCONDUCTING WIRE, AND PRECURSOR THEREOF
JPH03278509A (en) Manufacture of helical coil
JP3640925B2 (en) Circuit line for semiconductor and manufacturing and forming method thereof
JP2923597B2 (en) Manufacturing method of fine diameter composite metal plated wire
GB1569983A (en) Super conductor
JPH01100901A (en) Superconducting ceramic electromagnet and preparation thereof
JP2960251B2 (en) Method of forming helical coil conductor
JP3050576B2 (en) Method for producing compound linear body
JPH02144902A (en) Manufacture of helical coil
JPS58169712A (en) Method of producing composite superconductive wire
JP2965786B2 (en) Helical coil and manufacturing method thereof
JP4019892B2 (en) Manufacturing method of electrode wire for wire electric discharge machining and electrode wire for wire electric discharge machining manufactured using the manufacturing method