JPH04324626A - Manufacture of hetero epitaxial substrate - Google Patents

Manufacture of hetero epitaxial substrate

Info

Publication number
JPH04324626A
JPH04324626A JP12247691A JP12247691A JPH04324626A JP H04324626 A JPH04324626 A JP H04324626A JP 12247691 A JP12247691 A JP 12247691A JP 12247691 A JP12247691 A JP 12247691A JP H04324626 A JPH04324626 A JP H04324626A
Authority
JP
Japan
Prior art keywords
buffer layer
compound semiconductor
layer
substrate
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12247691A
Other languages
Japanese (ja)
Inventor
Mitsuru Imaizumi
充 今泉
Takashi Saka
坂 貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP12247691A priority Critical patent/JPH04324626A/en
Publication of JPH04324626A publication Critical patent/JPH04324626A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily control carrier density even in a low-carrier-density region of a main compound semiconductor layer by changing the thickness of a buffer layer. CONSTITUTION:The following are provided; a preliminary growth process wherein compound semiconductor is stuck on an Si substrate 12 at a low temperature incapable of obtaining single crystal, and a buffer layer 14 is formed, and a main growth process wherein compound semiconductor is crystal-grown on the buffer layer 14 at a high temperature capable of crystal-growing single crystal, and a main compound semiconductor layer 16 is formed. When a hetero epitaxial substrate 10 is manufactured in the above manner, the carrier density in the main compound semiconductor layer 16 is controlled by changing the thickness of the buffer layer 14. For example, the buffer layer 14 is formed on the Si substrate 12 at 450 deg.C by using an MOCVD equipment, and a GaAs layer 16 of 4mum in thickness is crystal-grown at 700 deg.C on the buffer layer 14. In this case, the carrier density of the GaAs layer 16 changes as shown by a graph in figure, when the film thickness of the buffer layer 14 is set as 9nm, 18nm and 27nm.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はSi基板上に化合物半導
体を結晶成長させたヘテロエピタキシャル基板の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a heteroepitaxial substrate in which compound semiconductor crystals are grown on a Si substrate.

【0002】0002

【従来の技術】発光素子や高感度受光素子,高速電子素
子などは化合物半導体を材料として作製されており、同
じ化合物半導体から成る基板を用いることが望まれるが
、このような化合物半導体基板は一般に高価で面積も小
さく、脆くて比重も大きいなどの欠点がある。このため
、大面積化が可能で軽量,高強度,しかも安価なSi基
板上に化合物半導体を結晶成長させたヘテロエピタキシ
ャル基板が利用されている。かかるヘテロエピタキシャ
ル基板は、通常、(a)単結晶が得られない程度の低温
度で化合物半導体をSi基板上に付着してバッファ層を
形成する予備成長工程と、(b)単結晶を結晶成長させ
ることができる高温度で前記バッファ層の上に化合物半
導体を結晶成長させて主化合物半導体層を形成する本成
長工程とから製造されており、上記バッファ層の形成に
よりSi基板上に化合物半導体単結晶の成長を可能なら
しめている。
[Prior Art] Light-emitting devices, high-sensitivity light-receiving devices, high-speed electronic devices, etc. are fabricated using compound semiconductors, and it is desirable to use substrates made of the same compound semiconductors; however, such compound semiconductor substrates are generally It has drawbacks such as being expensive, having a small area, being brittle, and having a large specific gravity. For this reason, a heteroepitaxial substrate is used in which a compound semiconductor is grown as a crystal on a Si substrate, which can be made large in area, lightweight, has high strength, and is inexpensive. Such a heteroepitaxial substrate usually requires (a) a preliminary growth step in which a buffer layer is formed by depositing a compound semiconductor on a Si substrate at a temperature too low to obtain a single crystal, and (b) a crystal growth step in which the single crystal is grown. A main compound semiconductor layer is formed by crystal-growing a compound semiconductor on the buffer layer at a high temperature that can be applied to the silicon substrate. It makes crystal growth possible.

【0003】一方、基板としての特性の一つにキャリア
濃度があり、基板上に作製する素子の種類や性能等に応
じてその値を変えてやる必要がある。これは、主化合物
半導体の結晶成長中にSi,Seなどのn型ドーパント
をドーピングする際のドーピングガスの濃度や流量を制
御することによって行われている。
On the other hand, one of the characteristics of a substrate is the carrier concentration, and it is necessary to change its value depending on the type and performance of elements to be fabricated on the substrate. This is done by controlling the concentration and flow rate of a doping gas when doping an n-type dopant such as Si or Se during crystal growth of the main compound semiconductor.

【0004】0004

【発明が解決しようとする課題】しかしながら、上記の
ようにSi基板上に化合物半導体を結晶成長させたヘテ
ロエピタキシャル基板は、その結晶成長中にSiが主化
合物半導体層にオートドーピングされ、特にドーパント
をドーピングしなくても1015〜1018(cm−3
)程度のn型を呈し、例えばトランジスタやFETなど
を作製する場合に要求される1015〜1017(cm
−3)程度の低いキャリア濃度をドーピングガスの濃度
や流量の制御で調節することは極めて困難であった。な
お、主化合物半導体層の結晶成長温度によってSiのド
ーピング量、すなわちキャリア濃度を制御することもで
きるが、結晶成長温度は化合物半導体の結晶性に大きな
影響を与えるため好ましくない。
[Problems to be Solved by the Invention] However, in the heteroepitaxial substrate in which a compound semiconductor is crystal-grown on a Si substrate as described above, Si is auto-doped into the main compound semiconductor layer during the crystal growth, and in particular, the dopant is 1015-1018 (cm-3) without doping
) exhibits an n-type property of about 1015 to 1017 (cm
-3) It has been extremely difficult to adjust the carrier concentration as low as that by controlling the concentration and flow rate of the doping gas. Although it is possible to control the amount of Si doping, that is, the carrier concentration, by controlling the crystal growth temperature of the main compound semiconductor layer, this is not preferable because the crystal growth temperature has a large effect on the crystallinity of the compound semiconductor.

【0005】本発明は以上の事情を背景として為された
もので、その目的とするところは、低いキャリア濃度領
域でもそれを容易に制御できるヘテロエピタキシャル基
板の製造方法を提供することにある。
The present invention has been made against the background of the above circumstances, and its object is to provide a method for manufacturing a heteroepitaxial substrate that can easily control even a low carrier concentration region.

【0006】[0006]

【課題を解決するための手段】かかる目的を達成するた
めに種々の実験や研究を重ねたところ、前記予備成長工
程において形成するバッファ層の厚さによって主化合物
半導体層のキャリア濃度が変化することを見出した。本
発明は斯る知見に基づいて為されたもので、前記(a)
予備成長工程と、(b)本成長工程とを有するヘテロエ
ピタキシャル基板の製造方法において、前記バッファ層
の厚さを変えて前記主化合物半導体層におけるキャリア
濃度を制御するようにしたことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, various experiments and studies have been conducted, and it has been found that the carrier concentration of the main compound semiconductor layer changes depending on the thickness of the buffer layer formed in the preliminary growth step. I found out. The present invention has been made based on this knowledge, and is based on the above-mentioned (a).
A method for manufacturing a heteroepitaxial substrate comprising a preliminary growth step and (b) a main growth step, characterized in that the carrier concentration in the main compound semiconductor layer is controlled by changing the thickness of the buffer layer. .

【0007】[0007]

【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings.

【0008】図2は、本発明方法を適用して製造された
ヘテロエピタキシャル基板10(以下、単に基板10と
いう)の構成を説明する図で、Si基板12上にMOC
VD(有機金属化学気相成長)装置を用いてバッファ層
14を形成するとともに、そのバッファ層14の上にG
aAs層16を結晶成長させたものである。GaAs層
16は主化合物半導体層に相当するもので、その厚さは
4μmである。また、バッファ層14は基板10の状態
ではGaAs単結晶にて構成されていてGaAs層16
と区別できないとともに、その膜厚はGaAs層16に
比較して十分に薄い。本実施例では、このバッファ層1
4の膜厚が9nm,18nm,27nmの3種類の基板
10を作製した。
FIG. 2 is a diagram illustrating the structure of a heteroepitaxial substrate 10 (hereinafter simply referred to as substrate 10) manufactured by applying the method of the present invention.
A buffer layer 14 is formed using a VD (organic metal chemical vapor deposition) device, and G is deposited on the buffer layer 14.
The aAs layer 16 is grown by crystal growth. The GaAs layer 16 corresponds to the main compound semiconductor layer and has a thickness of 4 μm. Further, the buffer layer 14 is made of GaAs single crystal in the state of the substrate 10, and the GaAs layer 16 is made of GaAs single crystal.
It cannot be distinguished from the GaAs layer 16, and its thickness is sufficiently thinner than that of the GaAs layer 16. In this embodiment, this buffer layer 1
Three types of substrates 10 were fabricated, each having a film thickness of 9 nm, 18 nm, and 27 nm.

【0009】以下、上記基板10の作製方法について、
図1のタイムチャートを参照しつつ詳しく説明する。先
ず、直径2インチのSi基板12を有機溶剤で超音波洗
浄した後、超純水ですすぎ、フッ酸水溶液で表面の酸化
膜をエッチング除去した。これを再度超純水ですすぎ、
窒素で乾燥させてMOCVD装置の反応炉内に装入した
。なお、Si基板12の表面、すなわちGaAs層16
が形成される面の面方位は、(100)から[110]
方向に2゜オフさせられている。
The method for manufacturing the substrate 10 will be described below.
This will be explained in detail with reference to the time chart in FIG. First, a Si substrate 12 with a diameter of 2 inches was ultrasonically cleaned with an organic solvent, rinsed with ultrapure water, and the oxide film on the surface was etched away with an aqueous hydrofluoric acid solution. Rinse this again with ultrapure water,
It was dried with nitrogen and charged into the reactor of the MOCVD apparatus. Note that the surface of the Si substrate 12, that is, the GaAs layer 16
The plane orientation of the plane where is formed is from (100) to [110]
It is turned off by 2 degrees in the direction.

【0010】次に、反応炉内に装入されたSi基板12
を、水素雰囲気中で図1の(a) に示すように100
0℃で15分間熱処理し、続いて図1の(b) に示す
ように450℃まで降温して、純度99.999%以上
の水素をキャリアガスとしてトリメチルガリウム(TM
G)およびアルシン(AsH3 )を反応炉内に導入し
、バッファ層14を形成した。450℃ではGaAsの
単結晶は得られず、この段階のバッファ層14は多結晶
若しくはアモルファス状態である。また、このバッファ
層14の成長時間t(図1参照)、すなわち上記原料ガ
スの導入時間は、バッファ層14の膜厚に比例し、この
実施例では膜厚が9nmの場合は1分、18nmの場合
は2分、27nmの場合は3分である。このように多結
晶若しくはアモルファス状態のバッファ層14を形成す
る工程が予備成長工程である。
Next, the Si substrate 12 charged into the reactor
100 in a hydrogen atmosphere as shown in Figure 1(a).
Heat treatment was performed at 0°C for 15 minutes, and then the temperature was lowered to 450°C as shown in Figure 1(b), and trimethylgallium (TM
G) and arsine (AsH3) were introduced into the reactor to form the buffer layer 14. At 450° C., a GaAs single crystal cannot be obtained, and the buffer layer 14 at this stage is in a polycrystalline or amorphous state. Further, the growth time t (see FIG. 1) of the buffer layer 14, that is, the introduction time of the raw material gas, is proportional to the film thickness of the buffer layer 14, and in this example, when the film thickness is 9 nm, it is 1 minute, and when the film thickness is 18 nm. In the case of 27 nm, it is 2 minutes, and in the case of 27 nm, it is 3 minutes. The process of forming the buffer layer 14 in a polycrystalline or amorphous state in this manner is a preliminary growth process.

【0011】その後、図1の(c) に示すように70
0℃まで昇温して、上記と同様に純度99.999%以
上の水素をキャリアガスとしてトリメチルガリウム(T
MG)およびアルシン(AsH3 )を反応炉内に導入
し、GaAsを1μmだけ結晶成長させた。前記バッフ
ァ層14は、700℃への昇温過程で単結晶となり、G
aAsはそのバッファ層14のGaAs単結晶を種結晶
として結晶成長させられる。続いて、このようにして形
成された1μmのGaAs内の結晶欠陥を低減するため
、図1の(d) に示すように200℃〜900℃の熱
サイクルを行い、その後、その結晶欠陥の少ない1μm
のGaAsの上に図1の(e) に示すように更に70
0℃で3μmのGaAsを結晶成長させた。これにより
、Si基板12上に4μmのGaAs層16が形成され
たことになる。図2の破線は上記熱サイクルが行われた
位置、すなわち基板10の表面から3μmの深さ位置を
表している。このようにバッファ層14の上に4μmの
GaAs層16を形成する工程が本成長工程である。
Thereafter, as shown in FIG. 1(c), 70
The temperature was raised to 0°C, and trimethylgallium (T
MG) and arsine (AsH3) were introduced into the reactor, and GaAs crystals were grown by 1 μm. The buffer layer 14 becomes a single crystal in the process of increasing the temperature to 700°C, and becomes a G
The aAs crystal is grown using the GaAs single crystal of the buffer layer 14 as a seed crystal. Next, in order to reduce the crystal defects in the 1 μm GaAs formed in this way, a thermal cycle of 200°C to 900°C was performed as shown in Figure 1(d), and then the GaAs with fewer crystal defects was 1μm
As shown in Figure 1(e), an additional 70
GaAs crystals were grown to a thickness of 3 μm at 0°C. As a result, a 4 μm thick GaAs layer 16 was formed on the Si substrate 12. The broken line in FIG. 2 represents the position where the above thermal cycle was performed, that is, a position at a depth of 3 μm from the surface of the substrate 10. The step of forming the 4 μm thick GaAs layer 16 on the buffer layer 14 in this way is the main growth step.

【0012】そして、このようにして作製したバッファ
層14の厚さが9nm,18nm,27nmの3種類の
基板10について、表面のエッチングと容量−電圧特性
測定とを繰り返すことにより、それぞれの基板10の表
面からの深さ方向におけるキャリア濃度の変化を調べた
。図3はその測定結果であり、実線,一点鎖線,および
二点鎖線はそれぞれバッファ層14の厚さが9nm、1
8nm,および27nmの場合である。かかる図3から
明らかなように、Si基板12との界面付近すなわち深
さが4μm付近の部分、および熱サイクル挿入箇所すな
わち深さが3μm付近の部分においては、Siの拡散の
ためと考えられるキャリア濃度の高い領域が存在するが
、それより上すなわち深さが3μm以下の領域では、バ
ッファ層14の厚さと逆の相関を持ってキャリア濃度が
変化していることが判る。したがって、キャリア濃度が
1015〜1017(cm−3)程度の低キャリア濃度
領域においても、バッファ層14の厚さすなわち成長時
間tを制御することにより、GaAs層16のキャリア
濃度を容易に調節できるのである。
[0012] Then, by repeating surface etching and capacitance-voltage characteristic measurement for the three types of substrates 10 having buffer layers 14 of 9 nm, 18 nm, and 27 nm in thickness, each of the substrates 10 was fabricated in this manner. We investigated changes in carrier concentration in the depth direction from the surface. FIG. 3 shows the measurement results, and the solid line, one-dot chain line, and two-dot chain line indicate that the thickness of the buffer layer 14 is 9 nm and 1 nm, respectively.
This is the case of 8 nm and 27 nm. As is clear from FIG. 3, near the interface with the Si substrate 12, that is, the depth is around 4 μm, and at the thermal cycle insertion point, that is, the depth is around 3 μm, carriers are thought to be due to diffusion of Si. Although there is a high concentration region, it can be seen that above this, that is, in a region with a depth of 3 μm or less, the carrier concentration changes with an inverse correlation to the thickness of the buffer layer 14. Therefore, even in a low carrier concentration region of about 1015 to 1017 (cm-3), the carrier concentration of the GaAs layer 16 can be easily adjusted by controlling the thickness of the buffer layer 14, that is, the growth time t. be.

【0013】なお、上例ではSi基板12上にGaAs
層16を設けた場合について説明したが、GaP,In
Pなどの III−V族化合物半導体やその他の化合物
半導体をSi基板上に結晶成長させる場合にも本発明は
同様に適用され得る。
In the above example, GaAs is formed on the Si substrate 12.
Although the case where the layer 16 is provided has been described, GaP, In
The present invention can be similarly applied to cases where crystals of III-V group compound semiconductors such as P and other compound semiconductors are grown on Si substrates.

【0014】また、前記実施例ではバッファ層14の厚
さを成長時間tによって制御しているが、原料ガスの濃
度や流量によってバッファ層14の厚さを制御すること
もできる。
Further, in the above embodiment, the thickness of the buffer layer 14 is controlled by the growth time t, but the thickness of the buffer layer 14 can also be controlled by the concentration or flow rate of the source gas.

【0015】また、前記実施例ではGaAs層16の結
晶成長途中に熱サイクルを挿入しているが、この熱サイ
クルを省略することもできる。その場合には、熱サイク
ルによるキャリア濃度の上昇が回避される。
Further, in the above embodiment, a thermal cycle is inserted during the crystal growth of the GaAs layer 16, but this thermal cycle can also be omitted. In that case, an increase in carrier concentration due to thermal cycling is avoided.

【0016】また、前記実施例ではSi基板12上にG
aAs層16を形成した基板10の製造方法について説
明したが、GaAs層16を素子の一部として用いてそ
の上に連続して化合物半導体を結晶成長させることもで
きる。言い換えれば、1回の結晶成長でデバイス用多層
膜まで作製する場合において、そのバッファ領域やベー
ス領域のキャリア濃度を本発明方法に従って制御するこ
ともできるのである。
Further, in the above embodiment, G is formed on the Si substrate 12.
Although the method for manufacturing the substrate 10 on which the aAs layer 16 is formed has been described, it is also possible to use the GaAs layer 16 as part of an element and continuously grow crystals of a compound semiconductor thereon. In other words, when producing a multilayer film for a device by one crystal growth, the carrier concentration in the buffer region and base region can be controlled according to the method of the present invention.

【0017】また、前記実施例ではMOCVD装置を用
いて有機金属化学気相成長法により化合物半導体を結晶
成長させる場合について説明したが、分子線エピタキシ
ー法によるものなど、他のエピタキシャル成長装置を用
いることもできる。化合物半導体を結晶成長させる際の
温度条件等についても適宜変更できる。
[0017]Although the above embodiment describes the case where compound semiconductor crystals are grown by metal-organic chemical vapor deposition using an MOCVD apparatus, other epitaxial growth apparatus such as one using molecular beam epitaxy may also be used. can. The temperature conditions and the like during crystal growth of the compound semiconductor can also be changed as appropriate.

【0018】その他一々例示はしないが、本発明は当業
者の知識に基づいて種々の変更,改良を加えた態様で実
施することができる。
Although no other examples are given, the present invention can be implemented with various modifications and improvements based on the knowledge of those skilled in the art.

【0019】[0019]

【発明の効果】以上詳述したように、本発明のヘテロエ
ピタキシャル基板の製造方法によれば、予備成長工程に
おいて形成するバッファ層の厚さを変えることにより、
主化合物半導体層のキャリア濃度を1017(cm−3
)程度以下の低キャリア濃度領域においても容易に制御
することができるのである。
Effects of the Invention As detailed above, according to the method for manufacturing a heteroepitaxial substrate of the present invention, by changing the thickness of the buffer layer formed in the preliminary growth step,
The carrier concentration of the main compound semiconductor layer is 1017 (cm-3)
), it can be easily controlled even in a low carrier concentration region below .

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図2のヘテロエピタキシャル基板を本発明方法
に従って製造する際の温度履歴を示すタイムチャートで
ある。
FIG. 1 is a time chart showing the temperature history when manufacturing the heteroepitaxial substrate of FIG. 2 according to the method of the present invention.

【図2】本発明方法に従って製造されたヘテロエピタキ
シャル基板の構造図である。
FIG. 2 is a structural diagram of a heteroepitaxial substrate manufactured according to the method of the present invention.

【図3】バッファ層の厚さが異なる3種類のヘテロエピ
タキシャル基板の表面からの深さ方向におけるキャリア
濃度変化を示す図である。
FIG. 3 is a diagram showing changes in carrier concentration in the depth direction from the surface of three types of heteroepitaxial substrates with different buffer layer thicknesses.

【符号の説明】[Explanation of symbols]

10:ヘテロエピタキシャル基板 12:Si基板 14:バッファ層 10: Heteroepitaxial substrate 12:Si substrate 14: Buffer layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  単結晶が得られない程度の低温度で化
合物半導体をSi基板上に付着してバッファ層を形成す
る予備成長工程と、単結晶を結晶成長させることができ
る高温度で前記バッファ層の上に化合物半導体を結晶成
長させて主化合物半導体層を形成する本成長工程とを有
するヘテロエピタキシャル基板の製造方法において、前
記バッファ層の厚さを変えて前記主化合物半導体層にお
けるキャリア濃度を制御するようにしたことを特徴とす
るヘテロエピタキシャル基板の製造方法。
1. A preliminary growth step in which a buffer layer is formed by depositing a compound semiconductor on a Si substrate at a temperature so low that a single crystal cannot be obtained, and a pre-growth step in which a buffer layer is formed at a high temperature at which a single crystal can be grown. A method for manufacturing a heteroepitaxial substrate comprising a main growth step of crystal-growing a compound semiconductor on the layer to form a main compound semiconductor layer, wherein the carrier concentration in the main compound semiconductor layer is adjusted by changing the thickness of the buffer layer. 1. A method for manufacturing a heteroepitaxial substrate, characterized in that the method of manufacturing a heteroepitaxial substrate is controlled.
JP12247691A 1991-04-24 1991-04-24 Manufacture of hetero epitaxial substrate Pending JPH04324626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12247691A JPH04324626A (en) 1991-04-24 1991-04-24 Manufacture of hetero epitaxial substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12247691A JPH04324626A (en) 1991-04-24 1991-04-24 Manufacture of hetero epitaxial substrate

Publications (1)

Publication Number Publication Date
JPH04324626A true JPH04324626A (en) 1992-11-13

Family

ID=14836793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12247691A Pending JPH04324626A (en) 1991-04-24 1991-04-24 Manufacture of hetero epitaxial substrate

Country Status (1)

Country Link
JP (1) JPH04324626A (en)

Similar Documents

Publication Publication Date Title
JP2691721B2 (en) Semiconductor thin film manufacturing method
JPH01289108A (en) Heteroepitaxy
Ohmachi et al. The heteroepitaxy of Ge on Si (100) by vacuum evaporation
US4948751A (en) Moelcular beam epitaxy for selective epitaxial growth of III - V compound semiconductor
US5252173A (en) Process for growing semiconductor layer on substrate
JPH04233219A (en) Manufacture of products comprising semiconductor devices
JP3369304B2 (en) Method for growing compound semiconductor crystal layer
JP2845464B2 (en) Compound semiconductor growth method
JPH04324626A (en) Manufacture of hetero epitaxial substrate
JP2003171200A (en) Crystal growth method for compound semiconductor and compound semiconductor device
JPH06104193A (en) System and method for vapor growth of compound semiconductor crystal
JP2014511815A (en) III / VSi Template Manufacturing Method
JP2853226B2 (en) Semiconductor device and manufacturing method thereof
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JP3541332B2 (en) Method for manufacturing semiconductor device
JPH01179788A (en) Method for growing iii-v compound semiconductor on si substrate
JP2696928B2 (en) Heteroepitaxial growth method
KR960004904B1 (en) Growing method for ga-as on the porous silicon substrate
JPH04280898A (en) Process for growing compound semiconductor crystal on si substrate
JP2000306915A (en) Manufacture of silicon wafer
JPH01179797A (en) Method for growing semiconductor crystal
JPH09213635A (en) Formation of heteroepitaxial semiconductor substrate, compound semiconductor device having the substrate and its manufacture
JPH047819A (en) Gaas thin film
JPH0786159A (en) Growing method of compound semiconductor
KR20030061940A (en) Nitride semiconductor fabrication method