JPH04323305A - Production of iron-based large-sized sintered member - Google Patents

Production of iron-based large-sized sintered member

Info

Publication number
JPH04323305A
JPH04323305A JP8817191A JP8817191A JPH04323305A JP H04323305 A JPH04323305 A JP H04323305A JP 8817191 A JP8817191 A JP 8817191A JP 8817191 A JP8817191 A JP 8817191A JP H04323305 A JPH04323305 A JP H04323305A
Authority
JP
Japan
Prior art keywords
iron
mold
powder
sintered body
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8817191A
Other languages
Japanese (ja)
Inventor
Masaki Kono
正樹 河野
Kuniaki Ogura
邦明 小倉
Kazuya Endo
一哉 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8817191A priority Critical patent/JPH04323305A/en
Publication of JPH04323305A publication Critical patent/JPH04323305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To stably produce an iron-based large-sized sintered member without cracking and deformation by providing a relaxation region consisting of a deformation absorbing material on the side face of a forming die, packing an iron-based powder into the region by vibration, sintering the powder and impregnating the sintered body with a copper-based impregnant. CONSTITUTION:An iron-based powder is packed into a heat-resistant forming die 1 by vibration to form a packed bed 2, the relaxation regions 3 and 4 of a deformation absorbing material are placed between the side face of the die 1 and the side face of the bed 2. The bed 2 and the die 1 are heated in a nonoxidizing atmosphere to sinter the powder. The sintered body is then impregnated with a copper-based impregnant to increase the strength of the sintered body. According to this constitution, the difference between the expansion and contraction of the die 1 and the sintered body is absorbed by the regions 3 and 4, hence the die 1 and sintered body are not cracked or deformed, and this powder metallurgical product being an iron-based large-sized sintered member is produced at a high yield.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、金型などの大型焼結部
材の製造方法に関し、さらに詳しくは焼結部材の割れ防
止の方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing large sintered members such as molds, and more particularly to a method for preventing cracks in sintered members.

【0002】0002

【従来の技術】粉末冶金法の適用により、金型などの大
型焼結部材の製造がなされている。本発明者らはこの方
法により、短期間で複雑形状部材が製造できることを、
特開平1−165704号公報及び特開平1−1657
06号公報に開示した。これらは、成形型に鉄系粉末を
無加圧充填し、成形型と共に焼結して大型部材を得る方
法であり、焼結体の機械的特性を高めるため、焼結に引
き続いて銅系溶浸材を溶浸して空隙を埋める方法である
2. Description of the Related Art Large sintered members such as molds are manufactured by applying powder metallurgy. The present inventors have demonstrated that this method allows production of complex-shaped parts in a short period of time.
JP-A-1-165704 and JP-A-1-1657
It was disclosed in Publication No. 06. These methods involve filling a mold with iron-based powder without pressure and sintering it together with the mold to obtain a large component. This method uses infiltration material to fill the voids.

【0003】このとき、成形型としては通常セラミック
材料が用いられる。成形型の内部に充填された鉄系粉末
は通常、充填密度を高めるため振動充填され、その後成
形型とともに加熱焼結される。その際、本発明者らが特
開平2−270932及び特願平1−150383号公
報で開示した方法によれば、鉄粉充填層がセラミック型
に拘束されることが原因の焼結収縮による割れ発生を効
果的にほぼ防止できる。
[0003] At this time, a ceramic material is usually used as the mold. The iron-based powder filled inside the mold is usually vibrated to increase the packing density, and then heated and sintered together with the mold. At that time, according to the method disclosed by the present inventors in Japanese Patent Application Laid-Open No. 2-270932 and Japanese Patent Application No. 1-150383, cracks caused by sintering shrinkage caused by the iron powder filled layer being restrained by the ceramic mold. The occurrence can be effectively prevented.

【0004】しかしながら、焼結部材の大型化にともな
い、焼結・溶浸時の膨張量や収縮量の絶対値の増大によ
る成形型や焼結体の変形や割れ発生が問題となってきた
。すなわち、大型化した際、加熱による鉄系粉末充填層
の熱膨張や収縮によりセラミック成形型に対し応力が生
じ成形型の割れや粗大変形が発生し、結果として焼結体
に割れや変形等の欠陥が発生し、製品歩留りが著しく低
下してしまうという問題点が生じた。
[0004] However, as sintered members become larger, deformation and cracking of molds and sintered bodies due to increases in the absolute values of expansion and contraction during sintering and infiltration have become a problem. In other words, when the size is increased, stress is generated on the ceramic mold due to thermal expansion and contraction of the iron-based powder packed bed due to heating, causing cracks and rough deformation of the mold, resulting in cracks and deformation of the sintered body. A problem arose in that defects occurred and the product yield significantly decreased.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明は鉄系
粉末を用いた大型焼結部材を安定して製造する技術を提
供するのを目的とする。特殊な設備を用いることなく、
従来の一般的な雰囲気炉や真空炉を用いることにより、
コスト上昇を招かずに、加熱中に起こる成形型や焼結体
の割れや変形を少なくし、製品歩留りの低下を防止する
ものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a technique for stably manufacturing large-sized sintered members using iron-based powder. without using special equipment,
By using conventional general atmosphere furnaces and vacuum furnaces,
The purpose is to reduce cracking and deformation of molds and sintered bodies during heating without increasing costs, and to prevent a decrease in product yield.

【0006】[0006]

【課題を解決するための手段】本発明は、前記問題点を
解決するために、鉄系粉末を成形型に振動充填し、成形
型と共に加熱して焼結し、ついで銅系溶浸材を溶浸させ
て粉末冶金製品とする製造方法において、成形型の側面
と鉄系粉末充填層側面との間に変形吸収材を用いた緩和
域を介装したことを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention vibrates and fills iron-based powder into a mold, heats and sinters it together with the mold, and then injects copper-based infiltration material into the mold. The method for producing a powder metallurgy product by infiltration is characterized in that a relaxation zone using a deformation absorbing material is interposed between the side surface of the mold and the side surface of the iron-based powder packed bed.

【0007】[0007]

【作用】本発明は上記構成により鉄系粉末を成形型に充
填した成形体の変形や割れを防止するものである。本発
明において使用される鉄系原料粉末は、基本的に制限を
受けない。ただし、後述する効果をより有効にするには
、加熱による膨張及び焼結収縮が充填成形体基準で±3
.0%以内の低膨張、低収縮の原料粉末が望ましい。 なぜなら、前述した問題点が主に発生するのは上記粉末
の特性域であるからである。充填成形体基準で±3.0
%以内の低収縮、低膨張の原料粉末とするには、粒度構
成や粒形等の選択を行えばよい。粉状潤滑剤や黒鉛粉の
添加混合も可能である。
[Function] The present invention prevents deformation and cracking of a molded product obtained by filling a mold with iron-based powder using the above-described structure. The iron-based raw material powder used in the present invention is basically not subject to any limitations. However, in order to make the effects described later more effective, the expansion due to heating and the sintering contraction must be ±3 based on the standard of the filled compact.
.. A raw material powder with low expansion and contraction within 0% is desirable. This is because the above-mentioned problems mainly occur in the characteristic range of the powder. ±3.0 based on filled molded body
In order to obtain a raw material powder with low shrinkage and low expansion within %, the particle size structure, particle shape, etc. may be selected. It is also possible to add and mix powdered lubricants and graphite powder.

【0008】上記鉄系粉末を予め用意された成形型に充
填する。成形型は粉末と著しい反応を起さず成形型の転
写を損なわないものであればよい。通常、セラミックス
型を用いる。成形型の形状は焼結処理後、焼結体がその
ままの形状で、あるいは著しい加工を施さずに金型など
として機能できる形状とする。その製作方法は機械加工
によってもよいし、精密鋳造で用いられるセラミックス
型の製造方法によってもよく、要は転写面の粗さが小さ
く、かつ強度的に優れたものであればいかなる製法によ
ってもよい。
[0008] The above iron-based powder is filled into a mold prepared in advance. The mold may be any mold as long as it does not cause a significant reaction with the powder and does not impair the transfer of the mold. Usually, a ceramic mold is used. The shape of the mold is such that the sintered body can function as a mold or the like after the sintering process, either as it is or without significant processing. The production method may be by machining, or by the production method of ceramic molds used in precision casting.In short, any production method may be used as long as the roughness of the transfer surface is small and the material is strong. .

【0009】原料粉の充填に先立ちセラミック成形型側
面に緩和域をそれぞれ設ける。一般に耐熱性であるセラ
ミック型は鉄の熱膨張・焼結収縮に比較し膨張収縮が小
さいため、鉄系粉末を充填したセラミック型においては
鉄系粉末充填層とセラミック型との寸法差が生じて変形
や割れ等の種々の不具合が発生しやすい。形状が大型化
した際には差の絶対値量が増大するためのセラミックや
鉄系粉末充填層に生じる応力は増大し、問題点がより顕
在化する。緩和域はこれら鉄系粉末の膨張・収縮により
生じる成形型への応力を緩和し、加熱時の成形型の割れ
や変形及び焼結体の割れを防止する効果をもたらす。
Prior to filling the raw material powder, relaxation zones are provided on the sides of the ceramic mold. Generally, heat-resistant ceramic molds have smaller expansion and contraction than iron's thermal expansion and sintering contraction, so in ceramic molds filled with iron-based powder, there is a dimensional difference between the iron-based powder filled layer and the ceramic mold. Various defects such as deformation and cracking are likely to occur. When the shape becomes larger, the stress generated in the ceramic or iron-based powder filling layer increases because the absolute value of the difference increases, and the problem becomes more obvious. The relaxation zone relieves stress on the mold caused by expansion and contraction of these iron-based powders, and has the effect of preventing cracking or deformation of the mold and cracking of the sintered body during heating.

【0010】図1にキャビティ型のセラミック型1を示
した。(a)は縦断面図、(b)は平面図である。鉄系
粉末の充填層2には緩和域3、4が設けられている。図
1に示す緩和域3は鉄粉が膨張した際に生じる成形型へ
の応力を緩和し成形型の変形や割れを防止する。一方緩
和域4は収縮により鉄系粉末に生じる応力を緩和し焼結
体に生じる割れや変形を抑制する。緩和材は、成形体の
保形効果が生じる温度T1 まで緩和域を保持しつつ、
粉末の膨張・収縮力を緩和材自身が吸収する能力をもつ
材料であればよい。温度T1 以上で自己燃焼するもの
でもよい。例えば、耐熱性のセラミックファイバーボー
ド(例えばカオウール(イソライト工業製))でもよく
、自己燃焼するものとしては、紙等が有効である。後述
する焼結溶浸時の際に焼結体との過度の反応を起こさな
いもの、又は、発生ガス等による粗大ポア等のような、
製品としての使用上明白な欠陥を生じさせないものであ
ればよい。温度T1 は用いる鉄系粉末の種類により異
なるが、通常600℃程度である。これらの材料を成形
型製作後成形型側面に貼付けることにより緩和域とする
ことができるが、成形型製造時に緩和域を一体化して製
造する方法をとることももちろん可能である。緩和材の
厚みtは用いるセラミック成形型の高温強度・熱膨張率
・セラミック焼結収縮等の物性値また鉄系粉末の組成、
その充填層の密度等さらには転写すべき形状等に大きく
依存するため一概には限定できないが厚さtを求めるひ
とつの方法として以下の関係を満たす範囲が望ましい。
FIG. 1 shows a cavity type ceramic mold 1. As shown in FIG. (a) is a longitudinal sectional view, and (b) is a plan view. Relaxation zones 3 and 4 are provided in the packed bed 2 of iron-based powder. The relaxation zone 3 shown in FIG. 1 relieves the stress on the mold that occurs when the iron powder expands, thereby preventing deformation and cracking of the mold. On the other hand, the relaxation zone 4 relieves the stress generated in the iron-based powder due to contraction, thereby suppressing cracks and deformation occurring in the sintered body. The relaxation material maintains the relaxation region up to the temperature T1 at which the shape retention effect of the molded body occurs, and
Any material may be used as long as the relaxation material itself has the ability to absorb the expansion/contraction force of the powder. It may be one that self-combusts at a temperature T1 or higher. For example, a heat-resistant ceramic fiberboard (for example, Kao Wool (manufactured by Isolite Industries)) may be used, and paper or the like is effective as a self-combusting material. Those that do not cause excessive reaction with the sintered body during sintering infiltration, which will be described later, or those that have coarse pores due to generated gas, etc.
Any material that does not cause obvious defects in use as a product may be used. The temperature T1 varies depending on the type of iron-based powder used, but is usually about 600°C. Although these materials can be attached to the side surface of the mold after the mold is manufactured to form the relaxation region, it is of course also possible to manufacture the relaxation region by integrating the material at the time of manufacturing the mold. The thickness t of the relaxation material depends on the physical properties of the ceramic mold used, such as high-temperature strength, coefficient of thermal expansion, ceramic sintering shrinkage, and the composition of the iron-based powder.
Although it cannot be determined unconditionally because it largely depends on the density of the filling layer and the shape to be transferred, one method for determining the thickness t is preferably a range that satisfies the following relationship.

【0011】   t≦{(L1 ×ΔL1 /100)−(L2 ×
ΔL2 /100)}ただし、L1 :充填域寸法(長
辺) L2 :セラミック型内寸法(長辺) ΔL1 :鉄系充填層のT1 −T2 間での熱膨張率
(%)ΔL2 :セラミックのT1 −T2 間での熱
膨張率(%)T2 :焼結溶浸時の温度 セラミックファイバーボード等のように焼結後も残留す
る緩和材を使用した場合、厚さtの上限は、鉄系粉末の
保形性が出てくる温度から焼結溶浸時までの温度範囲で
の鉄系充填層とセラミックスの熱膨張差程度であれば十
分である。
t≦{(L1×ΔL1/100)−(L2×
ΔL2 /100)} However, L1: Dimensions of the filling area (long side) L2: Dimensions inside the ceramic mold (long side) ΔL1: Coefficient of thermal expansion between T1 and T2 of the iron-based filled layer (%) ΔL2: T1 of the ceramic -T2 Coefficient of thermal expansion (%) T2: Temperature during sintering and infiltration When using a relaxing material that remains after sintering, such as ceramic fiberboard, the upper limit of the thickness t is It is sufficient that the difference in thermal expansion between the iron-based packed layer and the ceramic is within the temperature range from the temperature at which shape retention is achieved to the time of sintering and infiltration.

【0012】充填は乾式で行い、振動を加えることによ
り充填密度を向上させることができる。振動の方法は電
磁振動、機械振動等いかなる方法によってもよい。また
、振動中に従来の加圧成形方法よりも極めて低い圧力を
施すことにより、より充填性を向上することができる。 この圧力は通常1kg/cm2 以下でよく、加圧によ
り充填性を向上させるだけでなく、成形型のエッジ部分
の転写性が向上するという利点がある。このような充填
方法を用いることにより、大型形状品の成形が通常の粉
末冶金で使用する高価なプレス機を用いずに、安価にし
かも容易にできるため、1m×1mにもおよぶ射出成形
用金型の製造などには非常に適している。
[0012] Filling is carried out in a dry manner, and the packing density can be improved by adding vibration. The method of vibration may be any method such as electromagnetic vibration or mechanical vibration. Further, by applying extremely lower pressure during vibration than in conventional pressure molding methods, filling properties can be further improved. This pressure may normally be 1 kg/cm2 or less, and the pressure not only improves the filling property but also has the advantage of improving the transferability of the edge portion of the mold. By using such a filling method, large-sized products can be formed inexpensively and easily without using expensive presses used in normal powder metallurgy, so injection molding molds as large as 1 m x 1 m can be formed. It is very suitable for mold manufacturing.

【0013】次に、粉末が充填された成形型を炉に装入
して加熱し、焼結を行う。加熱・焼結は還元性雰囲気、
不活性雰囲気、または真空で行い焼結後は型ばらしをす
る。得られた焼結体は、それだけでは金型としての強度
が不十分であるため、焼結体に残留する空孔を例えばF
e:3.9%,Mn:2.8%,Zn:2.0%,Al
:0.06%,、Si:0.6%,Cu:残部(商品名
:FIPA−3(福田金属箔粉製))やFe:4.3%
,Cr:4.9%,Zn:2%,Cu:残部からなる銅
系溶浸材で溶浸して強度を増大させる。溶浸は還元性雰
囲気、不活性雰囲気または真空で行うことが可能である
Next, the mold filled with powder is placed in a furnace and heated to perform sintering. Heating and sintering in a reducing atmosphere,
Sintering is performed in an inert atmosphere or in a vacuum, and the mold is removed after sintering. The obtained sintered body alone does not have sufficient strength as a mold, so the pores remaining in the sintered body are removed by, for example, F.
e: 3.9%, Mn: 2.8%, Zn: 2.0%, Al
: 0.06%, Si: 0.6%, Cu: balance (product name: FIPA-3 (manufactured by Fukuda Metal Foil Powder)) and Fe: 4.3%
, Cr: 4.9%, Zn: 2%, and Cu: the balance is infiltrated to increase the strength. Infiltration can be carried out in a reducing atmosphere, inert atmosphere or vacuum.

【0014】なお、焼結と溶浸の工程を1工程、すなわ
ち1ヒートサイクルで行っても、得られる効果に変わり
はない。1工程にすることにより、製造工程を短縮でき
るという利点がある。以上のように本発明により、特殊
な設備を用いず従来の一般的な雰囲気炉や真空炉を用い
ることによりコスト上昇もなく、割れや変形の問題を解
決し、鉄系粉末を用いた大型焼結部材を安定して製造す
る技術を提供することができる。
Note that even if the sintering and infiltration steps are performed in one step, that is, in one heat cycle, the effect obtained remains the same. By using one step, there is an advantage that the manufacturing process can be shortened. As described above, the present invention solves the problems of cracking and deformation without increasing costs by using conventional general atmosphere furnaces and vacuum furnaces without using special equipment, and enables large-scale firing using iron-based powder. A technique for stably manufacturing a connecting member can be provided.

【0015】[0015]

【実施例】以下に実施例について述べる。鉄系粉末とし
て平均粒径490μm(粒度範囲250μm〜1000
μm)のアトマイズ純鉄粉を48重量%、平均粒径66
μm(粒度範囲15〜150μm)のアトマイズ純鉄粉
を40重量%、平均粒径4.8μm(粒度範囲10μm
以下)のカーボニル鉄粉を12重量%をV型混合機で混
合して粒度構成を調整した混合粉を用いた。混合粉の充
填率は75%で、充填層基準での焼結・溶浸後の寸法収
縮は1.0%であった。
[Example] Examples will be described below. As iron-based powder, the average particle size is 490 μm (particle size range 250 μm to 1000 μm).
48% by weight of atomized pure iron powder (μm), average particle size 66
40% by weight of atomized pure iron powder of μm (particle size range 15 to 150 μm), average particle size 4.8 μm (particle size range 10 μm)
A mixed powder was used in which 12% by weight of carbonyl iron powder (below) was mixed in a V-type mixer to adjust the particle size structure. The filling rate of the mixed powder was 75%, and the dimensional shrinkage after sintering and infiltration was 1.0% based on the packed bed.

【0016】充填用の成形型は木型から転写したシリコ
ンゴムをさらにセラミックスラリーにより転写する精密
鋳造用鋳型の製造を使用する方法により製造した。成形
型の構造は通常よく用いられるバックアップタイプのも
のを製作した。バックアップ材はムライト及びシャモッ
トの粒度構成を施した鋳型材を水ガラスにて混合・成形
後CO2 にて固化したものを用いた。成形型はキャビ
ティとコアタイプの2種類を製作した。成形型の形状は
外寸1300mm(縦)×900mm(横)×550m
m(高)で充填部が1100mm(縦)600mm(横
)×260mmである。キャビティ型の側面、コア型の
側面に8mmのセラミックファイバーボード(製品名カ
オウール(イソライト工業製))を張り付け緩和域とし
た。比較材としてセラミックファイバーボードを張り付
けない成形型をそれぞれ用意した。
[0016] A mold for filling was manufactured by a method using a precision casting mold manufacturing method in which silicone rubber transferred from a wooden mold was further transferred using a ceramic slurry. The structure of the mold was a commonly used backup type. The backup material used was a molding material with a particle size structure of mullite and chamotte mixed with water glass, molded, and solidified with CO2. Two types of molds were manufactured: a cavity type and a core type. The shape of the mold is external dimensions 1300mm (vertical) x 900mm (horizontal) x 550m.
m (height) and the filled part is 1100 mm (vertical) 600 mm (horizontal) x 260 mm. An 8 mm ceramic fiber board (product name: Kao Wool (manufactured by Isolite Industries)) was attached to the sides of the cavity mold and the core mold to form a relaxation area. As comparison materials, molds without ceramic fiberboard attached were prepared.

【0017】これら成形型に前記の混合鉄粉を振動充填
し、充填層の上部にCu溶浸材(Cu−Mn−Fe系)
をのせ、セラミック成形型と一緒に炉に装入して窒素ガ
ス雰囲気中で鉄系充填層の温度1010℃で70分間加
熱し、充填層を焼結させた後、5時間かけて1130℃
に昇温し、溶浸材を溶かして溶浸を進行させた。113
0℃における保持時間は100分間とし、その後炉冷却
を行った。
These molds were filled with the above-mentioned mixed iron powder by vibration, and a Cu infiltration material (Cu-Mn-Fe system) was placed on the top of the packed bed.
was placed in a furnace together with a ceramic mold and heated in a nitrogen gas atmosphere at a temperature of 1010°C for 70 minutes to sinter the packed bed, and then heated to 1130°C over 5 hours.
The temperature was raised to melt the infiltrant material and infiltration proceeded. 113
The holding time at 0°C was 100 minutes, and then the furnace was cooled.

【0018】冷却後、セラミック型から取り外す前のセ
ラミック型の割れ・変形と取り外した後の溶浸された焼
結体の割れ・変形について目視観察を行った。表1に割
れと変形についてまとめた。これから、緩和域を設ける
ことにより割れ・変形のない大型焼結部材が得られるこ
とがわかった。なお前記実施例では緩和材としてセラミ
ックファイバーボードを用いた場合について説明したが
、本発明はこれに限るものではなく、緩和域の変形吸収
材として紙や中空セラミックファイバー板等でも得られ
る効果は同じである。
After cooling, cracks and deformation of the ceramic mold before it was removed from the ceramic mold and cracks and deformation of the infiltrated sintered body after it was removed were visually observed. Table 1 summarizes cracking and deformation. From this, it was found that by providing a relaxation zone, a large sintered member without cracking or deformation could be obtained. In the above embodiment, a case was explained in which a ceramic fiber board was used as the relaxation material, but the present invention is not limited to this, and the same effect can be obtained by using paper, hollow ceramic fiber board, etc. as the deformation absorbing material in the relaxation area. It is.

【0019】[0019]

【表1】[Table 1]

【0020】[0020]

【発明の効果】本発明は、焼結時の膨張・収縮による応
力を緩和する緩和域を鋳型側面と鉄粉充填層間に設ける
ことによる割れや変形を防止し、割れ・変形による製品
歩留りの低下の防止が可能となった。また、特殊な設備
を用いず従来の一般的な雰囲気炉や真空炉を用いること
により低コストの大型焼結部材の安定製造を可能とした
[Effects of the Invention] The present invention prevents cracking and deformation by providing a relaxation zone between the mold side surface and the iron powder filled layer to relieve stress caused by expansion and contraction during sintering, and reduces product yield due to cracking and deformation. It has become possible to prevent In addition, by using conventional general atmosphere furnaces and vacuum furnaces without using special equipment, it has become possible to stably manufacture large sintered parts at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例の成形型を示し、キャビティ型の(a)
縦断面図、(b)平面図である。
FIG. 1 shows the mold of the example, and (a) of the cavity mold.
They are a vertical sectional view and (b) a plan view.

【図2】他の実施例のコア型の成形型の縦断面図である
FIG. 2 is a longitudinal cross-sectional view of a core mold of another embodiment.

【符号の説明】[Explanation of symbols]

1  成形型 2  充填層 3、4、5  緩和域 1 Molding mold 2 Filled bed 3, 4, 5 Relaxation area

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  鉄系粉末を成形型に振動充填し、成形
型と共に加熱して焼結し、ついで銅系溶浸材を溶浸させ
て粉末冶金製品とする製造方法において、成形型の側面
と鉄系粉末充填層の側面との間に変形吸収材を用いた緩
和域を介装したことを特徴とする鉄系大型焼結部材の製
造方法。
Claim 1: In a manufacturing method for producing a powder metallurgy product by vibratingly filling a mold with iron-based powder, heating and sintering it together with the mold, and then infiltrating it with a copper-based infiltrant, the side surface of the mold is A method for manufacturing a large iron-based sintered member, characterized in that a relaxation region using a deformation absorbing material is interposed between the side surface of the iron-based powder-filled bed and the side surface of the iron-based powder packed bed.
JP8817191A 1991-04-19 1991-04-19 Production of iron-based large-sized sintered member Pending JPH04323305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8817191A JPH04323305A (en) 1991-04-19 1991-04-19 Production of iron-based large-sized sintered member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8817191A JPH04323305A (en) 1991-04-19 1991-04-19 Production of iron-based large-sized sintered member

Publications (1)

Publication Number Publication Date
JPH04323305A true JPH04323305A (en) 1992-11-12

Family

ID=13935473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8817191A Pending JPH04323305A (en) 1991-04-19 1991-04-19 Production of iron-based large-sized sintered member

Country Status (1)

Country Link
JP (1) JPH04323305A (en)

Similar Documents

Publication Publication Date Title
US11904391B2 (en) Additive manufacturing of articles comprising beryllium
US4499048A (en) Method of consolidating a metallic body
US5770136A (en) Method for consolidating powdered materials to near net shape and full density
JPH0130882B2 (en)
CA2496382A1 (en) Casting process and articles for performing the same
JP3497461B2 (en) Method for producing porous metal
US4501718A (en) Method of consolidating a metallic or ceramic body
US6209847B1 (en) Mechanical locking/constrainment of an active layer on a solid support
CN109822077B (en) SiC prepared by extrusion infiltration method3DMethod for preparing/Al composite material
JPS5935870B2 (en) Silicon nitride object manufacturing method
JPH04323305A (en) Production of iron-based large-sized sintered member
JP5117085B2 (en) Metal-ceramic composite material and manufacturing method thereof
JPH0561018B2 (en)
US5623727A (en) Method for manufacturing powder metallurgical tooling
GB2140825A (en) Method of consolidating a metallic or ceramic body
KR100453518B1 (en) Method for fabrication of si-al alloy structural material
KR102541042B1 (en) Die casting using sintered material and die casting product manufactured therefrom
JPH0432527A (en) Manufacture of foamed body of ti-al series intermetallic compound and product thereby
JP2005081426A (en) Method for casting aluminum alloy casting
RU2265499C2 (en) Method for making sintered uniform-density articles
JPH02254132A (en) Manufacture of iron porous body used for reinforcing metallic parts for pressure casting of aluminum or the like
JP3830802B2 (en) Sintered product manufacturing method and sintered product
JPH0317204A (en) Manufacture of powder metallurgical product
JPH04337008A (en) Iron powder combined sintered member and production thereof
JPH05209204A (en) Production of iron-based sintered member

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000328