JP3830802B2 - Sintered product manufacturing method and sintered product - Google Patents

Sintered product manufacturing method and sintered product Download PDF

Info

Publication number
JP3830802B2
JP3830802B2 JP2001325492A JP2001325492A JP3830802B2 JP 3830802 B2 JP3830802 B2 JP 3830802B2 JP 2001325492 A JP2001325492 A JP 2001325492A JP 2001325492 A JP2001325492 A JP 2001325492A JP 3830802 B2 JP3830802 B2 JP 3830802B2
Authority
JP
Japan
Prior art keywords
sintered product
powder
brazing
sintering
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001325492A
Other languages
Japanese (ja)
Other versions
JP2003129110A (en
Inventor
清勝 津野
勝彦 矢野
Original Assignee
三菱マテリアルPmg株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアルPmg株式会社 filed Critical 三菱マテリアルPmg株式会社
Priority to JP2001325492A priority Critical patent/JP3830802B2/en
Publication of JP2003129110A publication Critical patent/JP2003129110A/en
Application granted granted Critical
Publication of JP3830802B2 publication Critical patent/JP3830802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ろう付けに適した焼結品の製造方法および焼結品に関する。
【0002】
【従来の技術】
粉末を圧縮成形した圧粉体の焼結により製造される焼結品は、複数の粉末成形品同士あるいは溶製材を組み合わせて接合することにより、複雑な形状の部品や、部分的に異なる材料により形成された部品、複数の機能(歯車、カム、レバー等)を一体に備えた部品などの製造が可能である。このような焼結品を形成する接合技術のひとつとして、ろう付けが採用されている。
【0003】
ろう付け時に部材同士を接合させるろう材としては、ニッケルろう等が多く用いられているが、より安価である銅をろう材として用いてコストダウンを図ることが求められている。ところが、銅はニッケルに比べて表面張力が小さくぬれ性に優れ、接合部のオープンポア(表面に通じている気孔)から粉末成形品内部にしみ込みやすい。ろう材が接合部に浸透することは接合強度の上昇につながるが、図7に示すように、ろう材100が銅の場合はその多くが粉末成形品101内部に吸収されてしまい、接合部に残留しないため、部材同士を接合することが難しい。
【0004】
【発明が解決しようとする課題】
銅ろう材を用いてのろう付けを可能にするために、粉末成形品の封孔処理、高密度化等の技術により、溶融された銅ろう材を接合部に残留させることが検討されている。しかしながら銅溶浸による封孔処理は、粉末成形品全体のオープンポアを埋めなければ銅ろう材の吸収を防ぐことが困難であるため、原料費が増大するという問題がある。また、水蒸気処理や樹脂含浸のような封孔処理は、工程の増加により生産コストが増大するという問題がある。
【0005】
一方、気孔が少ない高密度の圧粉体を製造する高加圧成形は、加圧能力が大きな成形プレスが必要であり、また金型破損のおそれも大きく、製造コストが高くなるという問題がある。また、焼結温度を高くして液相焼結による気孔のクローズドポア(表面に通じていない気孔)化も可能ではあるが、処理量が少なく設備費がかかるためコストが増大するだけでなく、高温で焼結し、冷却時間が長くなると結晶粒が大きくなり、焼結品の強度が低下するという問題がある。
【0006】
本発明は、このような問題点に鑑みてなされたもので、銅をろう材として確実なろう付けが可能な焼結品を、高加圧成形や高温での焼結によらず、低コストで得ることを目的とする。
【0007】
【課題を解決するための手段】
記課題を解決するために、請求項1の発明に係る焼結品の製造方法は、Fe粉末とFe−P合金粉末との混合粉末を、圧縮成形して圧粉体を形成し、該圧粉体を、Fe−P合金の溶融点を超えFeの溶融点より低い焼結温度で、Fe粉末部分を溶融させずに、Fe−P合金粉末部分を溶融させて前記Fe粉末部分の空隙部に浸透させて焼結し、密度7.2〜7.5g/cm 、有効多孔率2%以下のろう付け用の焼結品を得ることを特徴としている。
この発明の製造方法によれば、焼結温度よりも溶融点が低い(1050℃)Fe−P合金粉末部分は溶融し、焼結温度よりも溶融点が高い(1539.6℃)Fe粉末部分は溶融しないので、液相が部分的に生じ、強度を保持しつつ、有効多孔率の低い焼結品を、高加圧成形や高温焼結によらず、低コストで製造することができる。このようにして得られた焼結品は、オープンポアが少ないため、ろう材として用いたCuを過剰に吸収することなく、Cuのろう付けによる接合が可能となる。
【0008】
請求項2の発明に係る焼結品の製造方法は、請求項1の焼結品の製造方法において、Fe−P合金粉末が、5〜15重量%のPを含有することを特徴としている。
この発明によれば、Fe−P合金が、Feの溶融点を下げるのにもっとも効果的な比率でPを含有することにより、低い溶融点温度(1050℃)となるので、Fe粉末部分とFe−P合金粉末部分の溶融点の差が大きく、確実に液相焼結を行うことができ、オープンポアが少なくろう付けに適した焼結品を製造することが可能となる。
【0009】
請求項3の発明に係る焼結品の製造方法は、請求項1または2の焼結品の製造方法において、混合粉末が、0.2〜0.8重量%のPを含有することを特徴としている。
この発明によれば、焼結品全体に対するPの重量%を低く抑えているので、焼結品の形状を保って焼結処理を行うことができ、形状精度の優れた焼結品を製造することが可能となる。
【0010】
請求項4の発明に係る焼結品の製造方法は、請求項1から3の焼結品の製造方法において、焼結品が、焼結温度が1100〜1150℃の状態で10分間以上保持されることを特徴としている。
この発明によれば、圧粉体全体を所定温度で一定時間保持することにより、オープンポアが少なくCuろう付けに適した焼結品を、確実に製造することができる。
【0011】
請求項5の発明に係る焼結品は、Fe粉末とFe−P合金粉末との混合粉末から形成された密度7.2〜7.5g/cm 、有効多孔率2%以下の焼結品であって、前記Fe粉末の粒子が互いに結合して形成されたFe部と、溶融して前記Fe粉末の粒子間の空隙部に浸透した後冷却されて前記空隙部において固化したFe−P合金部とを有し、ろう付けに用いられることを特徴としている。
この発明によれば、通常の密度の焼結品でありながら、オープンポアが少なくて有効多孔率が低いので、ろう付けにおいてCuをろう材として用いてもCuが過剰に吸収されない、Cuろう材によるろう付けが可能な焼結品が実現される。
【0012】
【発明の実施の形態】
以下、本発明の実施形態について、図を参照して説明する。
図1は、本発明による焼結品10と、溶製材からなるパイプ20とを、ろう付けにより接合してなる機械部品30を示す断面図である。焼結品10はFe−P合金からなる密度約7.3g/cm 、有効多孔率約1.0%のリング状部材であり、この焼結品10と、純Cu粉末の圧粉体からなるリング状のろう材Wとがパイプ20に嵌められた状態で加熱されることにより、パイプ20と焼結品10とが接合されている。
【0013】
ここで焼結品10の製造方法について説明する。
まず、図2に示すように、Fe粉末、Fe−5〜15%P合金粉末および潤滑剤を混合機Mにより混合し、Pを0.6質量%含む鉄系の混合粉末mを製造する。Pは、Feの溶融点を低下させるための成分である。つぎに、図3に示すように、この混合粉末mを成形プレスFにより所定形状に圧縮成形し、圧粉体11を形成する。この圧粉体11は、図5(a)に示すように、溶融点が1539.6℃であるFe粉末中に、Pにより溶融点が下げられたFe−P合金粉末が点在した状態となっている。
【0014】
さらに、この圧粉体11を、図4に示すように、焼結炉SによりFe−5〜15P合金の溶融点1050℃を超えFeの溶融点1539.6℃より低い焼結温度1100〜1150℃で加熱し、Fe−5〜15%P合金粉末部分を溶融させる液相焼結を行う。このような温度で処理することにより、圧粉体11においては、図5(b)に示すように、Fe−5〜15%P合金粉末が溶融してFe粉末の粒子間の空隙部10bに浸透し、連結孔やオープンポア等の気孔を埋めて固化してFe−P合金部10cが形成される一方で、Fe粉末部分が拡散接合により形状を保ったまま焼結されてFe部10aが形成される(図5(c))。
【0015】
このようにして得られた焼結品10は、密度は焼結前後で大きく変わることはなく約7.3g/cm であって、有効多孔率約1.0%となる。なお、この焼結品10は液相焼結により寸法精度が低下するため、焼結後にさらにサイジング等の再圧縮を行うことが好ましい。
【0016】
なお、焼結時間は、圧粉体11(焼結品10)の焼結温度が1100〜1150℃の状態で10分間以上保持すると、全体を均一に焼結させることができる。たとえば圧粉体11の大きさがφ20である場合、20〜30分程度となる。焼結炉Sは、図では汎用性の高い連続式の焼結炉を用いているが、密閉炉を用いれば、処理量は少なくなるが焼結温度、焼結時間の設定を容易に変更することができる。
【0017】
以上のように形成された本実施形態の焼結品10と、従来の焼結品との比較を、有効多孔率と密度の関係を表す図6に示す。
図中、●で示す点A〜点Fは、Fe粉末の加圧成形における圧力を異ならせることにより、密度を異ならせて成形したものであり、ぬれ性の悪いNiをろう材としたろう付けは可能である。この図からわかるように、成形時の圧力を大きくするほど、焼結品の密度を高めることができる。しかし、これらの焼結品に対してろう材にCuを用いたろう付けを行ったところ、ろう材が焼結品のオープンポアに吸収されて図7に示すような状態となり、接合させることはできなかった。なお、これ以上の高密度品を製造する圧力を与えるのは、通常の成形プレスの場合、現実的ではない。
【0018】
点Gは、通常の成形プレスで加圧成形した点Fの焼結品に対し、焼結後に銅溶浸を行った焼結品の密度を示している。銅溶浸によって密度を高めることはできたものの、有効多孔率に大きな変化はなく、気孔(オープンポア)を完全に埋めることは難しい。さらに気孔を埋めているのがろう材と同じCuであるため、ろう材にCuを用いたろう付けを行うと、銅溶浸のCuが溶融することによりオープンポアが再度生じて、ろう材が焼結品に吸収されてしまい、図7に示すような状態となって接合させることはできなかった。
【0019】
一方、点H(○)で示す本実施形態の焼結品10は、密度は格別高くはないが、有効多孔率が低い。この焼結品10は、銅溶浸とは異なり、Fe−P合金部10cが気孔を塞いでいるため、ろう材にCuを用いたろう付けを行っても、ろう材が焼結品10に吸収されず、図1に示すような状態となり確実な接合を行うことができた。さらに、この焼結品10は、機械加工のように表面の目つぶしにより封孔するものとは異なりオープンポアが残っているため、このオープンポアに適量のろう材が吸収され、接合が強固なものとなっている。
【0020】
このように、上述した製造方法により、部分的に生じた液相によりオープンポアが少なくなっているので、ろう材に用いたCuが過剰に吸収されることなく相手部材に接し、Cuによるろう付けが可能な焼結品10を得ることができる。
【0021】
なお、前記実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の趣旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
【0022】
【発明の効果】
以上説明したように、請求項1の発明に係る焼結品の製造方法によれば、焼結温度よりも溶融点が低い(1050℃)Fe−P合金粉末部分は溶融し、焼結温度よりも溶融点が高い(1539.6℃)Fe粉末部分は溶融しないので、液相が部分的に生じ、強度を保持しつつ、有効多孔率の低い焼結品を、高加圧成形や高温焼結によらず、低コストで製造することができる。このようにして得られた焼結品は、オープンポアが少ないため、ろう材として用いたCuを過剰に吸収することなく、Cuのろう付けによる接合が可能となる。
したがって、高加圧成形や高温焼結を行わなくても、原料費のCuを用いるろう付けが可能な焼結品を、低コストで製造することができるので、ろう付けの原料費が低減され、焼結品をろう付けされた部品の製造コスト低減が実現される。
【0023】
請求項2の発明に係る焼結品の製造方法によれば、Fe−P合金がFeの溶融点を下げるのにもっとも効果的な比率でPを含有し、低い溶融点温度(1050℃)となるので、Fe粉末部分とFe−P合金粉末部分の溶融点の差が大きく、確実に液相焼結を行うことができ、オープンポアが少なくろう付けに適した焼結品を製造することが可能となる。
【0024】
請求項3の発明に係る焼結品の製造方法によれば、焼結品全体に対するPの重量%を低く抑えているので、焼結品の形状を保って焼結処理を行うことができ、形状精度の優れた焼結品を製造することが可能となる。
【0025】
請求項4の発明に係る焼結品の製造方法によれば、圧粉体全体を所定温度で一定時間保持することにより、オープンポアが少なくCuろう付けに適した焼結品を、確実に製造することができる。
【0026】
請求項5の発明に係る焼結品によれば、通常の密度の焼結品でありながら、オープンポアが少なくて有効多孔率が低いので、ろう付けにおいてCuをろう材として用いてもCuが過剰に吸収されない、Cuろう材によるろう付けが可能な焼結品が実現される。
したがって、焼結品において原料費の安いCuを用いたろう付けが可能となり、焼結品をろう付けした部品の製造コスト低減が実現される。
【図面の簡単な説明】
【図1】 本発明による焼結品をろう付けして形成された部品を示す断面図である。
【図2】 本発明の焼結品を製造する際の、混合粉末の製造工程を示す概念図である。
【図3】 本発明の焼結品を製造する際の、圧粉体の製造工程を示す概念図である。
【図4】 本発明の焼結品を製造する際の、焼結工程を示す概念図である。
【図5】 本発明の焼結品の製造における混合粉末の焼結状態を示す図である。
【図6】 焼結品の有効多孔率と密度との関係を表し、本発明の焼結品と従来の焼結品とを比較する図である。
【図7】 従来の焼結品に対するCuをろう材としたろう付けによる各部材の状態を示す断面図である。
【符号の説明】
10 焼結品
10a Fe部
10b 空隙部
10c Fe−P合金部
11 圧粉体
20 パイプ
30 部品
m 混合粉末
F 成形プレス
M 混合機
S 焼結炉
W ろう材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a sintered product suitable for brazing and a sintered product.
[0002]
[Prior art]
Sintered products manufactured by sintering green compacts that are compression-molded powders can be made by combining multiple powder molded products or a combination of melted materials, resulting in complex shaped parts or partially different materials. It is possible to manufacture formed parts and parts integrally provided with a plurality of functions (gears, cams, levers, etc.). Brazing is employed as one of the joining techniques for forming such a sintered product.
[0003]
As a brazing material for joining members at the time of brazing, nickel brazing or the like is often used. However, it is required to reduce the cost by using less expensive copper as a brazing material. However, copper has a small surface tension and excellent wettability compared to nickel, and easily penetrates into the powder molded product from the open pores (pores communicating with the surface) of the joint. The penetration of the brazing material into the joining portion leads to an increase in joining strength . However, as shown in FIG. 7 , when the brazing material 100 is copper, most of it is absorbed into the powder molded product 101, and the joining portion has Since it does not remain, it is difficult to join the members.
[0004]
[Problems to be solved by the invention]
In order to enable brazing using a copper brazing material, it has been studied to leave the molten copper brazing material at the joint by techniques such as sealing processing of powder molded products and densification. . However, the sealing treatment by copper infiltration has a problem that the raw material cost increases because it is difficult to prevent the copper brazing material from being absorbed unless the open pores of the entire powder molded product are filled. Further, sealing treatment such as steam treatment or resin impregnation has a problem that production costs increase due to an increase in the number of steps.
[0005]
On the other hand, high-pressure molding for producing high-density green compacts with fewer pores requires a molding press with a large pressing capacity, and there is also a problem that the mold may be damaged, resulting in high manufacturing costs. . In addition, it is possible to make closed pores (pores that do not communicate with the surface) by liquid phase sintering by raising the sintering temperature, but not only the cost increases because the processing amount is small and equipment costs are increased, When the sintering is performed at a high temperature and the cooling time is prolonged, there is a problem that the crystal grains are increased and the strength of the sintered product is lowered.
[0006]
The present invention has been made in view of such problems, and a sintered product that can be reliably brazed using copper as a brazing material can be manufactured at low cost regardless of high pressure molding or high temperature sintering. The purpose is to get in.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a manufacturing method of a sintered product according to the invention of claim 1 is a method of compressing a mixed powder of Fe powder and Fe-P alloy powder to form a green compact, The powder is melted at a sintering temperature exceeding the melting point of the Fe-P alloy and lower than the melting point of Fe, without melting the Fe powder portion, and the void portion of the Fe powder portion is melted. and infiltrated sintering is characterized by obtaining a density 7.2~7.5 g / cm 3, the effective porosity of 2% or less sinter for brazing.
According to the production method of the present invention, the Fe—P alloy powder portion having a melting point lower than the sintering temperature (1050 ° C.) is melted and the melting point is higher than the sintering temperature (1539.6 ° C.). Therefore, a sintered product having a low effective porosity can be produced at low cost regardless of high pressure molding or high temperature sintering, while a liquid phase is partially generated and strength is maintained. Since the sintered product thus obtained has few open pores, it is possible to join by brazing Cu without excessively absorbing Cu used as a brazing material.
[0008]
The method for producing a sintered product according to the invention of claim 2 is characterized in that, in the method for producing a sintered product of claim 1, the Fe—P alloy powder contains 5 to 15 wt% of P.
According to the present invention, since the Fe-P alloy contains P in the most effective ratio for lowering the melting point of Fe, it has a low melting point temperature (1050 ° C.). The difference in melting point of the -P alloy powder part is large, liquid phase sintering can be performed reliably, and it becomes possible to produce a sintered product with few open pores and suitable for brazing.
[0009]
The method for producing a sintered product according to the invention of claim 3 is the method for producing a sintered product of claim 1 or 2, wherein the mixed powder contains 0.2 to 0.8% by weight of P. It is said.
According to this invention, since the weight percentage of P with respect to the entire sintered product is kept low, the sintered product can be sintered while maintaining the shape of the sintered product, and a sintered product with excellent shape accuracy is manufactured. It becomes possible.
[0010]
The method for manufacturing a sintered product according to claim 4 is the method for manufacturing a sintered product according to claims 1 to 3, wherein the sintered product is held for 10 minutes or more at a sintering temperature of 1100 to 1150 ° C. It is characterized by that.
According to the present invention, by holding the whole green compact at a predetermined temperature for a certain period of time, a sintered product with few open pores and suitable for Cu brazing can be reliably manufactured.
[0011]
The sintered product according to the invention of claim 5 is a sintered product having a density of 7.2 to 7.5 g / cm 3 and an effective porosity of 2% or less formed from a mixed powder of Fe powder and Fe—P alloy powder. Fe parts formed by bonding the Fe powder particles to each other, and Fe-P melted and penetrated into the gaps between the particles of the Fe powder and then cooled and solidified in the gaps have a alloy portion, and characterized in that it is used for brazing.
According to the present invention, although it is a sintered product having a normal density, Cu is not absorbed excessively even when Cu is used as a brazing material in brazing because Cu has a low open pore and a low effective porosity. A sintered product that can be brazed by is realized.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing a mechanical component 30 formed by joining a sintered product 10 according to the present invention and a pipe 20 made of a molten material by brazing. The sintered product 10 is a ring-shaped member made of an Fe—P alloy and having a density of about 7.3 g / cm 3 and an effective porosity of about 1.0%. The ring-shaped brazing material W made of is heated in a state of being fitted to the pipe 20, whereby the pipe 20 and the sintered product 10 are joined.
[0013]
Here, a method for manufacturing the sintered product 10 will be described.
First, as shown in FIG. 2, Fe powder, Fe-5-15% P alloy powder and a lubricant are mixed by a mixer M to produce an iron-based mixed powder m containing 0.6% by mass of P. P is a component for lowering the melting point of Fe. Next, as shown in FIG. 3, this mixed powder m is compression-molded into a predetermined shape by a molding press F to form a green compact 11. As shown in FIG. 5 (a), this green compact 11 is in a state where Fe—P alloy powders whose melting point has been lowered by P are scattered in Fe powder having a melting point of 1539.6 ° C. It has become.
[0014]
Further, as shown in FIG. 4, the green compact 11 is sintered in a sintering furnace S at a sintering temperature 1100 to 1150 which exceeds the melting point 1050 ° C. of the Fe-5-15P alloy and is lower than the melting point 1539.6 ° C. of Fe. Liquid phase sintering is performed by heating at 5 ° C. to melt the Fe-5 to 15% P alloy powder portion. By processing at such a temperature, in the green compact 11, as shown in FIG. 5 (b), the Fe-5-15% P alloy powder is melted and formed in the void 10 b between the Fe powder particles. The Fe-P alloy part 10c is formed by infiltrating and filling the pores such as connection holes and open pores to solidify, while the Fe powder part is sintered while maintaining its shape by diffusion bonding, and the Fe part 10a is formed. It is formed (FIG. 5C).
[0015]
The sintered product 10 thus obtained has a density of about 7.3 g / cm 3 without significantly changing before and after sintering, and has an effective porosity of about 1.0%. In addition, since the dimensional accuracy of the sintered product 10 is reduced by liquid phase sintering, it is preferable to perform recompression such as sizing after sintering.
[0016]
In addition, as for sintering time, if the sintering temperature of the green compact 11 (sintered product 10) is kept at 1100 to 1150 ° C. for 10 minutes or more, the whole can be sintered uniformly. For example, when the size of the green compact 11 is φ20, it is about 20 to 30 minutes. In the figure, the sintering furnace S uses a highly versatile continuous sintering furnace, but if a closed furnace is used, the processing amount is reduced, but the setting of the sintering temperature and the sintering time can be easily changed. be able to.
[0017]
A comparison between the sintered product 10 of the present embodiment formed as described above and a conventional sintered product is shown in FIG. 6 showing the relationship between effective porosity and density.
In the figure, points A to F indicated by ● are formed by varying the pressure in the pressure forming of Fe powder to form different densities, and brazing using Ni having poor wettability as a brazing material. Is possible. As can be seen from this figure, the density of the sintered product can be increased as the pressure during molding is increased. However, when brazing using Cu as a brazing material to these sintered products, the brazing material is absorbed by the open pores of the sintered product and becomes a state as shown in FIG. 7, and can be joined. There wasn't. In addition, it is not realistic to give the pressure which manufactures a high-density product beyond this in the case of a normal molding press.
[0018]
Point G indicates the density of a sintered product obtained by performing copper infiltration after sintering with respect to a sintered product of point F that has been pressure-molded by a normal molding press. Although the density could be increased by copper infiltration, there was no significant change in the effective porosity, and it was difficult to completely fill the pores (open pores). Further, since the same Cu as the brazing material fills the pores, when the brazing using Cu is performed on the brazing material, the copper infiltrated Cu melts to cause open pores again, and the brazing material is baked. It was absorbed by the product and could not be joined in the state shown in FIG.
[0019]
On the other hand, the sintered product 10 of the present embodiment indicated by the point H (◯) has a low effective porosity although the density is not particularly high. Unlike the copper infiltration, the sintered product 10 has pores closed by the Fe-P alloy portion 10c. Therefore, even when brazing using Cu as the brazing material, the brazing material is absorbed by the sintered product 10. Instead, the state shown in FIG. 1 was obtained, and reliable bonding could be performed. Furthermore, this sintered product 10 has open pores different from those sealed by crushing the surface as in machining, so that an appropriate amount of brazing material is absorbed into the open pores and the bonding is strong. It has become.
[0020]
Thus, since the open pores are reduced due to the partially generated liquid phase by the above-described manufacturing method, Cu used for the brazing material is in contact with the mating member without being excessively absorbed, and brazing with Cu Thus, a sintered product 10 that can be obtained can be obtained.
[0021]
The shapes, combinations, and the like of the constituent members shown in the embodiment are merely examples, and various modifications can be made based on design requirements and the like without departing from the spirit of the present invention.
[0022]
【The invention's effect】
As described above, according to the method for manufacturing a sintered product according to the first aspect of the present invention, the Fe—P alloy powder portion having a melting point lower than the sintering temperature (1050 ° C.) is melted and is lower than the sintering temperature. However, since the Fe powder portion having a high melting point (1539.6 ° C.) does not melt, a liquid phase is partially generated, and a sintered product having a low effective porosity while maintaining strength is formed by high pressure molding or high temperature sintering. Regardless of the result, it can be manufactured at low cost. Since the sintered product thus obtained has few open pores, it is possible to join by brazing Cu without excessively absorbing Cu used as a brazing material.
Therefore, a sintered product that can be brazed using Cu, which is the raw material cost, can be manufactured at low cost without performing high pressure molding or high temperature sintering, so that the raw material cost for brazing is reduced. The manufacturing cost of the parts brazed with the sintered product can be reduced.
[0023]
According to the method for manufacturing a sintered product according to the invention of claim 2, the Fe—P alloy contains P in a ratio most effective for lowering the melting point of Fe, and has a low melting point temperature (1050 ° C.). As a result, the difference in melting point between the Fe powder part and the Fe-P alloy powder part is large, liquid phase sintering can be performed reliably, and a sintered product suitable for brazing can be produced with less open pores. It becomes possible.
[0024]
According to the method for manufacturing a sintered product according to the invention of claim 3, since the weight percentage of P with respect to the entire sintered product is kept low, the sintering treatment can be performed while maintaining the shape of the sintered product, It becomes possible to manufacture a sintered product with excellent shape accuracy.
[0025]
According to the method for manufacturing a sintered product according to the invention of claim 4, a sintered product that has few open pores and is suitable for Cu brazing is reliably manufactured by holding the whole green compact at a predetermined temperature for a certain time. can do.
[0026]
According to the sintered product of the invention of claim 5, although it is a sintered product having a normal density, there are few open pores and the effective porosity is low. A sintered product that is not excessively absorbed and can be brazed with a Cu brazing material is realized.
Therefore, it is possible to braze using Cu, which has a low raw material cost, in the sintered product, thereby realizing a reduction in the manufacturing cost of the parts brazed with the sintered product.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a part formed by brazing a sintered product according to the present invention.
FIG. 2 is a conceptual diagram showing a mixed powder manufacturing process when a sintered product of the present invention is manufactured.
FIG. 3 is a conceptual diagram showing a green compact manufacturing process when the sintered product of the present invention is manufactured.
FIG. 4 is a conceptual diagram showing a sintering process when manufacturing a sintered product of the present invention.
FIG. 5 is a diagram showing a sintered state of mixed powder in the production of a sintered product of the present invention.
FIG. 6 is a diagram showing the relationship between the effective porosity and density of a sintered product, and comparing the sintered product of the present invention with a conventional sintered product.
FIG. 7 is a cross-sectional view showing the state of each member by brazing using Cu as a brazing material for a conventional sintered product.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Sintered product 10a Fe part 10b Cavity part 10c Fe-P alloy part 11 Green compact 20 Pipe 30 Parts m Mixed powder F Molding press M Mixer S Sintering furnace W Brazing material

Claims (5)

Fe粉末とFe−P合金粉末との混合粉末を、圧縮成形して圧粉体を形成し、
該圧粉体を、Fe−P合金の溶融点を超えFeの溶融点より低い焼結温度で、Fe粉末部分を溶融させずに、Fe−P合金粉末部分を溶融させて前記Fe粉末部分の空隙部に浸透させて焼結し、
密度7.2〜7.5g/cm 、有効多孔率2%以下のろう付け用の焼結品を得ることを特徴とする焼結品の製造方法。
A mixed powder of Fe powder and Fe-P alloy powder is compression molded to form a green compact,
The green compact is melted at a sintering temperature that is higher than the melting point of the Fe-P alloy and lower than the melting point of Fe, without melting the Fe powder portion. Penetration into the gap and sintering
A method for producing a sintered product, characterized by obtaining a sintered product for brazing having a density of 7.2 to 7.5 g / cm 3 and an effective porosity of 2% or less.
前記Fe−P合金粉末が、5〜15重量%のPを含有することを特徴とする請求項1に記載の焼結品の製造方法。  The said Fe-P alloy powder contains 5 to 15 weight% of P, The manufacturing method of the sintered article of Claim 1 characterized by the above-mentioned. 前記混合粉末が、0.2〜0.8重量%のPを含有することを特徴とする請求項1または2に記載の焼結品の製造方法。  The method for producing a sintered product according to claim 1 or 2, wherein the mixed powder contains 0.2 to 0.8 wt% of P. 前記焼結において、前記焼結品が、焼結温度が1100〜1150℃の状態で10分間以上保持されることを特徴とする請求項1から3のいずれかに記載の焼結品の製造方法。  The method for producing a sintered product according to any one of claims 1 to 3, wherein, in the sintering, the sintered product is held at a sintering temperature of 1100 to 1150 ° C for 10 minutes or more. . Fe粉末とFe−P合金粉末との混合粉末から形成された密度7.2〜7.5g/cm 、有効多孔率2%以下の焼結品であって、
前記Fe粉末の粒子が互いに結合して形成されたFe部と、溶融して前記Fe粉末の粒子間の空隙部に浸透した後冷却されて前記空隙部において固化したFe−P合金部とを有し、ろう付けに用いられることを特徴とする焼結品。
A sintered product having a density of 7.2 to 7.5 g / cm 3 and an effective porosity of 2% or less formed from a mixed powder of Fe powder and Fe—P alloy powder,
Fe portion formed by bonding the particles of the Fe powder, and an Fe-P alloy portion that has been melted and penetrated into the voids between the particles of the Fe powder and then cooled and solidified in the voids. And sintered product characterized by being used for brazing .
JP2001325492A 2001-10-23 2001-10-23 Sintered product manufacturing method and sintered product Expired - Fee Related JP3830802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325492A JP3830802B2 (en) 2001-10-23 2001-10-23 Sintered product manufacturing method and sintered product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325492A JP3830802B2 (en) 2001-10-23 2001-10-23 Sintered product manufacturing method and sintered product

Publications (2)

Publication Number Publication Date
JP2003129110A JP2003129110A (en) 2003-05-08
JP3830802B2 true JP3830802B2 (en) 2006-10-11

Family

ID=19142044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325492A Expired - Fee Related JP3830802B2 (en) 2001-10-23 2001-10-23 Sintered product manufacturing method and sintered product

Country Status (1)

Country Link
JP (1) JP3830802B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101564740B1 (en) 2014-09-03 2015-11-02 한국생산기술연구원 Fe-P soft magnetic materials with low core loss containing Fe and Fe-Si and method of manufacturing the same

Also Published As

Publication number Publication date
JP2003129110A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP4849462B2 (en) Method of manufacturing composite sintered machine part and cylinder block
CN1031723C (en) Method of forming compacts
JPH0320314B2 (en)
US3864827A (en) Method for making an electric contact by powder metallurgy and the resulting contact
US4972898A (en) Method of forming a piston containing a cavity
JP3830802B2 (en) Sintered product manufacturing method and sintered product
EP0048496B1 (en) Method for bonding sintered metal pieces
JP5177787B2 (en) Method for producing Fe-based sintered alloy and Fe-based sintered alloy
JP2008069385A (en) Method for producing sintered metal member
US6821313B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
AU2010284750B9 (en) A process for producing a metal-matrix composite of significant deltaCTE between the hard base-metal and the soft matrix
WO2005049251A1 (en) Method for making inner channels of a component
KR100651331B1 (en) Junction method between different materials
JP2521778B2 (en) Method for manufacturing infiltration-bonded sintered machine parts
JP2008068166A (en) Method for manufacturing sintered metal-made filter
JPH0140082B2 (en)
JPS58189305A (en) Production of sintered body having through-hole or the like
US20030063992A1 (en) Methods of filling a die cavity with multiple materials for powder metal compaction
US7270782B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
JPH0262435A (en) Manufacture of friction member
JPS6230804A (en) Multi-layer sintering method for sintered hard material powder and ferrous metallic powder by powder hot press method
JPH0578710A (en) Production of long-sized iron-based sintered compact
JPS6119703A (en) Preparation of copper infiltrated ferrous sintered body
JPS61250133A (en) Manufacture of composite member
JPS6318004A (en) Production of sintered parts

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050413

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060124

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees