JPH0262435A - Manufacture of friction member - Google Patents

Manufacture of friction member

Info

Publication number
JPH0262435A
JPH0262435A JP21344188A JP21344188A JPH0262435A JP H0262435 A JPH0262435 A JP H0262435A JP 21344188 A JP21344188 A JP 21344188A JP 21344188 A JP21344188 A JP 21344188A JP H0262435 A JPH0262435 A JP H0262435A
Authority
JP
Japan
Prior art keywords
sintered
powder
friction member
pressure
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21344188A
Other languages
Japanese (ja)
Inventor
Noriyuki Sakai
紀幸 坂井
Junichi Yamamoto
順一 山本
Tamiji Sakaki
民司 坂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP21344188A priority Critical patent/JPH0262435A/en
Publication of JPH0262435A publication Critical patent/JPH0262435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Operated Clutches (AREA)
  • Braking Arrangements (AREA)

Abstract

PURPOSE:To obtain a friction member whose friction torque is free from unstability in spite of a long drive by carbonizing wooden scraps in such a manner that a dust compact, compressingly molded with the wooden scraps mixed in composite powder, is sintered while applying pressure to it to form holes in its periphery. CONSTITUTION:After wooden scraps 2 are mixed into composite powder which comprises copper powder as the base and zinc, tin and silicon dioxide added, binder is additionally mixed to prepare material powder. Then, the material powder is filled in a forming mold and compressingly molded by applying pressure of a press to form a dust compact 3. After that, the dust compact 3 is sintered while applying pressure of the press on condition that a sintered temperature is for 30-50min. and pressure of the press is 60kg/cm<2> until reaching the sintered temperature from room temperature. Next, after reaching the sintered temperature, the pressure is applied at 80kg/cm<2> in order to promote sintering and intend a stable density, however, it is possible to get a desired value of the coefficient of holes with changed pressure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は湿式にて使用される摩擦部材の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a friction member used in a wet process.

(従来の技術) 上記の摩擦部材としては、自動車のトルクリミッタに使
用される摩擦板や、特開昭57−184728号公報に
示されるような湿式クラッチのクラッチディスクに接着
された摩擦板等が知られている。
(Prior Art) Examples of the above-mentioned friction members include friction plates used in automobile torque limiters and friction plates bonded to the clutch disc of a wet clutch as shown in Japanese Patent Application Laid-open No. 57-184728. Are known.

近年このような摩擦部材は苛酷な条件下で使用されるの
で、強度及び耐熱性に優れた銅系の焼結金属が使用され
ることが多い。従来、この銅系の焼結金属からなる摩擦
部材は、銅粉末にグラファイト、亜鉛、錫及び二酸化ケ
イ素を添加してなる原料粉末を圧縮成形して圧粉成形体
を形成し、この圧粉成形体を常圧焼結成いはホットプレ
スすることにより製造している。このように原料粉末中
にグラファイトを添加するのは、グラファイトが焼結時
にガス化してその跡に空孔ができ、この空孔がオイル溜
りとなって摩擦部材の作動が円滑になるためである。
In recent years, since such friction members are used under severe conditions, copper-based sintered metals with excellent strength and heat resistance are often used. Conventionally, friction members made of this copper-based sintered metal have been produced by compression-molding raw material powder made by adding graphite, zinc, tin, and silicon dioxide to copper powder to form a green compact. The pressureless sintered body is manufactured by hot pressing. The reason why graphite is added to the raw material powder in this way is that the graphite gasifies during sintering, creating pores in its wake, and these pores become oil pockets, allowing the friction member to operate smoothly. .

(発明が解決しようとする課題) しかるに、圧粉成形体を焼結して摩擦部材を得るには、
成形時にかなり大きな圧力で原料粉末を圧縮しなければ
、焼結時に圧粉成形体がボッボッになってしまう。従っ
て大きな圧力で圧縮成形しなければならないが、そうす
ると今度は添加したグラファイトが押し、つぶされてし
まうという問題が生じる。その結果摩擦部材における空
孔が不足してオイル溜りが不十分になる。このような摩
擦部材を高負荷において長時間運転すると摩擦部材の冷
却が不十分になるために、焼付けを起こしやすくなり摩
擦トルクが不安定になる。
(Problems to be Solved by the Invention) However, in order to obtain a friction member by sintering a powder compact,
If the raw material powder is not compressed under considerable pressure during compaction, the green compact will become lumpy during sintering. Therefore, compression molding must be carried out under high pressure, but this results in the problem that the added graphite is pressed and crushed. As a result, there are insufficient holes in the friction member, resulting in insufficient oil storage. When such a friction member is operated under high load for a long period of time, the friction member becomes insufficiently cooled, so that seizure is likely to occur and the friction torque becomes unstable.

上記に鑑みて本発明は、長時間運転しても摩擦トルクが
不安定にならない摩擦部材を製造する方法を提供するこ
とを目的とする。
In view of the above, an object of the present invention is to provide a method for manufacturing a friction member whose friction torque does not become unstable even after long-term operation.

(課題を解決するための手段) 上記の目的を達成するため本発明は、原料粉末中のグラ
ファイトに代えて木屑を添加するものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention adds wood chips in place of graphite in the raw material powder.

具体的に本発明の講じた解決手段は、摩擦部材の製造方
法を、銅粉末を主成分とする混合粉末中に木屑を混入し
て原料粉末となし、しかる後該原料粉末を圧縮成形して
圧粉成形体を形成し、このようにして得た圧粉成形体を
加圧しながら焼結することにより、前記木屑を炭化させ
てその周囲に空孔を形成する構成としたものである。
Specifically, the solution taken by the present invention is to provide a method for producing a friction member by mixing wood chips into a mixed powder mainly composed of copper powder to obtain a raw material powder, and then compression-molding the raw material powder. A powder compact is formed, and the powder compact thus obtained is sintered while being pressurized, thereby carbonizing the wood chips and forming pores around the wood chips.

(作用) 上記の構成により、焼結によって木屑が炭化する際に、
木屑に含まれていた水分等が蒸発して木屑は体積収縮を
起こす。これにより大きな圧力で圧縮成形しても、摩擦
部材の内部には炭化した木屑の周囲に空孔が確実に形成
され、この空孔がオイル溜りになるので摩擦部材の内部
に充分なオイルが確保できる。
(Function) With the above configuration, when wood chips are carbonized by sintering,
The moisture contained in the wood chips evaporates, causing the wood chips to shrink in volume. As a result, even when compression molded under high pressure, pores are reliably formed inside the friction member around the carbonized wood chips, and these pores become oil reservoirs, ensuring sufficient oil inside the friction member. can.

(実施例) 以下、本発明の一実施例を説明する。(Example) An embodiment of the present invention will be described below.

まず、銅粉末を主成分とし、これに亜鉛、錫及び二酸化
ケイ素を添加してなる混合粉末中に木屑を混入した後、
さらにバインダーを加えて混合して原料粉末を作製する
。この木屑の混入量については原料粉末に対して5〜2
5重量%が好ましい。
First, wood chips are mixed into a mixed powder made of copper powder as the main component, to which zinc, tin, and silicon dioxide are added.
Furthermore, a binder is added and mixed to produce a raw material powder. The amount of wood chips mixed in is 5 to 2
5% by weight is preferred.

その理由は混入量が5重量%未満であると焼結後に所望
量の空孔が得られないためであり、25重量%を超える
と原料粉末の圧粉成形性が悪くなるためである。木屑の
粒径については70〜320μmが好ましい。その理由
は70μm未満であると焼結後に所望の大きさの空孔が
得られないためであり、320μmを超えると圧縮成形
時の粉詰が不安定になるためである。従って、混入する
木屑の条件については、5〜25重量%の混入量及び7
0〜320μmの粒径の範囲内で目標空孔率に基づいて
適宜選択可能である。
The reason for this is that if the mixed amount is less than 5% by weight, the desired amount of pores will not be obtained after sintering, and if it exceeds 25% by weight, the compactability of the raw material powder will deteriorate. The particle size of the wood chips is preferably 70 to 320 μm. The reason for this is that if it is less than 70 μm, pores of the desired size cannot be obtained after sintering, and if it exceeds 320 μm, powder filling during compression molding becomes unstable. Therefore, regarding the conditions for mixed wood chips, the amount of mixed wood chips should be 5 to 25% by weight and 7% by weight.
The particle size can be appropriately selected within the particle size range of 0 to 320 μm based on the target porosity.

次に、この原料粉末を成形金型内に充填し、プレスで加
圧することにより圧縮成形し、圧粉成形体を形成する。
Next, this raw material powder is filled into a mold and compressed by pressing with a press to form a green compact.

その後、このようにして得た圧粉成形体をプレスで加圧
しながら焼結する。この焼結温度については830℃〜
870℃が好ましい。その理由は830℃未満であると
銅−亜鉛、銅−錫等の金属成分の含有量が制約されるた
めであり、870℃を超えると銅−錫、銅−亜鉛等の金
属成分の合金化が進み、液相量が多くなって溶融しかね
ないためである。焼結温度については30〜50分間が
適当である。また、プレスの圧力については、常温から
焼結温度に到達するまでは60kg/cdとする。その
理由は圧粉成形体の形状保持、つまり、圧粉成形体は木
屑が混入されているため圧粉密度が低いので、昇温時に
バインダーが飛んで圧粉成形体がボッボッになることを
防止するためである。
Thereafter, the powder compact obtained in this way is sintered while being pressed with a press. The sintering temperature is 830℃~
870°C is preferred. The reason for this is that if the temperature is lower than 830°C, the content of metal components such as copper-zinc and copper-tin will be restricted, and if it exceeds 870°C, alloying of metal components such as copper-tin and copper-zinc will occur. This is because the amount of liquid phase increases and there is a risk of melting. The appropriate sintering temperature is 30 to 50 minutes. Further, the pressure of the press is 60 kg/cd from room temperature until the sintering temperature is reached. The reason for this is to maintain the shape of the compacted compact.In other words, the compacted compact has wood chips mixed in, so the density of the powder compact is low, so when the temperature rises, the binder will fly off and the compacted compact will not become lumpy. This is to do so.

焼結温度到達後は、焼結を促進すると共に密度の安定を
図るために80 kg/ cdで加圧するが、この圧力
を変えることによって焼結後の空孔率を所望値にするこ
とができる。
After reaching the sintering temperature, pressure is applied at 80 kg/cd to promote sintering and stabilize the density, but by changing this pressure, the porosity after sintering can be adjusted to the desired value. .

以下、本発明の具体例を図面に基づいて説明する。Hereinafter, specific examples of the present invention will be described based on the drawings.

具体例1: まず、第1図(イ)に示すような厚さ21!1fflの
リング状鋼板1を準備し、このリング状鋼板1の両面に
第1図(ロ)にすように10〜15μmの厚さの銅めっ
きを施す。
Specific example 1: First, a ring-shaped steel plate 1 with a thickness of 21 to 1 ffl as shown in FIG. Copper plating is applied to a thickness of 15 μm.

一方、重量比で銅:68%、亜鉛:5%、錫:3%及び
二酸化ケイ素:4%からなる混合粉末に、第1図(ハ)
に示すように粒径7o〜320μmの粒状の木屑2を2
0重置火加えて第1図(ニ)に示すように混合し、これ
に外分て1.57[lff1%の樟脳をアセトンで溶融
したものをバインダーとして加え、湿式混合を行った後
、アセトンを気化させて原料粉末とする。この原料粉末
を第1図(ホ)に示すような成形金型に充填し、プレス
(図中Pで示す)で加圧することにより圧縮成形して外
径115a+m、内径90111m%厚さ1. 5ma
+のリング状の圧粉成形体3を形成する。
On the other hand, a mixed powder consisting of 68% copper, 5% zinc, 3% tin, and 4% silicon dioxide by weight was added to the powder shown in Figure 1 (c).
As shown in
Add 0 layers of heat and mix as shown in Figure 1 (d), add 1.57 lff1% camphor melted in acetone as a binder, perform wet mixing, Vaporize acetone to make raw material powder. This raw material powder is filled into a mold as shown in FIG. 1 (e), and compressed by pressurizing it with a press (indicated by P in the figure) to form an outer diameter of 115 a+m, an inner diameter of 90111 m%, and a thickness of 1. 5ma
A + ring-shaped powder compact 3 is formed.

次に、この圧粉成形体3をリング状鋼板1の両面にセッ
トし、第1図(へ)に示すようなホットプレス機の内部
において治具7を介して多段に重ね、加圧しながら焼結
する。この焼結は水素ガス雰囲気中で、第2図の焼結パ
ターンに示すように、60kg/c−の加圧下で常温か
ら10℃/分の昇温スピードで加熱し、焼結温度である
850℃に到達した後は80kg/c−に加圧し、この
状態で50分間保持して焼結した後炉冷し、500℃に
降温した時に加圧を終了する。このようにして得た焼結
体に研摩、溝切り等の機械加工を施して第1図(ト)に
示すような摩擦部材4を得る。
Next, this compacted compact 3 is set on both sides of the ring-shaped steel plate 1, stacked in multiple stages via a jig 7 inside a hot press machine as shown in FIG. conclude. This sintering is carried out in a hydrogen gas atmosphere, as shown in the sintering pattern in Figure 2, by heating at a heating rate of 10°C/min from room temperature under a pressure of 60kg/c- to reach a sintering temperature of 850°C. After reaching the temperature, the material is pressurized to 80 kg/c-, kept in this state for 50 minutes for sintering, and then cooled in the furnace. When the temperature drops to 500° C., the pressurization is finished. The thus obtained sintered body is subjected to mechanical processing such as polishing and grooving to obtain a friction member 4 as shown in FIG. 1 (G).

上記のようにして得られる成粉成形体3及び摩擦部材4
の内部の状態は第3図(イ)及び(ロ)に示すようであ
って、圧粉成形体3の内部に混入された木屑2は焼結に
よって炭化し、摩擦部材4の内部で体積収縮を起こして
いる。このようにすることにより、炭化した木屑5の周
囲における銅、亜鉛、錫及び二酸化ケイ素との間には空
孔6が形成され、この空孔6は摩擦部材4の使用時にオ
イル溜りとなる。
Powder molded body 3 and friction member 4 obtained as described above
The internal state of the friction member 4 is as shown in FIGS. 3(a) and 3(b). is happening. By doing this, voids 6 are formed between the copper, zinc, tin, and silicon dioxide around the carbonized wood chips 5, and these voids 6 become oil reservoirs when the friction member 4 is used.

具体例2: 具体例1における粒状の木屑に代えて、木片をつぶして
径70〜200μm、長さ300〜500μmの木繊維
を作り、これを具体例1と同じ混合粉末に加え、混合し
て原料粉末とし、この原料粉末を具体例1と同様に圧縮
成形した後、焼結して摩擦部材4を得る。この結果、炭
化した木繊維の周囲には三次元的に連続した空孔が形成
される。
Concrete Example 2: Instead of the granular wood chips in Concrete Example 1, crush wood chips to make wood fibers with a diameter of 70 to 200 μm and a length of 300 to 500 μm, add this to the same mixed powder as in Concrete Example 1, and mix. The raw material powder is compression molded in the same manner as in Example 1, and then sintered to obtain the friction member 4. As a result, three-dimensionally continuous pores are formed around the carbonized wood fibers.

上記のようして得た具体例1の摩擦部材の摩擦特性を調
べるためにリグテストを行った結果、摩擦係数μは0.
12であって、各周速度における摩擦トルク及びその変
動中は第4図に示すとおりである。なお、具体例2の摩
擦部材についてリグテストを行った結果は具体例1と同
等の摩擦特性であった。また、比較例としては銅、亜鉛
、錫及び二酸化ケイ素からなる混合粉末を圧縮成形した
後焼結して得られる摩擦部材(東芝タンガロイ社製市販
品)を準備した。第4図において、上段は油圧P−10
kg/cd、摩擦係数μm0.118の下で摩擦トルク
が11kg−m近辺になるようなテストをした結果であ
り、下段は油圧P = 5 kg/ cd、摩擦係数μ
m0.108の下で摩擦トルクが6kg・m近辺になる
ようなテストをした結果であり、横軸は周速度(m/s
ee ) 、縦軸は摩擦トルク(kg−m)及びその変
動中を示している。このグラフにおいて、具体例1のも
のは比較例のものに比べて傾きが小さいから、具体例1
の摩擦部材は周速度が変化しても摩擦トルクの変化が少
ないことが理解できる。また、具体例1の方が摩擦トル
クの変動中が小さいことから、具体例1の摩擦部材はス
ティックスリップ量が少ないことが理解できる。
A rig test was conducted to examine the friction characteristics of the friction member of Example 1 obtained as described above, and as a result, the friction coefficient μ was 0.
12, the friction torque at each circumferential speed and its fluctuations are as shown in FIG. Incidentally, the results of a rig test performed on the friction member of Specific Example 2 showed that the friction characteristics were equivalent to those of Specific Example 1. As a comparative example, a friction member (commercial product manufactured by Toshiba Tungaloy) obtained by compression molding a mixed powder of copper, zinc, tin, and silicon dioxide and then sintering was prepared. In Figure 4, the upper stage is hydraulic pressure P-10
kg/cd, friction coefficient μm 0.118, and the result of a test where the friction torque was around 11 kg-m. The lower row shows the hydraulic pressure P = 5 kg/cd, friction coefficient μm.
This is the result of a test where the friction torque was around 6 kg・m under m0.108, and the horizontal axis is the peripheral speed (m/s
ee ), the vertical axis shows the friction torque (kg-m) and its variation. In this graph, the slope of the specific example 1 is smaller than that of the comparative example, so the specific example 1
It can be seen that the frictional torque of the friction member shown in the figure shows little change even if the circumferential speed changes. In addition, since the friction torque in Example 1 is smaller during fluctuations, it can be understood that the friction member of Example 1 has a smaller amount of stick-slip.

(発明の効果) 以上説明したように、本発明に係る製造方法によると、
大きな圧力で圧縮成形しても、得られる摩擦部材の内部
には確実に空孔が形成され、この空孔がオイル溜りとな
って充分な量のオイルを保持できる。そのために、この
摩擦部材を高負荷において長時間運転しても冷却が十分
に行われるので、焼付けを起こし難く摩擦トルクが安定
している。
(Effect of the invention) As explained above, according to the manufacturing method according to the present invention,
Even when compression molding is performed under high pressure, pores are reliably formed inside the resulting friction member, and these pores serve as oil reservoirs to hold a sufficient amount of oil. Therefore, even if this friction member is operated under high load for a long time, it is sufficiently cooled, so that seizure is difficult to occur and the friction torque is stable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)〜(へ)は本発明に係る摩擦部材の製造方
法の説明図、第2図は上記製造方法における焼結パター
ンを示す図、第3図は上記製造方法により得られる圧粉
成形体と摩擦部材の内部構造を示す図、第4図は上記製
造方法により得られた摩擦部材のリグテストの結果を示
す図である。 1・・・リング状鋼板、2・・・木屑、3・・・圧粉成
形体、4・・・摩擦部材、5・・・炭化した木屑、6・
・・空孔。 ほか2名 (へ) (イ) 第 図 時間 (ロ)
Figures 1 (a) to (f) are explanatory diagrams of the method for manufacturing a friction member according to the present invention, Figure 2 is a diagram showing a sintering pattern in the above manufacturing method, and Figure 3 is a diagram showing the pressure obtained by the above manufacturing method. FIG. 4 is a diagram showing the internal structure of the powder compact and the friction member, and FIG. 4 is a diagram showing the results of a rig test of the friction member obtained by the above manufacturing method. DESCRIPTION OF SYMBOLS 1... Ring-shaped steel plate, 2... Wood chips, 3... Green compact, 4... Friction member, 5... Carbonized wood chips, 6...
··Vacancy. 2 other people (f) (a) Diagram time (b)

Claims (1)

【特許請求の範囲】[Claims] (1)銅粉末を主成分とする混合粉末中に木屑を混入し
て原料粉末となし、しかる後該原料粉末を圧縮成形して
圧粉成形体を形成し、このようにして得た圧粉成形体を
加圧しながら焼結することにより、前記木屑を炭化させ
てその周囲に空孔を形成することを特徴とする摩擦部材
の製造方法。
(1) Wood chips are mixed into a mixed powder mainly composed of copper powder to obtain a raw material powder, and then the raw material powder is compression-molded to form a green compact, and the green compact obtained in this way A method for manufacturing a friction member, characterized in that the molded body is sintered while being pressurized to carbonize the wood chips and form pores around them.
JP21344188A 1988-08-26 1988-08-26 Manufacture of friction member Pending JPH0262435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21344188A JPH0262435A (en) 1988-08-26 1988-08-26 Manufacture of friction member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21344188A JPH0262435A (en) 1988-08-26 1988-08-26 Manufacture of friction member

Publications (1)

Publication Number Publication Date
JPH0262435A true JPH0262435A (en) 1990-03-02

Family

ID=16639283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21344188A Pending JPH0262435A (en) 1988-08-26 1988-08-26 Manufacture of friction member

Country Status (1)

Country Link
JP (1) JPH0262435A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682278B1 (en) * 2005-10-08 2007-02-15 코스모비앤비 주식회사 Friction material and manufacturing method of the same
KR100872206B1 (en) * 2007-12-12 2008-12-09 주식회사 로얄초경 Method for manufacturing a friction member and a friction member made by the same
WO2010038944A3 (en) * 2008-09-30 2010-06-17 주식회사 로얄초경 Method for manufacturing friction member, and friction member manufactured by the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682278B1 (en) * 2005-10-08 2007-02-15 코스모비앤비 주식회사 Friction material and manufacturing method of the same
KR100872206B1 (en) * 2007-12-12 2008-12-09 주식회사 로얄초경 Method for manufacturing a friction member and a friction member made by the same
WO2010038944A3 (en) * 2008-09-30 2010-06-17 주식회사 로얄초경 Method for manufacturing friction member, and friction member manufactured by the method

Similar Documents

Publication Publication Date Title
CA2089433C (en) Composite powdered metal component
US3853635A (en) Process for making carbon-aluminum composites
US4041123A (en) Method of compacting shaped powdered objects
US3356496A (en) Method of producing high density metallic products
JPH0130882B2 (en)
JPH0347903A (en) Density increase of powder aluminum and aluminum alloy
JPS6213306B2 (en)
CN104204247B (en) Sintered bearing and its manufacture method
JP2004520483A (en) Method for producing metal foam or metal composite with improved shock, heat and sound absorption properties
JPS6127453B2 (en)
JP3800510B2 (en) Powder compact, method for producing the same, and method for producing a porous sintered body
JPH0262435A (en) Manufacture of friction member
JP2849710B2 (en) Powder forming method of titanium alloy
JP5203814B2 (en) Sintered oil-impregnated bearing material
US3907514A (en) Aluminum carbon composite seal material
GB2098787A (en) Production of pellets for nuclear fuel elements
JPS596301A (en) High densification of powder metal parts
US5024899A (en) Resilient metallic friction facing material
JPS6330526B2 (en)
KR100707691B1 (en) Sliding bearing with solid-state sintered layer
EP2467223A1 (en) A process for producing a metal-matrix composite of significant cte between the hard base-metal and the soft matrix
JP4318814B2 (en) Method for producing metal-ceramic composite material
US3109224A (en) Method of making bearing pins
JP3297977B2 (en) Manufacturing method of carbon material
JP3830802B2 (en) Sintered product manufacturing method and sintered product