KR100682278B1 - Friction material and manufacturing method of the same - Google Patents

Friction material and manufacturing method of the same Download PDF

Info

Publication number
KR100682278B1
KR100682278B1 KR1020050094665A KR20050094665A KR100682278B1 KR 100682278 B1 KR100682278 B1 KR 100682278B1 KR 1020050094665 A KR1020050094665 A KR 1020050094665A KR 20050094665 A KR20050094665 A KR 20050094665A KR 100682278 B1 KR100682278 B1 KR 100682278B1
Authority
KR
South Korea
Prior art keywords
powder
friction material
weight
friction
mixed powder
Prior art date
Application number
KR1020050094665A
Other languages
Korean (ko)
Inventor
강흥원
최종한
정성실
이대열
Original Assignee
코스모비앤비 주식회사
주식회사 카본나노텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코스모비앤비 주식회사, 주식회사 카본나노텍 filed Critical 코스모비앤비 주식회사
Priority to KR1020050094665A priority Critical patent/KR100682278B1/en
Application granted granted Critical
Publication of KR100682278B1 publication Critical patent/KR100682278B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/027Compositions based on metals or inorganic oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/023Composite materials containing carbon and carbon fibres or fibres made of carbonizable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0008Ferro
    • F16D2200/0021Steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0026Non-ferro
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0052Carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles
    • F16D2200/0069Materials; Production methods therefor containing fibres or particles being characterised by their size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0023Shaping by pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Braking Arrangements (AREA)

Abstract

A manufacturing method of friction materials is provided to manufacture friction materials having excellent high temperature strength, abrasion resistance and friction coefficient. The manufacturing method of friction materials comprises the steps of: preparing mixed powder of 7~25 weight percent iron powder, 4~15 weight percent silica powder, 5~30 weight percent graphite powder, 0.5~5 weight percent carbon nano-tube, and 58~76 weight percent copper-nickel alloys(S100); immersing the prepared mixed powder in a mixing solution containing coatings and a solvent(S200); volatilizing the solvent and mixing the mixed powder(S300); manufacturing a molded body by inputting the mixed powder in a mold applied with zinc stearate as a lubricant and applying a single pressure type vertical pressure of 4~8 ton/cm^2(S400); and completing friction materials by sintering the molded body at 850~925‹C for 1~3 hours(S500).

Description

마찰재와 그 제조방법{FRICTION MATERIAL AND MANUFACTURING METHOD OF THE SAME}Friction material and manufacturing method thereof {FRICTION MATERIAL AND MANUFACTURING METHOD OF THE SAME}

도 1은 본 발명의 일실시예에 따른 마찰재의 제조방법을 나타낸 순서도이다.1 is a flow chart showing a method of manufacturing a friction material according to an embodiment of the present invention.

본 발명은 마찰재 및 그 제조방법에 관한 것으로, 더 자세하게는, 탄소나노튜브를 포함하여 고온강도, 내열강도, 내마모성 및 마찰계수가 개선된 소결 구리계 마찰재 및 그 제조방법에 관한 것이다. The present invention relates to a friction material and a method for manufacturing the same, and more particularly, to a sintered copper-based friction material including carbon nanotubes and improved high temperature strength, heat resistance, wear resistance and coefficient of friction and a method of manufacturing the same.

일반적으로 수송기계의 제동 시스템에 장착되는 마찰재는 유기질, 소결 합금, 탄소-탄소 복합체로 대별된다. Generally, friction materials mounted in the braking system of transportation machinery are classified into organic materials, sintered alloys, and carbon-carbon composites.

이중 유기질 마찰재는 자동차, 트럭 및 일반 철도차량의 제동시스템 마찰재로 가장 많이 사용되고 있다. 유기질 마찰재는 열경화성 수지 계통의 유기물 기지에 첨가제, 마찰조절제를 혼합하여 소성시킨 복합재이다. 이러한 유기질 마찰재를 고속전철과 같은 고하중, 고속의 수송체의 제동 마찰재로 사용할 경우 제동시 상대재의 접촉면에서 발생하는 열이 열경화성 수지의 분해온도를 훨씬 상회하게 된다. 이에 따라 마찰재 전체의 기계적 특성이 급격히 열화되어 내구성에 문제가 발생하므로 고속전철용으로는 사용할 수 없는 문제가 있다. Double organic friction materials are most commonly used as brake system friction materials for automobiles, trucks and railroad cars. The organic friction material is a composite material which is fired by mixing an additive and a friction control agent on an organic substance base of a thermosetting resin system. When such an organic friction material is used as a braking friction material of a high load, high speed vehicle such as a high-speed train, the heat generated at the contact surface of the counterpart during braking far exceeds the decomposition temperature of the thermosetting resin. As a result, mechanical properties of the entire friction material are rapidly deteriorated to cause problems in durability, and thus there is a problem that it cannot be used for high speed trains.

탄소-탄소 복합체 마찰재는 탁월한 제동특성으로 이에 대한 개발 연구가 많이 진행되고 있으나 제조비용이 고가로 주로 항공기용 마찰재로 많이 사용되고 있다. Carbon-carbon composite friction material has excellent braking properties, and many researches have been conducted on it. However, due to its high manufacturing cost, it is widely used as a friction material for aircraft.

이와 같은 이유로 인하여 고속전철용 마찰재로는 금속 소결재가 사용되고 있다. 금속 소결 마찰재에서 요구되는 특성은 고온에서도 충분한 강도를 가질 것, 높은 비열 및 열전도성을 가질 것, 사용조건에 관계 없이 일정한 마찰계수를 가질 것, 내마모성이 우수할 것 등이다. 이와 같은 특성을 만족시킬 금속 소결재 중에서 철계 소결재보다 열전도도가 훨씬 좋은 구리계 소결재의 사용이 일반적이며 보다 높은 특성을 만족시키기 위한 개발 연구가 진행되어 오고 있다. For this reason, metal sintered materials are used as friction materials for high-speed trains. The characteristics required for the metal sintered friction material are to have sufficient strength even at high temperatures, to have high specific heat and thermal conductivity, to have a constant coefficient of friction regardless of the use conditions, and to have excellent wear resistance. Among the metal sintered materials that will satisfy these characteristics, the use of copper-based sintered materials with much higher thermal conductivity than iron-based sintered materials is common, and development studies for satisfying higher properties have been conducted.

구리계 소결재의 주류는, 주석(Sn), 니켈(Ni) 등 경화원소와 합금화된 구리합금 분말을 주원료로 하여, 마찰 조절제로 철계 금속간 화합물 혹은 산화물 분말을, 고체 윤활성분으로 흑연 혹은 MoS2 분말 등을 일정 구성비로 혼합하여 소결한 것들로 일본특허 출원번호 제97-48468호, 일본특허 출원번호 제97-98943호, 일본특허 출원번호 제96-99512호 등에 기술되어 있다. The mainstream of copper-based sintered materials is a copper alloy powder alloyed with a hardening element such as tin (Sn) or nickel (Ni) as a main raw material, and an iron-based intermetallic compound or oxide powder as a friction modifier, and graphite or MoS as a solid lubricating component. 2 powders and the like, which are mixed and sintered at a predetermined ratio, are described in Japanese Patent Application No. 97-48468, Japanese Patent Application No. 97-98943, Japanese Patent Application No. 96-99512, and the like.

고체 윤활성분으로 사용되는 흑연은 산화온도가 약 450 oC(G. Jintang : Wear, 24, (2000) 100-106, H. E. Sliney : ASLE Transations, 29-3, 370-376)이 며, MoS2 은 최대 사용온도가 약 400 oC (S. Hwang : 대한용접학회지, 21(2)(2003),157-164)이다. 이 때문에 마찰면의 온도가 400 oC 이상이 되는 고하중, 고속의 마찰조건에서는 산화가 진행되어 마찰계수의 변동이 증가하고 기계적 특성이 저하되는 문제점이 있다. Graphite used as a solid lubricating component has an oxidation temperature of about 450 o C (G. Jintang: Wear, 24, (2000) 100-106, HE Sliney: ASLE Transations, 29-3, 370-376), MoS 2 The maximum service temperature is about 400 o C (S. Hwang: Journal of the Korean Welding Society, 21 (2) (2003), 157-164). For this reason, there is a problem that the oxidation proceeds under high load and high speed friction conditions at which the friction surface temperature is 400 ° C. or higher, thereby increasing the variation of the friction coefficient and deteriorating the mechanical properties.

따라서 본 발명의 목적은 고온강도, 내마모성 및 마찰계수가 우수한 마찰재를 제공하는 것이다. Accordingly, an object of the present invention is to provide a friction material having excellent high temperature strength, wear resistance and friction coefficient.

또한 본 발명의 다른 목적은 고온강도, 내마모성 및 마찰계수가 우수한 마찰재의 제조방법을 제공하는 것이다.In addition, another object of the present invention is to provide a method for producing a friction material excellent in high temperature strength, wear resistance and friction coefficient.

상기 목적은 철 7 내지 27중량%, 실리카(SiO2) 4 내지 15중량%, 흑연 5 내지 30중량%, 탄소나노튜브 0.5 내지 5중량% 및 구리-주석 합금 58 내지 76 중량%로 이루어지는 마찰재에 의하여 달성될 수 있다.The object is by a friction material consisting of 7 to 27% by weight of iron, 4 to 15% by weight of silica (SiO 2), 5 to 30% by weight of graphite, 0.5 to 5% by weight of carbon nanotubes and 58 to 76% by weight of copper-tin alloy. Can be achieved.

상기 구리-주석 합금에서 주석 함량은 5 내지 15중량%인 것이 바람직하다. The tin content in the copper-tin alloy is preferably 5 to 15% by weight.

상기 본 발명의 다른 목적은 철 분말 7 내지 27중량%, 실리카(SiO2) 분말 4 내지 15중량%, 흑연 분말 5 내지 30중량%, 탄소나노튜브 0.5 내지 5중량% 및 구리-주석 합금 분말 58 내지 76 중량%를 포함하는 혼합분말을 코팅제와 용매를 포함하는 믹싱 용액에 침지하는 단계와; 상기 용매를 휘발시키면서 상기 혼합분말을 믹싱하는 단계와; 상기 믹싱된 혼합분말을 일정한 형태로 성형하는 단계와; 상기 성형 된 혼합분말을 소결하는 단계를 포함하는 마찰재의 제조방법에 의하여 달성될 수 있다.Another object of the present invention is iron powder 7 to 27% by weight, silica (SiO 2) powder 4 to 15% by weight, graphite powder 5 to 30% by weight, carbon nanotubes 0.5 to 5% by weight and copper-tin alloy powder 58 to Immersing a mixed powder comprising 76% by weight in a mixing solution containing a coating agent and a solvent; Mixing the mixed powder while evaporating the solvent; Molding the mixed mixed powder into a predetermined form; It can be achieved by a method of manufacturing a friction material comprising the step of sintering the molded mixed powder.

상기 철 분말의 평균 입도는 10 내지 44㎛인 것이 바람직하다. It is preferable that the average particle size of the said iron powder is 10-44 micrometers.

상기 실리카 분말의 평균 입도는 100 내지 350㎛인 것이 바람직하다.It is preferable that the average particle size of the said silica powder is 100-350 micrometers.

상기 흑연 분말의 평균 입도는 44 내지 200㎛인 것이 바람직하다.It is preferable that the average particle size of the said graphite powder is 44-200 micrometers.

상기 구리-주석 합금 분말의 평균 입도는 10 내지 70㎛이하인 것이 바람직하다. It is preferable that the average particle size of the said copper- tin alloy powder is 10-70 micrometers or less.

상기 코팅제는 파라핀인 것이 바람직하다.The coating agent is preferably paraffin.

상기 코팅제의 사용량은 상기 혼합분말의 0.5 내지 5중량%인 것이 바람직하다. The amount of the coating agent is preferably 0.5 to 5% by weight of the mixed powder.

상기 용매의 부피는 상기 혼합분말 부피의 50 내지 100%인 것이 바람직하다. The volume of the solvent is preferably 50 to 100% of the volume of the mixed powder.

상기 구리-주석 합금 분말에서 주석 함량은 5 내지 15중량%인 것이 바람직하다. In the copper-tin alloy powder, the tin content is preferably 5 to 15% by weight.

상기 소결은 진공 분위기와 비활성 가스 분위기 중 어느 하나에서 수행되는 것이 바람직하다. The sintering is preferably carried out in either a vacuum atmosphere or an inert gas atmosphere.

상기 소결은 850 내지 925℃에서 1 내지 3시간 동안 수행되는 것이 바람직하다. The sintering is preferably performed for 1 to 3 hours at 850 to 925 ℃.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 마찰재는 철, 실리카(SiO2), 흑연, 탄소나노튜브, 구리-주 석 합금을 포함하며, 이들 구성 성분은 균일하게 혼합되어 있다.The friction material according to the present invention includes iron, silica (SiO 2), graphite, carbon nanotubes, copper-tin alloy, these components are mixed uniformly.

철은 마찰 조절제로서 7 내지 27중량% 사용된다. 철의 사용량이 7중량 % 보다 작으면 완성된 마찰재의 강도의 증가에 미치는 효과가 미미하고, 27중량 % 이상이면 필요 이상으로 강도가 증가하여 마찰 상대재의 마모가 심하게 될 우려가 있기 때문이다. 철의 함량은 12 내지 20중량%가 바람직하며 약 17중량%가 더욱 바람직하다.Iron is used 7 to 27% by weight as friction modifier. If the amount of iron used is less than 7% by weight, the effect on the increase of the strength of the finished friction material is insignificant. If it is 27% by weight or more, the strength is increased more than necessary, and the wear of the friction counterpart may be severe. The content of iron is preferably 12 to 20% by weight, more preferably about 17% by weight.

실리카는 마찰조절제로서 4 내지 15중량% 사용된다. 실리카의 함량이 4중량% 이하이면 작은 비중으로 인한 체적의 증가로 소결반응이 억제되어 마찰재의 강도를 저하시키고, 실리카의 함량이15중량 % 이상이면 마찰 중 입자의 탈락이 발생하여 마찰 조절제의 역할을 상실하기 때문이다. 실리카의 함량은 7 내지 11중량%가 바람직하며 약 9%가 더욱 바람직하다.Silica is used 4 to 15% by weight as a friction control agent. If the content of silica is less than 4% by weight, the sintering reaction is suppressed due to the increase in volume due to the small specific gravity, and the strength of the friction material is lowered.If the content of silica is more than 15% by weight, the particles fall out during friction, thereby acting as a friction regulator. Because you lose. The content of silica is preferably 7 to 11% by weight, more preferably about 9%.

흑연은 마찰 윤활제로서 5 내지 30중량%가 사용된다. 흑연의 함량이5중량 %보다 작으면 마찰 윤활제 고유의 역할을 상실하며 30 중량%이상에서는 마찰재의 밀도가 급격히 낮아져 기계적 강도에 문제가 발생하기 때문이다. 흑연의 함량은 18 내지 22중량%가 바람직하며 약 20중량%가 더욱 바람직하다.Graphite is used 5 to 30% by weight as a friction lubricant. If the content of graphite is less than 5% by weight loses the inherent role of the friction lubricant, at 30% by weight or more, the density of the friction material is sharply lowered, causing problems in mechanical strength. The content of graphite is preferably 18 to 22% by weight, more preferably about 20% by weight.

탄소나노튜브는 0.5 내지 5중량%가 사용된다. 탄소나노튜브가 0.5중량 % 보다 작게 사용되면 마찰재의 열적 안정성 확보에 그 영향이 거의 없고, 5중량 %이상이 되면 탄소나노튜브가 차지하는 체적이 급속히 증가하여 마찰재의 제조과정에서 각 성분의 혼합이 극히 곤란해지며 소결반응을 억제하여 완성되는 마찰재의 강도가 급격히 낮아지기 때문이다. 탄소나노튜브의 함량은 1내지 4중량%가 더욱 바람직하 다. Carbon nanotubes are used in 0.5 to 5% by weight. If carbon nanotubes are used less than 0.5% by weight, they have little effect on securing the thermal stability of the friction material. When the carbon nanotubes are more than 5% by weight, the volume of carbon nanotubes rapidly increases, so that the mixing of each component is extremely difficult in the manufacturing process of the friction material. This is because it becomes difficult and the strength of the friction material to be completed by suppressing the sintering reaction is sharply lowered. The content of carbon nanotubes is more preferably 1 to 4% by weight.

탄소나노튜브는 열전도도가 자연계에서 가장 뛰어나 다이아몬드와 유사하고, 인장강도는 강철의 10만배에 해당하는 30Gpa정도를 나타내며, 산화온도가 550℃정도이다. 탄소나노튜브의 사용으로 마찰재는 양호한 열전도도, 고온강도, 내마모성 및 마찰계수를 확보할 수 있다.Carbon nanotubes have the highest thermal conductivity in nature and are similar to diamond. The tensile strength is about 30Gpa, which is 100,000 times that of steel, and the oxidation temperature is about 550 ℃. By using carbon nanotubes, the friction material can ensure good thermal conductivity, high temperature strength, wear resistance and coefficient of friction.

탄소나노튜브는 전기방전식, 레이저 증착식, 열화학 기상증착식, 플라즈마 화학기상증착식 등 5~6가지 방법으로 생산되고 있는데 어느 방식에 의하여 생산된 탄소나노튜브라도 사용가능하다. 한편 탄소나노튜브가 비교적 고가 인점을 고려하여 최근 저가 대량 생산법이 확립된 열화학 기상증착식(대한민국 특허 출원번호 제2002-0011838호, 제2002-0011839호, 제2003-0096325호)으로 생산된 것이라면 보다 경제적으로도 바람직하다. Carbon nanotubes are produced in five to six ways, including electric discharge, laser deposition, thermochemical vapor deposition, and plasma chemical vapor deposition. Any carbon nanotubes produced by any method can be used. On the other hand, if carbon nanotubes are produced by thermochemical vapor deposition (Republic of Korea Patent Application Nos. 2002-0011838, 2002-0011839, and 2003-0096325), which have recently established low-cost mass production methods in consideration of their relatively high points. It is also more economically desirable.

구리-주석 합금은 58 내지 76중량%가 사용된다. 구리-주석 합금에서 주석의 함량은 5 내지 15중량%이며, 약 10%가 바람직하다.The copper-tin alloy is used at 58 to 76% by weight. The content of tin in the copper-tin alloy is 5 to 15% by weight, with about 10% being preferred.

이하에서는 본 발명에 따른 마찰재의 제조방법을 도 1을 참조하여 설명한다. Hereinafter, a method of manufacturing a friction material according to the present invention will be described with reference to FIG. 1.

도 1은 본 발명의 일실시예에 따른 마찰재의 제조방법을 설명하기 위한 순서도이다.1 is a flowchart illustrating a method of manufacturing a friction material according to an embodiment of the present invention.

먼저 철 분말 7 내지 27중량%, 실리카(SiO2) 분말 4 내지 15중량%, 흑연 분말 5 내지 30중량%, 탄소나노튜브 0.5 내지 5중량% 및 구리-주석 합금 분말 58 내지 76 중량%를 포함하는 혼합분말을 마련한다(S100).First, iron powder 7 to 27% by weight, silica (SiO 2) powder 4 to 15% by weight, graphite powder 5 to 30% by weight, carbon nanotubes 0.5 to 5% by weight and copper-tin alloy powder 58 to 76% by weight Prepare a mixed powder (S100).

철 분말은 구리-주석 분말과 고용체를 이루지 않고 마찰재의 강도를 증가시키는 역할을 위하여서는 구리-주석 합금분말에 비하여 작을수록 좋으며 평균입도가 10 내지 44㎛ 일 수 있으며 약 34㎛가 바람직하다.In order to increase the strength of the friction material without forming a solid solution with the copper-tin powder, the iron powder may be smaller than the copper-tin alloy powder and may have an average particle size of 10 to 44 µm, and preferably about 34 µm.

실리카 분말의 평균입도는 100 내지 350㎛일 수 있다. 입도가 100㎛ 이하이면 작은 비중으로 인한 체적의 증가로 소결반응을 억제하여 최종 마찰재의 강도를 저하시키고, 350㎛ 이상이며 상대재와의 마찰 중 입자의 탈락이 발생하여 마찰 조절제의 역할을 상실하기 때문이다. 실리카 분말의 평균입도는 약250㎛가 바람직하다.The average particle size of the silica powder may be 100 to 350 μm. If the particle size is less than 100㎛, the sintering reaction is suppressed by increasing the volume due to the small specific gravity, which lowers the strength of the final friction material.It is more than 350㎛ and the particles fall out during friction with the counterpart to lose the role of the friction regulator. Because. The average particle size of the silica powder is preferably about 250 μm.

흑연분말의 평균입도는 44㎛ 내지 200㎛일 수 있다. 흑연 분말의 평균입도가 44㎛ 이하이면 마찰재의 밀도가 급격히 낮아져 기계적 강도에 문제가 발생하고, 200㎛이상에서는 마찰 중 입자의 탈락이 발생하기 때문이다. 흑연분말의 평균입도는 약 100㎛ 인 것이 바람직하다.The average particle size of the graphite powder may be 44 μm to 200 μm. This is because if the average particle size of the graphite powder is 44 µm or less, the density of the friction material is drastically lowered, which causes a problem in mechanical strength, and at 200 µm or more, the particles fall out during friction. The average particle size of the graphite powder is preferably about 100 mu m.

구리-주석 합금 분말의 입도는 마찰재의 밀도를 높이기 위하여 작을수록 좋으며 약 10 내지 70㎛일 수 있다.The particle size of the copper-tin alloy powder may be smaller to increase the density of the friction material and may be about 10 to 70 μm.

다음으로 마련된 혼합분말을 믹싱용액에 침지한다(S200). Next, the prepared mixed powder is immersed in the mixing solution (S200).

혼합분말에서 금속분말 이외의 실리카 분말, 흑연분말 및 탄소나노튜브는 밀도가 매우 작아서 금속 분말과의 밀도차로 균일한 믹싱이 불가능하다. 이를 해결하기 위하여 균일한 믹싱과 강도 증가를 목적으로 코팅제와 용매를 포함하는 믹싱용액에 혼합분말을 침지하여 믹싱한다. In the mixed powder, silica powder, graphite powder, and carbon nanotubes other than the metal powder are very small in density, and uniform mixing is not possible due to the density difference with the metal powder. In order to solve this problem, the mixed powder is immersed and mixed in a mixing solution containing a coating agent and a solvent for the purpose of uniform mixing and strength increase.

코팅제는 혼합분말의 각 성분의 균일한 혼합 및 성형체의 강도 증가를 위한 점결제 또는 바인더로서 파라핀 또는 왁스 등이 사용될 수 있다. 코팅제의 사용량은 혼합분말의 0.5 내지 5중량%일 수 있다. 코팅제의 사용량이 0.5 % 중량 이하이면 성형후 성형강도가 현저히 저하되어 성형체 취급이 매우 곤란하게 되며, 5중량 %이상이면 소결온도에서 동일 소결밀도를 나타내기 위한 소결시간이 길어져 생산성에 문제가 있고 소결밀도를 증가시키기 때문이다.The coating agent may be paraffin or wax or the like as a binder or binder for uniform mixing of each component of the mixed powder and increasing strength of the molded body. The amount of the coating agent may be 0.5 to 5% by weight of the mixed powder. If the amount of coating agent is 0.5% by weight or less, the molding strength is significantly reduced after molding, and handling of the molded body becomes very difficult. If it is 5% by weight or more, the sintering time for the same sintering density at the sintering temperature is prolonged. This is because the density is increased.

용매는 코팅제를 용해시킬 수 있는 물질이면 사용가능하며, 끓는 점이 낮은 것이 바람직하데 핵산 등이 사용될 수 있다. 용매의 부피는 혼합분말 부피의 50 내지 100%일 수 있다. 용매의 부피가50 % 이하이면 용매의 빠른 휘발 속도로 인하여 각 분말의 균일한 혼합을 위한 반죽에 소요되는 시간 확보가 곤란하고, 100 %이상이면 용매의 휘발에 걸리는 시간이 필요 이상으로 길어지기 때문이다. 용매의 사용량은 혼합분말 부피의 약 70 %가 바람직하다. 용매의 사용량은 사용되는 용매의 휘발성 등을 고려하여 조절될 수 있다.The solvent may be used as long as it is a substance capable of dissolving the coating agent, and a low boiling point may be used, but nucleic acid may be used. The volume of the solvent may be 50 to 100% of the volume of the mixed powder. If the volume of the solvent is 50% or less, it is difficult to secure the time required for the dough for uniform mixing of each powder due to the fast volatilization speed of the solvent, and if it is more than 100%, the time required for the volatilization of the solvent becomes longer than necessary. to be. The amount of the solvent used is preferably about 70% of the volume of the mixed powder. The amount of the solvent used may be adjusted in consideration of the volatility of the solvent used.

이상에서 설명한 혼합분말의 마련과 믹싱용액에서 침지는 다양하게 변형될 수 있다. 예를 들어 용매에 코팅제와 혼합분말의 각 성분을 차례로 투입하는 방법 등이 가능하다.The preparation of the mixed powder and the immersion in the mixing solution described above may be variously modified. For example, the method of putting each component of a coating agent and mixed powder into a solvent one by one is possible.

다음으로 용매를 휘발시키면서 혼합분말을 믹싱한다(S300).Next, the mixed powder is mixed while the solvent is volatilized (S300).

이 과정에서 용매는 자연 건조 그리고/또는 가열로 인해 제거되면서 혼합분말의 점도는 증가하게 된다. 한편 이 과정에서 코팅제의 작용으로 혼합분말의 각 성분은 서로 균일하게 혼합된다. 이 과정은 용매가 실질적으로 모두 제거될 때 까지 행해진다.In this process, the solvent is removed by natural drying and / or heating, increasing the viscosity of the mixed powder. Meanwhile, in the process, the components of the mixed powder are uniformly mixed with each other under the action of the coating agent. This process is performed until substantially all of the solvent is removed.

이 후 믹싱된 혼합분말을 일정한 형태로 성형하여 성형체를 제조한다(S400).Thereafter, the mixed powder is molded into a predetermined shape to produce a molded body (S400).

성형은 윤활제인 스테아린산 아연이 도포된 금형에 믹싱된 혼합분말을 장입하고 4 내지8 ton/cm2의 단압식 수직압력을 가하여 이루어진다. 이 과정을 통해 마찰재의 형태가 갖추어지나, 각 성분은 물리적으로만 결합되어 있는 상태이다.Molding is carried out by charging the mixed powder into a die coated with zinc stearate, a lubricant, and applying a pressurized vertical pressure of 4 to 8 ton / cm 2 . Through this process, the friction material is formed, but each component is physically combined only.

소결밀도 증가를 위하여 가능한 한 성형체 밀도를 증가시키는 것이 바람직하다. 프레스의 인가압력은 4 내지8 ton/cm2이 바람직한데, 그 이유는 4 ton/cm2 이하에서는 높은 성형밀도를 얻을 수 없으며, 8 ton/cm2 이상에서는 금형내부와 분말의 강한 마찰로 성형밀도의 증가에 한계가 나타나 그 이상의 성형압이 필요 없고, 오히려 10 cm2 이상의 단면적을 가지는 마찰재 성형을 위해서는 대형 프레스가 운용되어야 하므로 잦은 금형 파손의 우려가 있기 때문이다. It is desirable to increase the molded body density as much as possible to increase the sintered density. The applied pressure of the press is preferably 4 to 8 ton / cm 2 , because it is not possible to obtain a high molding density at 4 ton / cm 2 or less, and at 8 ton / cm 2 or more, it is formed by strong friction between the mold and powder. This is because there is a limit to the increase in density, so that no molding pressure is required, and a large press must be operated to form a friction material having a cross-sectional area of 10 cm 2 or more.

이후 성형체를 소결하여 마찰재를 완성한다(S500).After sintering the molded body to complete the friction material (S500).

소결은 진공분위기 또는 불활성 가스 분위기에 850 내지925 oC의 온도에서 1 내지3 시간 동안 이루어진다. 진공분위기의 경우 진공도는 10-5 torr이하일 수 있다. Sintering is carried out in a vacuum atmosphere or inert gas atmosphere at a temperature of 850 to 925 ° C. for 1 to 3 hours. In the case of a vacuum atmosphere, the degree of vacuum may be 10 −5 torr or less.

소결 온도가 850℃이하이며 1시간 이하로 이루어지면 소결밀도가 저하되고, 925℃이상이며 3시간 이상 이루어지면 금속표면과 흑연의 젖음성 불량으로 마찰재 형상의 변화 등으로 바람직하지 않는 결과를 초래할 수 있기 때문이다. 소결은 900 oC에서 1.5시간 이루어지는 것이 바람직하다.If the sintering temperature is 850 ℃ or less and less than 1 hour, the sintering density is lowered. If the sintering temperature is more than 925 ° C and more than 3 hours, the sintering temperature may be undesirable due to the change of the shape of the friction material due to the poor wettability of the metal surface and graphite. Because. Sintering is preferably performed at 900 ° C. for 1.5 hours.

실험예Experimental Example

이상 설명한 방법에 따라 마찰재를 제조하였으며, 흑연분말과 탄소나노튜브의 함량을 조절하여 실시예 1 내지 3과 비교예 1 내지 3의 마찰재를 제조하였다.A friction material was prepared according to the method described above, and the friction materials of Examples 1 to 3 and Comparative Examples 1 to 3 were prepared by controlling the content of graphite powder and carbon nanotubes.

마찰재 제조조건은 다음과 같다.The friction material manufacturing conditions are as follows.

혼합분말의 구성은 34㎛ 평균입도의 철 분말 17중량 %, 250㎛ 평균입도의 실리카 분말 9중량%, 50㎛ 평균입도의 구리-10%주석 합금을 사용하였으며 100㎛ 평균입도의 흑연분말의 함량과 탄소나노튜브의 함량은 조건에 따라 변경하였다.The mixed powder consisted of iron powder having a particle size of 34 μm, 17 wt% of iron powder, silica powder of 250 μm average particle size, 9 wt% of silica powder, and copper-10% tin alloy having an average particle size of 50 μm. And the contents of carbon nanotubes were changed according to the conditions.

코팅제로는 파라핀을 혼합분말의 2중량% 사용하였으며 용매로는 핵산을 혼합분말 부피의 70% 사용하였다. 성형압은 8kg/㎠이었으며 소결은 진공조건의 약 900℃에서 1.5시간 동안 행해졌다. Paraffin was used as a coating agent by weight of 2% by weight of the mixed powder and nucleic acid was used as the solvent by 70% of the volume of the mixed powder. The molding pressure was 8 kg / cm 2 and the sintering was carried out at about 900 ° C. under vacuum conditions for 1.5 hours.

완성된 마찰재는 도넛형태로서 외경 및 내경이 각각 26 mm, 20 mm이고, 높이는 20 mm로 동일하게 가공 제작하였고, 상대재는 탄소 3.62 중량 %, 실리콘 2.26 중량%, 망간 1.13 중량%, 인 0.034 % 중량 이하, 황 0.01 중량% 이하, 구리 0.027 중량% 이하, 크롬 0.024 중량% 이하, 마그네슘 0.039 중량% 를 함유하고 철 및 기타 불가피하게 함유되는 불순물로 구성되는 구상 흑연주철을 30 mm x 30 mm, 두께 5 mm의 판재로 가공하여 사용하였다.The finished friction material was donut-shaped, and the outer and inner diameters were 26 mm and 20 mm, respectively, and the same height was 20 mm. The counterparts were made of 3.62% by weight of carbon, 2.26% by weight of silicon, 1.13% by weight of manganese, and 0.034% by weight of phosphorus. 30 mm x 30 mm, thickness 5 of a spheroidal graphite cast iron comprising 0.01% by weight or less of sulfur, 0.027% by weight or less of copper, 0.024% by weight or less of chromium, 0.039% by weight of magnesium, and iron and other unavoidable impurities. The sheet was processed into mm and used.

마찰 실험에서는 상대재를 고정시키고, 상대재의 표면에 마찰재를 접촉, 회전시키도록 구성한 시험기를 사용하였다. 시험중 마찰재의 단면적에 일정한 하중이 걸리도록 설계하였다. 마찰재의 회전속도는 1000 rpm으로, 하중의 크기는 20 kg/cm2으로 고정하였다. In the friction test, a tester configured to fix the counterpart and contact and rotate the friction material on the surface of the counterpart was used. It was designed to apply a constant load to the cross section of the friction material during the test. The rotational speed of the friction material was fixed at 1000 rpm and the magnitude of the load was 20 kg / cm 2 .

표 1은 실시예와 비교예에 대한 실험결과이다.Table 1 shows the experimental results for the Examples and Comparative Examples.

[표 1]TABLE 1

Figure 112005056954761-pat00001
Figure 112005056954761-pat00001

상기 표 1에 나타난 바와 같이 탄소나노튜브가 포함되어 있지 않거나(비교예 1) 혹은 0.4 중량% 만 포함된 경우(비교예2)는 마찰시간이 증가함에 따라 마찰계수, 마모량 및 마찰면의 온도가 급격히 증가하는 것을 알 수 있다. 이와 같은 현상은 시험개시 600 초 후 마찰면 온도가 흑연의 사용온도인 450℃ 이상으로 상승함으로써 흑연의 윤활 기능이 저하되면서 나타난 결과로 판단된다. As shown in Table 1, when carbon nanotubes are not included (Comparative Example 1) or when only 0.4 wt% is included (Comparative Example 2), as the friction time increases, the coefficient of friction, the amount of wear and the temperature of the friction surface are increased. It can be seen that the increase rapidly. This phenomenon is judged to be the result of the lubrication function of the graphite is lowered after the friction surface temperature rises to 450 ℃ or more, the use temperature of graphite after 600 seconds from the test.

반면 탄소나노튜브의 함량이 각각 1중량%, 3 중량 %, 4중량%인 실시예 1, 2, 3은 시간에 따른 마찰면 온도 상승이 크지 않은 것으로 나타났다. 이는 탄소나노튜브가 열방출에 크게 기여하는 효과가 있음을 보여주고 있다. 이에 따라 마찰계수와 마모량에 있어서도 큰 변화가 나타나지 않았으며, 특히 사용량이 3 중량 %인 실시예 2에서 마찰면 온도, 마모율 및 마모량의 변화가 거의 없는 것으로 나타나 최적의 마찰 특성을 나타내고 있다.On the other hand, in Examples 1, 2, and 3, wherein the contents of the carbon nanotubes are 1% by weight, 3% by weight, and 4% by weight, respectively, it was found that the friction surface temperature increase was not large. This shows that carbon nanotubes have a significant contribution to heat dissipation. Accordingly, there was no significant change in the friction coefficient and the amount of wear. In particular, in Example 2, in which the amount of use was 3% by weight, almost no change in the friction surface temperature, the wear rate, and the amount of wear showed optimum friction characteristics.

한편 탄소나노튜브의 사용량이 6%인 비교예 3의 경우 시험개시 1500 초 시 편의 파손이 발생하여 마찰시험이 중단되었으며 마찰재 강도에 문제가 있음이 확인되었다. On the other hand, in the case of Comparative Example 3 in which the amount of carbon nanotubes used is 6%, a breakdown of the specimen started at 1500 seconds, the friction test was stopped, and it was confirmed that there was a problem in the friction material strength.

이상 설명한 본 발명에 따른 마찰재는 고온강도, 내마모성 및 마찰계수가 우수하여, 이에 한정되지는 않으나, 고속전철에 적용될 수 있다. The friction material according to the present invention described above is excellent in high temperature strength, wear resistance and coefficient of friction, but is not limited thereto, and may be applied to high speed trains.

상기한 바와 같이 본 발명에 따르면 고온강도, 내마모성 및 마찰계수가 우수한 마찰재가 제공된다. As described above, according to the present invention, a friction material having excellent high temperature strength, wear resistance, and friction coefficient is provided.

또한 본 발명에 따르면 고온강도, 내마모성 및 마찰계수가 우수한 마찰재의 제조방법이 제공된다.In addition, according to the present invention there is provided a method for producing a friction material excellent in high temperature strength, wear resistance and friction coefficient.

Claims (13)

마찰재에 있어서,In the friction material, 철 7 내지 27중량%, 실리카(SiO2) 4 내지 15중량%, 흑연 5 내지 30중량%, 탄소나노튜브 0.5 내지 5중량% 및 구리-주석 합금 58 내지 76 중량%로 이루어지는 마찰재.A friction material comprising 7 to 27% by weight of iron, 4 to 15% by weight of silica (SiO 2), 5 to 30% by weight of graphite, 0.5 to 5% by weight of carbon nanotubes and 58 to 76% by weight of a copper-tin alloy. 제1항에 있어서,The method of claim 1, 상기 구리-주석 합금에서 주석 함량은 5 내지 15중량%인 것을 특징으로 하는 마찰재.Friction material, characterized in that the tin content in the copper-tin alloy is 5 to 15% by weight. 마찰재의 제조방법에 있어서,In the manufacturing method of the friction material, 철 분말 7 내지 27중량%, 실리카(SiO2) 분말 4 내지 15중량%, 흑연 분말 5 내지 30중량%, 탄소나노튜브 0.5 내지 5중량% 및 구리-주석 합금 분말 58 내지 76 중량%를 포함하는 혼합분말을 코팅제와 용매를 포함하는 믹싱 용액에 침지하는 단계와;7 to 27 wt% iron powder, 4 to 15 wt% silica (SiO 2) powder, 5 to 30 wt% graphite powder, 0.5 to 5 wt% carbon nanotube and 58 to 76 wt% copper-tin alloy powder Immersing the powder in a mixing solution comprising a coating agent and a solvent; 상기 용매를 휘발시키면서 상기 혼합분말을 믹싱하는 단계와;Mixing the mixed powder while evaporating the solvent; 상기 믹싱된 혼합분말을 일정한 형태로 성형하는 단계와;Molding the mixed mixed powder into a predetermined form; 상기 성형된 혼합분말을 소결하는 단계를 포함하는 마찰재의 제조방법.Method for producing a friction material comprising the step of sintering the molded mixed powder. 제3항에 있어서,The method of claim 3, 상기 철 분말의 평균 입도는 10 내지 44㎛인 것을 특징으로 하는 마찰재의 제조방법.Method for producing a friction material, characterized in that the average particle size of the iron powder is 10 to 44㎛. 제3항에 있어서,The method of claim 3, 상기 실리카 분말의 평균 입도는 100 내지 350㎛인 것을 특징으로 하는 마찰재의 제조방법.Method for producing a friction material, characterized in that the average particle size of the silica powder is 100 to 350㎛. 제3항에 있어서,The method of claim 3, 상기 흑연 분말의 평균 입도는 44 내지 200㎛인 것을 특징으로 하는 마찰재의 제조방법.Method for producing a friction material, characterized in that the average particle size of the graphite powder is 44 to 200㎛. 제3항에 있어서,The method of claim 3, 상기 구리-주석 합금 분말의 평균 입도는 10 내지 70㎛이하인 것을 특징으로 하는 마찰재의 제조방법.Method of producing a friction material, characterized in that the average particle size of the copper-tin alloy powder is 10 to 70㎛ or less. 제3항에 있어서,The method of claim 3, 상기 코팅제는 파라핀인 것을 특징으로 하는 마찰재의 제조방법.The coating agent is a method of producing a friction material, characterized in that the paraffin. 제3항에 있어서,The method of claim 3, 상기 코팅제의 사용량은 상기 혼합분말의 0.5 내지 5중량%인 것을 특징으로 하는 마찰재의 제조방법.Method for producing a friction material, characterized in that the amount of the coating agent is 0.5 to 5% by weight of the mixed powder. 제3항에 있어서,The method of claim 3, 상기 용매의 부피는 상기 혼합분말 부피의 50 내지 100%인 것을 특징으로 하는 마찰재의 제조방법.The volume of the solvent is a method of producing a friction material, characterized in that 50 to 100% of the volume of the mixed powder. 제3항에 있어서,The method of claim 3, 상기 구리-주석 합금 분말에서 주석 함량은 5 내지 15중량%인 것을 특징으로 하는 마찰재의 제조방법.Tin content in the copper-tin alloy powder is a manufacturing method of a friction material, characterized in that 5 to 15% by weight. 제3항에 있어서,The method of claim 3, 상기 소결은 진공 분위기와 비활성 가스 분위기 중 어느 하나에서 수행되는 것을 특징으로 하는 마찰재의 제조방법.The sintering method of producing a friction material, characterized in that carried out in any one of a vacuum atmosphere and an inert gas atmosphere. 제3항에 있어서,The method of claim 3, 상기 소결은 850 내지 925℃에서 1 내지 3시간 동안 수행되는 것을 특징으로 하는 마찰재의 제조방법.The sintering method of producing a friction material, characterized in that carried out for 1 to 3 hours at 850 to 925 ℃.
KR1020050094665A 2005-10-08 2005-10-08 Friction material and manufacturing method of the same KR100682278B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050094665A KR100682278B1 (en) 2005-10-08 2005-10-08 Friction material and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050094665A KR100682278B1 (en) 2005-10-08 2005-10-08 Friction material and manufacturing method of the same

Publications (1)

Publication Number Publication Date
KR100682278B1 true KR100682278B1 (en) 2007-02-15

Family

ID=38106303

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050094665A KR100682278B1 (en) 2005-10-08 2005-10-08 Friction material and manufacturing method of the same

Country Status (1)

Country Link
KR (1) KR100682278B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872206B1 (en) * 2007-12-12 2008-12-09 주식회사 로얄초경 Method for manufacturing a friction member and a friction member made by the same
WO2010038944A2 (en) * 2008-09-30 2010-04-08 주식회사 로얄초경 Method for manufacturing friction member, and friction member manufactured by the method
KR101321287B1 (en) * 2011-04-08 2013-11-13 주식회사 로얄초경 Manufacturing method of brake disk using sintered metal friction materials and brake disk manufactured by the same method
CN103894598A (en) * 2014-03-07 2014-07-02 宁波瑞丰汽车零部件有限公司 Iron-based powder metallurgy large fan blade insert and production process thereof
KR101453446B1 (en) 2008-12-24 2014-10-23 재단법인 포항산업과학연구원 Sintered friction material having good stability and manufacturing method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262435A (en) * 1988-08-26 1990-03-02 Mazda Motor Corp Manufacture of friction member
JP2000328171A (en) 1999-05-25 2000-11-28 Akechi Ceramics Co Ltd Inorganic frictional material
US6612415B2 (en) 2000-08-01 2003-09-02 Nisshinbo Industries, Inc. Friction member and method of manufacture
KR20050033449A (en) * 2003-10-03 2005-04-12 보르그워너 인코퍼레이티드 Mixed deposit friction material
KR100491215B1 (en) 1999-10-20 2005-05-25 카알-차이스-스티프퉁 트레이딩 에즈 쇼옷트 그라스 Friction Lining for Braking System Components

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262435A (en) * 1988-08-26 1990-03-02 Mazda Motor Corp Manufacture of friction member
JP2000328171A (en) 1999-05-25 2000-11-28 Akechi Ceramics Co Ltd Inorganic frictional material
KR100491215B1 (en) 1999-10-20 2005-05-25 카알-차이스-스티프퉁 트레이딩 에즈 쇼옷트 그라스 Friction Lining for Braking System Components
US6612415B2 (en) 2000-08-01 2003-09-02 Nisshinbo Industries, Inc. Friction member and method of manufacture
KR20050033449A (en) * 2003-10-03 2005-04-12 보르그워너 인코퍼레이티드 Mixed deposit friction material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872206B1 (en) * 2007-12-12 2008-12-09 주식회사 로얄초경 Method for manufacturing a friction member and a friction member made by the same
WO2010038944A2 (en) * 2008-09-30 2010-04-08 주식회사 로얄초경 Method for manufacturing friction member, and friction member manufactured by the method
WO2010038944A3 (en) * 2008-09-30 2010-06-17 주식회사 로얄초경 Method for manufacturing friction member, and friction member manufactured by the method
KR101453446B1 (en) 2008-12-24 2014-10-23 재단법인 포항산업과학연구원 Sintered friction material having good stability and manufacturing method of the same
KR101321287B1 (en) * 2011-04-08 2013-11-13 주식회사 로얄초경 Manufacturing method of brake disk using sintered metal friction materials and brake disk manufactured by the same method
CN103894598A (en) * 2014-03-07 2014-07-02 宁波瑞丰汽车零部件有限公司 Iron-based powder metallurgy large fan blade insert and production process thereof
CN103894598B (en) * 2014-03-07 2016-05-25 宁波瑞丰汽车零部件有限公司 A kind of ferrous based powder metallurgical big blade inserts and production technology thereof

Similar Documents

Publication Publication Date Title
KR100187616B1 (en) Sintered friction material composite copper alloy powder used therefor and manufacturing method thereof
JP6503229B2 (en) Method of manufacturing sintered friction material for high speed railway vehicle
EP3569672B1 (en) Sintered metal friction material
CN110832049B (en) Sintered friction material and method for producing sintered friction material
KR100682278B1 (en) Friction material and manufacturing method of the same
JP5363081B2 (en) Metallurgical powder, dust core, metallurgical powder manufacturing method and dust core manufacturing method
JP6760807B2 (en) Copper-based sintered alloy oil-impregnated bearing
JP6440297B2 (en) Cu-based sintered bearing
JP2006063400A (en) Aluminum-based composite material
JP6935503B2 (en) Sintered oil-impregnated bearing
JP3800510B2 (en) Powder compact, method for producing the same, and method for producing a porous sintered body
JP6461626B2 (en) Manufacturing method of sliding member
JP4359409B2 (en) Metal composite and method for producing the same
JP2019163540A (en) Sinter friction material for high speed railway vehicle
KR20110074003A (en) Sintered friction material and manufacturing method of the same
JP4214352B2 (en) Al-based composite material for brake disc and manufacturing method thereof
CN108883472B (en) Cu-based sintered sliding material and method for producing same
CN110871269B (en) Alloy powder composition
JP2009007433A (en) Copper-based oil-containing sintered sliding member and method for producing the same
JP2009126903A (en) Solid lubricant
CN104968837A (en) Metallic composite material for a sliding bearing comprising a metallic support layer
KR101453446B1 (en) Sintered friction material having good stability and manufacturing method of the same
CN112996878B (en) Sintered friction material and method for producing sintered friction material
KR0162018B1 (en) Cu-based sintered friction material and method of producing the same
WO2023157637A1 (en) Sintered metal friction material, and method for manufacturing same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130207

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140207

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150807

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee