JPS6330526B2 - - Google Patents

Info

Publication number
JPS6330526B2
JPS6330526B2 JP58110495A JP11049583A JPS6330526B2 JP S6330526 B2 JPS6330526 B2 JP S6330526B2 JP 58110495 A JP58110495 A JP 58110495A JP 11049583 A JP11049583 A JP 11049583A JP S6330526 B2 JPS6330526 B2 JP S6330526B2
Authority
JP
Japan
Prior art keywords
solid lubricant
fine
fibers
short fibers
fine short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58110495A
Other languages
Japanese (ja)
Other versions
JPS604619A (en
Inventor
Kenzo Hanawa
Kyoshi Suzuki
Takeo Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shingijutsu Kaihatsu Jigyodan filed Critical Shingijutsu Kaihatsu Jigyodan
Priority to JP11049583A priority Critical patent/JPS604619A/en
Publication of JPS604619A publication Critical patent/JPS604619A/en
Publication of JPS6330526B2 publication Critical patent/JPS6330526B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/28Brasses; Bushes; Linings with embedded reinforcements shaped as frames or meshed materials

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は自己潤滑性摺動材とりわけ繊維焼結型
の自己潤滑性摺動材の製造法に関するものであ
る。耐摩耗材たとえばすべり軸受は各種工作機械
や運動機構の相対スライド面に用いられ、その用
途に応じて各種潤滑剤が選定されているが、使用
目的や組込み場所によつては潤滑剤とくに潤滑油
の供給が不可能となる場合がある。この対策とし
て、自己潤滑性を持つ軸受が開発され、具体的に
は、軸受材のマトリツクス材を多孔質体として内
部にオイルを含浸、封入したものや、マトリツク
ス材中に炭素や二硫化モリブデンなどの固体潤滑
剤を分散させたものがあるが、オイルの飛散を嫌
い、かつ高圧縮荷重に耐えることを目的とする場
合には、後者の固体潤滑剤によるものが望まし
い。 この固体潤滑剤を分散させた摺動材は、摩擦係
数が低く(固体潤滑剤の含有量が多い)、耐圧縮
荷重や引張り強度などが良好で、製作が容易かつ
安価に行える特性を備えていることが必要である
が、従来ではこれらの目的を十分に達成すること
が難しかつた。 すなわち、マトリツクス材中に固体潤滑剤を分
散する方法として、従来では一般に、ブツシユ状
の固体潤滑剤を溶製材からなる母材に圧入する手
法が採られている。この方法は溶製材で母材を作
り、これに穿孔加工して別途製造した固体潤滑剤
を埋込む関係から、孔間隔の制約などにより摩擦
係数の向上には自ら限度があり、全域に緻密な潤
滑面を構成し得ない。また、製作上も工数が多く
煩雑な機械加工を必要とするためコストが高いと
いう欠点がある。固体潤滑剤を分散する他の手法
として粉末冶金的手法があるが、従来では固体潤
滑剤を多量に含有させると、成形性、焼結性及び
強度の低下が著しく、条件を良くしても15wt%、
実用的には10wt%程度が限度で十分とはいえず、
そこで一般に前者のブツシユ状固体潤滑剤圧入方
式が用いられていたものである。 本発明は前記のような問題点を解消するために
研究して創案されたもので、その目的とするとこ
ろは、固体潤滑剤を20〜50wt%と高含有率でし
かも均一に分散しかつ強度も良好で、形状の自由
度も高い自己潤滑性摺動材を簡易な工程で安価に
量産することができる方法を提供することにあ
る。 この目的を達成するため本発明は、マトリツク
ス材として母材をビビリ振動切削して製造したア
スペクト比がほぼ4〜70の範囲の微細金属短繊維
を用い、この微細金属短繊維を粉状の固体潤滑剤
と混合し加圧成形して微細短繊維の多層網目状骨
格に固体潤滑剤を分散封入した組織を作り、次い
で焼結して固体潤滑剤を包埋固定するようにした
ものである。 以下本発明の実施例を添付図面に基いて説明す
る。 第1図は本発明により得られた繊維焼結型自己
潤滑性摺動材を例示するもので、スリーブ状、板
ないし盤状、リング状、レール状その他任意の形
状をなし、少なくとも一面に軸などに対する接触
面11が形成されている。第2図は第1図の摺動
材の断面を拡大して示すもので、繊維多孔質体を
骨格としてその中に粒状の固体潤滑剤が分散され
た焼結組織、さらにくわしくは、第2a図のごと
く互いに表面が溶着結合した微細短繊維1と、こ
の互いに溶着した微細短繊維1に形成された連成
空孔3に閉じ込められた固体潤滑剤2とからなつ
ている。 しかして、本発明は自己潤滑性摺動材を得るに
当たりマトリツクス材として粉末を用いず、微細
な短繊維とりわけ、びびり振動切削方式により母
材金属から直接分離創成したアスペクト比が約4
〜70の短繊維を用いる。母材金属は、鋳鉄をはじ
めとする鉄系金銅、黄銅や青銅などの銅合金、ジ
ユラルミンなどのアルミニウム合金など目的に応
じた任意のものが用いられる。 マトリツクス材として金属粉末を用いた場合に
は、これがほぼ球に近い形状(粒子)をなしてい
ることから、高い成形圧を要するうえに、金型等
による圧粉成形に際し、成形可能な範囲で加圧力
を最小としても成形体空孔率が低い。したがつ
て、多量の固体潤滑剤を混合すると、マトリツク
ス粉同志の接触が妨げられると共に、固体潤滑剤
の偏析が生じる。そこで本発明はマトリツクス材
として微細短繊維を用いるものであるが、この微
細短繊維として単純に機械加工により生じた切屑
を粉砕したようなものを用いた場合には、粉砕中
の接触で丸みを帯びた粉となり、寸法や物性の揃
つた良好なものが得られず、所期の目的が達成さ
れない。また、引き抜き法などにより得られた極
細ワイヤを切断して使用することも考えられる
が、目的に合致する極細のワイヤはきわめて高価
であり、また、所定長さに均一に切断することも
困難である。 本発明者らにより研究と実験を重ねた結果、微
細短繊維として、とくにびびり振動切削により製
造した特定の短繊維が有効であつた。すなわち、
柱状などをなす母材金属を回転させつつこれの表
面に弾性工具を当て、この弾性工具に所定の微少
な送りを与えながら、びびり振動を積極的に発生
させ、びびり1サイクルごとに母材の表層を強制
的に分断して繊維化するもので、微細でかつ均一
な寸法諸元のものが多量生産される。このびびり
振動切削による繊維は加工硬化により母材強度以
上の強さを示し、乾式で母材から直接分離創成す
るため表面酸化物も少なく、断面平滑面と破さい
面及び粗面からなる三角形類似をなし、表面積が
大きいと共に、平滑面の存在などにより分散性が
良い。しかも、接合に対する活性度が非常に高
い。 ただ、このようなびびり振動切削で製造した繊
維を用いるというだけでは十分とはいえない。そ
れは、一般に繊維は粒子よりも流動性が低いた
め、成形金型などへの充填時に問題があり、固体
潤滑剤との分離を生じさせやすいからであり、こ
れを避けるため繊維寸法を小さくすると粉に近く
なつて、強度や高含有率化を達成することが難し
くなる。本発明者らの検討によれば、びびり振動
切削により製造した微細短繊維をアスペクト比ほ
ぼ4〜70にすると、流動性、成形性、焼結性など
すべての面で満足でき、固体潤滑剤を高い含有率
で均一に封じ込めることができた。アスペクト比
(長さ(l)/太さ(d))が4未満では粒子に近くなり
すぎ、点的な接触となるため、成形圧を高くして
も固体潤滑剤を多量に分散できない。逆にアスペ
クト比が70を越えるような場合には、固体潤滑剤
との混合が不均一化しやすくなると共に、混合時
にフアイバーボールと称する塊を作りやすくな
り、良好な品質の摺動材が得られない。 製造条件を含めた微細短繊維の若干例を示すと
下記第1表のごとくである。
The present invention relates to a method for producing a self-lubricating sliding material, particularly a fiber sintered type self-lubricating sliding material. Wear-resistant materials For example, sliding bearings are used on the relative sliding surfaces of various machine tools and motion mechanisms, and various lubricants are selected depending on the application. Supply may become impossible. As a countermeasure to this problem, bearings with self-lubricating properties have been developed. Specifically, bearings with a porous matrix material impregnated with oil and those with carbon or molybdenum disulfide contained in the matrix material have been developed. There are solid lubricants dispersed in the latter type of solid lubricant, but if the purpose is to avoid oil scattering and to withstand high compressive loads, the latter solid lubricant is preferable. Sliding materials in which this solid lubricant is dispersed have a low coefficient of friction (high solid lubricant content), good compressive load resistance and tensile strength, and are easy and inexpensive to manufacture. However, it has been difficult to fully achieve these objectives in the past. That is, as a method for dispersing a solid lubricant in a matrix material, a conventional method has generally been adopted in which a bush-shaped solid lubricant is press-fitted into a base material made of molten material. In this method, the base material is made from melted lumber, and the solid lubricant produced separately is drilled into this material. Therefore, there is a limit to the improvement of the coefficient of friction due to restrictions on hole spacing, etc. It cannot form a lubricated surface. In addition, there is a drawback that the manufacturing cost is high because it requires a large number of man-hours and complicated machining. Powder metallurgy is another method for dispersing solid lubricants, but conventionally, when a large amount of solid lubricant is included, formability, sinterability, and strength are significantly reduced, and even under good conditions, the powder metallurgy method %,
Practically speaking, a limit of about 10 wt % is not sufficient;
Therefore, the former method of press-fitting solid lubricant in the form of a bush has generally been used. The present invention was developed through research to solve the above-mentioned problems, and its purpose is to uniformly disperse solid lubricant at a high content of 20 to 50 wt%, and to improve strength. It is an object of the present invention to provide a method for mass-producing a self-lubricating sliding material having good properties and a high degree of freedom in shape through a simple process and at low cost. In order to achieve this object, the present invention uses fine short metal fibers with an aspect ratio of approximately 4 to 70, which are produced by vibration cutting of a base material, as a matrix material, and converts these fine metal short fibers into powder-like solids. It is mixed with a lubricant and press-molded to create a structure in which the solid lubricant is dispersed and encapsulated in a multilayer network-like skeleton of fine short fibers, and then sintered to embed and fix the solid lubricant. Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows an example of a fiber sintered self-lubricating sliding material obtained by the present invention, which has the shape of a sleeve, plate or disc, ring, rail, or any other shape, and has a shaft on at least one surface. A contact surface 11 is formed. FIG. 2 shows an enlarged cross-section of the sliding material shown in FIG. As shown in the figure, it consists of short fine fibers 1 whose surfaces are welded to each other and a solid lubricant 2 trapped in interconnected pores 3 formed in the short fine fibers 1 welded to each other. Therefore, in order to obtain a self-lubricating sliding material, the present invention does not use powder as a matrix material, but uses fine short fibers, in particular, directly separated from the base metal by a chatter vibration cutting method, and has an aspect ratio of about 4.
~70 short fibers are used. As the base metal, any base metal can be used depending on the purpose, such as iron-based gold-copper such as cast iron, copper alloys such as brass and bronze, and aluminum alloys such as duralumin. When metal powder is used as a matrix material, it has an almost spherical shape (particles), so it requires high molding pressure, and when compacting with a mold etc., it is difficult to The porosity of the compact is low even at the minimum pressure. Therefore, if a large amount of solid lubricant is mixed, contact between the matrix powders will be hindered and the solid lubricant will segregate. Therefore, the present invention uses fine short fibers as the matrix material, but if the fine short fibers are simply crushed chips generated by machining, the roundness will be lost due to contact during crushing. This results in a cloudy powder, making it impossible to obtain a product with uniform dimensions and physical properties, and the intended purpose cannot be achieved. It is also possible to cut and use ultra-fine wires obtained by drawing methods, but ultra-fine wires that meet the purpose are extremely expensive, and it is also difficult to cut them uniformly to a predetermined length. be. As a result of repeated research and experiments by the present inventors, it was found that specific short fibers produced by chatter vibration cutting were particularly effective as fine short fibers. That is,
An elastic tool is applied to the surface of a base metal in the form of a column while rotating, and while giving a predetermined minute feed to this elastic tool, chatter vibration is actively generated, causing vibrations of the base metal with each cycle of chatter. The surface layer is forcibly divided into fibers, and fine and uniform dimensions are produced in large quantities. The fibers produced by chatter vibration cutting exhibit strength greater than the strength of the base material due to work hardening, and because they are created directly from the base material in a dry process, there are few surface oxides, and the cross section resembles a triangle consisting of a smooth surface, a fractured surface, and a rough surface. It has a large surface area and has good dispersibility due to the presence of a smooth surface. Furthermore, the activity for bonding is extremely high. However, it is not sufficient to simply use fibers produced by such chatter vibration cutting. This is because fibers generally have lower fluidity than particles, which causes problems when filling molds, etc., and tends to separate from the solid lubricant.To avoid this, reducing the size of the fibers causes , it becomes difficult to achieve strength and high content. According to the studies of the present inventors, when the aspect ratio of fine short fibers produced by chatter vibration cutting is approximately 4 to 70, all aspects such as fluidity, formability, and sinterability are satisfied, and solid lubricants are not used. Uniform containment was possible at a high content rate. When the aspect ratio (length (l)/thickness (d)) is less than 4, the solid lubricant cannot be dispersed in a large amount even if the molding pressure is increased because the particles become too close to particles and point contact occurs. On the other hand, if the aspect ratio exceeds 70, the mixture with the solid lubricant tends to become uneven, and lumps called fiber balls tend to form during mixing, making it difficult to obtain a sliding material of good quality. do not have. Some examples of fine short fibers including manufacturing conditions are shown in Table 1 below.

【表】 しかして本発明は、前記のような特定の微細短
繊維1と固体潤滑剤たとえば黒鉛(鱗片状,塊
状)、二硫化モリブデンなどの粉2をボールミル
その他任意の容体に装入し、手動又は機械的に撹
拌混合する。アスペクト比が適当であるため微細
短繊維1は適度にからみ合い、固体潤滑剤2は比
重が異なるにもかかわらず均一に分散され、第3
図のような混合組織となる。 次いで微細短繊維1と固体潤滑剤2との混合物
4を成形手段たとえば第3図のような金型5に充
填し、所望の圧力で加圧する。このときの加圧力
はマトリツクス材として粉を用いる場合に比べて
低くて済むため、小容量のプレスで足りる。この
ようにして成形体を得たのち、水素などの還元性
雰囲気あるいは不冶性雰囲気にて加熱し、焼結を
行う。 この焼結は、圧粉体焼結の場合に比べかなり低
い温度で迅速に行われる。その理由は必ずしも明
らかでないが、微細短繊維の表面が清浄であると
共に接合に対する活性度が高く、表面積が大き
く、かつ適正なアスペクト比により繊維同志のか
らみあいがほどよいためであると考えられる。 以上の工程で第1図および第2図に示すような
自己潤滑性摺動材となるが、必要に応じて焼結後
に再圧縮又は/及び再焼結を行つてもよく、これ
により密度や強度の向上を図ることができる。 本発明による自己潤滑性摺動材は、びびり振動
切削により製造したアスペクト比4〜70の微細短
繊維に固体潤滑剤を添加混合して、成形、焼結
し、微細短繊維の焼結組織に固体潤滑剤を含有し
た構成としたので、粉末のような点接触でなく線
接触と繊維のからみ合いにより低い成形圧できわ
めて高い空孔率をもつた多層網目状骨格が形成さ
れ、その骨格間が連成空孔であることにより、配
合した固体潤滑剤が多量かつ均一に分散封入され
る。 また、アスペクト比が適正であることから塊を
形成することなく成形手段中に容易に充填でき、
成形後の焼結も、多量の固体潤滑剤を含んでいる
にもかかわらず、粉状マトリツクスの場合よりも
低い温度で焼結される。そして、強度も十分なも
のが得られ、固体潤滑剤の保持力も強く、金属性
が残存しているため耐衝撃性も良好で、欠けなど
が生じにくいなどのすぐれた特性が得られる。 次に本発明の実施例を示す。 実施例 本発明により自己潤滑性すべり軸受を製造
し、あわせて比較のためマトリツクス材として
粉体を用いて上記すべり軸受を製造した。 金属母材としては、下記第2表に示す成分の
鋳鉄を用い、第1表に示す試料1〜6の微細短
繊維をびびり振動切削法により創成した。一
方、鋳鉄粉は第2表のFC15級鋳物切粉を粉砕
し#120〜に分級したものを用いた。固体潤滑
剤としては、市販の黒鉛粉を用いた。
[Table] Therefore, in the present invention, the specific fine short fibers 1 as described above and a powder 2 of a solid lubricant such as graphite (scaly, lumpy), molybdenum disulfide, etc. are charged into a ball mill or other arbitrary container, Stir and mix manually or mechanically. Since the aspect ratio is appropriate, the fine short fibers 1 are appropriately entangled, and the solid lubricant 2 is uniformly dispersed despite having different specific gravity, and the third
The result is a mixed structure as shown in the figure. Next, the mixture 4 of the fine short fibers 1 and the solid lubricant 2 is filled into a molding means, for example a mold 5 as shown in FIG. 3, and pressed at a desired pressure. The pressing force at this time is lower than that when powder is used as the matrix material, so a small-capacity press is sufficient. After obtaining the compact in this manner, it is heated in a reducing atmosphere such as hydrogen or an inert atmosphere to perform sintering. This sintering is carried out quickly and at a much lower temperature than in the case of green compact sintering. The reason for this is not necessarily clear, but it is thought that this is because the surface of the fine short fibers is clean, has a high bonding activity, has a large surface area, and has a suitable aspect ratio that allows the fibers to intertwine moderately. The above steps result in a self-lubricating sliding material as shown in Figures 1 and 2, but if necessary, re-compression and/or re-sintering may be performed after sintering, thereby increasing the density. Strength can be improved. The self-lubricating sliding material according to the present invention is produced by adding and mixing a solid lubricant to fine short fibers with an aspect ratio of 4 to 70 produced by chatter vibration cutting, molding and sintering, and forming a sintered structure of the fine short fibers. Because the structure contains a solid lubricant, a multilayer network skeleton with extremely high porosity is formed at low molding pressure due to line contact and fiber entanglement, rather than point contact like powder, and the Since these are interconnected pores, a large amount of the blended solid lubricant is uniformly dispersed and encapsulated. In addition, since the aspect ratio is appropriate, it can be easily filled into the molding means without forming lumps.
Sintering after shaping is also carried out at a lower temperature than in the case of powdered matrices, despite the presence of a large amount of solid lubricant. In addition, it has excellent properties such as sufficient strength, strong solid lubricant retention, good impact resistance due to remaining metallic properties, and resistance to chipping. Next, examples of the present invention will be shown. EXAMPLE A self-lubricating sliding bearing was manufactured according to the present invention, and for comparison, the above-mentioned sliding bearing was also manufactured using powder as a matrix material. Cast iron having the components shown in Table 2 below was used as the metal base material, and fine short fibers of Samples 1 to 6 shown in Table 1 were created by a chatter vibration cutting method. On the other hand, as cast iron powder, FC15 grade casting chips shown in Table 2 were crushed and classified into #120 and above. Commercially available graphite powder was used as the solid lubricant.

【表】 上記マトリツクス材を容器に入れ、これに黒
鉛を10〜50wt%添加し、約10分機械的に撹拌
し、金型に充填後成形圧力60Kg/mm2で成形し、
焼結温度1140℃、焼結時間30min、水素気流中
で加熱焼結した。 得られたすべり軸受から引張り試験片を作
り、引張り試験を行つた結果を示すと第5図の
とおりであり、本発明は20wt%の黒鉛添加で
も約3Kg/mm2の引張り強さを示し、50wt%
(77VoC%)の添加でも0.5Kg/mm2の引張り強度
が得られている。これに対し鋳鉄粉を用いた場
合には、20wt%の添加ではなんとか成形でき
ても、焼結されず、30wt%以上の添加では成
形不可能であつた。 本発明の場合、マトリツクス材としてびびり
振動切削によるすぐれた特性を持つ微細短繊維
を用い、かつアスペクト比を適正化しているた
め、比重が3倍も違うにもかかわらず均一に混
合し、成形性、焼結性が良好である。これを検
討するため、面圧80Kg/mm2で成形した場合の焼
結温度と引張り強さの関係を見てみた。第6図
から明らかなように、鋳鉄粉の場合は1110℃以
上で焼結しなければならず、最高の引張り強さ
は約42Kg/mm2である。これに対し本発明は、同
じ成分のマトリツクス材を用いるにもかかわら
ず、950℃で焼結しても25〜30Kg/mm2の強度が
得られている。 また、焼結温度1140℃、焼結時間30minと
し、成形圧力を20〜80Kg/mm2とした場合の引張
り強さへの影響を見たのが第7図である。この
第7図から明らかなように、本発明は20Kg/mm2
という低い成形圧力で引張り強さ20Kg/mm2が得
られている。 本発明のすべり軸受について、300Kg/cm2
上の荷重、50m/minを越える速度条件で使用
したか、摺動方向がスライド、回転のいずれの
場合にも良好な潤滑性と耐久性が得られた。 実施例 2 第1表に示される試料1〜6の微細短繊維を青
銅で作り、黒鉛粉を混合したのち成形,焼結して
すべり軸受を得た。予め繊維のみを成形したとこ
ろ、成形圧力140Kg/cm2で空孔率80%、5000Kg/
cm2で20%であり、50%の黒鉛粉を添加して水素雰
囲気中で810℃にて焼結したところ、引張り強さ
約3Kg/mm2を持つすべり軸受が得られた。 黄銅、アルミニウム合金についても同様な結果
が示された。 以上説明した本発明によるときには、母材をび
びり振動切削して得た微細短繊維で特にアスペク
ト比がほぼ4〜70の範囲のものをマトリツクス材
として使用し、この微細金属短繊維を粉状の固体
潤滑剤と混合し加圧成形して微細短繊維の多層網
目状骨格に固体潤滑剤を分散封入した組織を作
り、次いで焼結して固体潤滑剤を包埋固定するよ
うにしたので、次のような優れた効果が得られ
る。 微細で均一な寸法諸元と加工硬化による良好
な強度を持ち、表面積が大きくかつ表面酸化物
が少なく活性度も高くしかも適正なアスペクト
比の金属短繊維を用いるため、優れた特性の微
細な三次元的網状骨格組織を形成できるととも
に、この微細な骨格中に不純物の介在なしに多
量の固体潤滑剤を均一分散して包埋できる。そ
のため、潤滑性が全面で均一できめ細かく、強
度もすぐれた自己潤滑性摺動材とすることがで
きる。 予め人為的に空孔を形成した材料に固体潤滑
剤を充填するのでなく、固体潤滑剤との混合、
加圧成形により微細な網目状骨格の形成と固体
潤滑剤の分散封入が行われるので、製造工程が
簡単であるとともに、形状の自由度も高く、前
記適正アスペクト比の設定により低い成形圧と
焼結温度、短い処理時間で所望形状の摺動材を
量産することができ、これによりコスト低減を
図ることができる。
[Table] Place the above matrix material in a container, add 10 to 50 wt% of graphite, stir mechanically for about 10 minutes, fill it into a mold, and then mold at a molding pressure of 60 kg/mm 2 .
Sintering was carried out in a hydrogen stream at a sintering temperature of 1140°C and a sintering time of 30 min. A tensile test piece was made from the obtained sliding bearing, and the results of the tensile test are shown in Fig. 5, and the present invention shows a tensile strength of about 3 Kg/mm 2 even with the addition of 20 wt% graphite. 50wt%
Even with the addition of (77VoC%), a tensile strength of 0.5Kg/mm 2 was obtained. On the other hand, when cast iron powder was used, even though it could be molded with an addition of 20 wt%, it was not sintered, and molding was impossible with an addition of 30 wt% or more. In the case of the present invention, fine short fibers with excellent properties obtained by chatter vibration cutting are used as the matrix material, and the aspect ratio is optimized, so even though the specific gravity differs by three times, it can be mixed uniformly and has good moldability. , good sinterability. To examine this, we looked at the relationship between sintering temperature and tensile strength when molded at a surface pressure of 80 kg/mm 2 . As is clear from FIG. 6, cast iron powder must be sintered at a temperature of 1110° C. or higher, and its maximum tensile strength is about 42 Kg/mm 2 . In contrast, the present invention achieves a strength of 25 to 30 Kg/mm 2 even when sintered at 950°C, despite using matrix materials with the same components. Furthermore, Fig. 7 shows the effect on tensile strength when the sintering temperature was 1140°C, the sintering time was 30 min, and the molding pressure was 20 to 80 kg/mm 2 . As is clear from FIG. 7, the present invention
A tensile strength of 20 kg/mm 2 was obtained at such a low molding pressure. The sliding bearing of the present invention exhibits good lubricity and durability when used under load conditions of 300 kg/cm 2 or higher, speeds exceeding 50 m/min, or when the sliding direction is sliding or rotating. Ta. Example 2 Fine short fibers of Samples 1 to 6 shown in Table 1 were made of bronze, mixed with graphite powder, then molded and sintered to obtain a plain bearing. When only the fibers were molded in advance, the porosity was 80% and 5000 kg/ cm2 at a molding pressure of 140 kg/cm2.
By adding 50% graphite powder and sintering it at 810°C in a hydrogen atmosphere, a plain bearing with a tensile strength of about 3 Kg/mm 2 was obtained. Similar results were shown for brass and aluminum alloys. According to the present invention as described above, fine short fibers obtained by chatter vibration cutting of a base material, especially those with an aspect ratio in the range of approximately 4 to 70, are used as a matrix material, and these fine metal short fibers are processed into powdered short metal fibers. We mixed it with a solid lubricant and pressure-molded it to create a structure in which the solid lubricant was dispersed and encapsulated in a multilayer network skeleton of fine short fibers, and then sintered it to embed and fix the solid lubricant. Excellent effects can be obtained. Fine tertiary fibers with excellent characteristics are used, which have fine and uniform dimensions and good strength due to work hardening, and have a large surface area, low surface oxides, high activity, and an appropriate aspect ratio. Not only can an original network-like skeleton structure be formed, but also a large amount of solid lubricant can be uniformly dispersed and embedded in this fine skeleton without the presence of impurities. Therefore, a self-lubricating sliding material with uniform and fine lubricity over the entire surface and excellent strength can be obtained. Instead of filling a solid lubricant into a material with artificial pores formed in advance, mixing it with a solid lubricant,
Pressure molding forms a fine mesh skeleton and disperses and encapsulates solid lubricant, so the manufacturing process is simple and has a high degree of freedom in shape, and by setting the appropriate aspect ratio, low molding pressure and sintering can be achieved. Sliding materials in desired shapes can be mass-produced at a low temperature and in a short processing time, thereby reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による繊維焼結型自己潤滑性摺
動材の製造法により得られた自己潤滑性摺動材の
一例を示す斜視図、第2図は同じくその一部組織
を模式的に示す断面図、第2a図は同じくその部
分図、第3図は混合状態を示す断面図、第4図は
成形工程を示す断面図、第5図は本発明の実施例
における固体潤滑剤配合率と引張り強さの関係を
示すグラフ、第6図は焼結温度と引張り強さの関
係を示すグラフ、第7図は成形圧力と引張り強さ
の関係を示すグラフである。 1……微細短繊維、2……固体潤滑剤、3……
連成空孔。
Fig. 1 is a perspective view showing an example of a self-lubricating sliding material obtained by the method for manufacturing a fiber sintered self-lubricating sliding material according to the present invention, and Fig. 2 is a schematic diagram of a part of the structure. 2a is a partial view thereof, FIG. 3 is a sectional view showing the mixing state, FIG. 4 is a sectional view showing the molding process, and FIG. 5 is a solid lubricant blending ratio in an example of the present invention. FIG. 6 is a graph showing the relationship between sintering temperature and tensile strength, and FIG. 7 is a graph showing the relationship between molding pressure and tensile strength. 1...Fine short fibers, 2...Solid lubricant, 3...
Coupled vacancy.

Claims (1)

【特許請求の範囲】[Claims] 1 マトリツクス材として母材をビビリ振動切削
して製造したアスペクト比がほぼ4〜70の範囲の
微細金属短繊維を用い、この微細金属短繊維を粉
状の固体潤滑剤と混合し加圧成形して微細短繊維
の多層網目状骨格に固体潤滑剤を分散封入した組
織を作り、次いで焼結して固体潤滑剤を包埋固定
することを特徴とする繊維焼結型自己潤滑性摺動
材の製造方法。
1. Fine short metal fibers with an aspect ratio in the range of approximately 4 to 70 are used as the matrix material by vibration-cutting the base material, and these fine short metal fibers are mixed with powdered solid lubricant and then pressure-molded. A fiber sintered self-lubricating sliding material characterized in that a structure is created in which a solid lubricant is dispersed and encapsulated in a multilayer network skeleton of fine short fibers, and then the solid lubricant is embedded and fixed by sintering. Production method.
JP11049583A 1983-06-20 1983-06-20 Sintered-fiber type self-lubricating slidable member Granted JPS604619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11049583A JPS604619A (en) 1983-06-20 1983-06-20 Sintered-fiber type self-lubricating slidable member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11049583A JPS604619A (en) 1983-06-20 1983-06-20 Sintered-fiber type self-lubricating slidable member

Publications (2)

Publication Number Publication Date
JPS604619A JPS604619A (en) 1985-01-11
JPS6330526B2 true JPS6330526B2 (en) 1988-06-20

Family

ID=14537199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11049583A Granted JPS604619A (en) 1983-06-20 1983-06-20 Sintered-fiber type self-lubricating slidable member

Country Status (1)

Country Link
JP (1) JPS604619A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421004A (en) * 1987-07-17 1989-01-24 Sintokogio Ltd Production of self-lubricating composite material
JPS6473007A (en) * 1987-09-12 1989-03-17 Sintokogio Ltd Manufacture of metal and fiber metallugically sintered composite material
KR101858143B1 (en) * 2011-12-23 2018-05-16 두산공작기계 주식회사 Sliding matrials comprising solid lubricants with non­spherical shape
CN108612759B (en) * 2018-07-09 2020-06-23 武汉科技大学 Tilting thrust pad bearing with micro-texture area and sliding surface
FR3091734B1 (en) * 2019-01-11 2022-06-17 Skf Svenska Kullagerfab Ab Slide bearing with improved wear resistance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532309A (en) * 1976-06-29 1978-01-11 Hitachi Chem Co Ltd Composite slide material using spongy metal
JPS5645336A (en) * 1979-09-14 1981-04-25 Takeo Nakagawa Preparation of short metal fibers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532309A (en) * 1976-06-29 1978-01-11 Hitachi Chem Co Ltd Composite slide material using spongy metal
JPS5645336A (en) * 1979-09-14 1981-04-25 Takeo Nakagawa Preparation of short metal fibers

Also Published As

Publication number Publication date
JPS604619A (en) 1985-01-11

Similar Documents

Publication Publication Date Title
MX2011006761A (en) A method of producing a diffusion alloyed iron or iron-based powder, a diffusion alloyed powder, a composition including the diffusion alloyed powder, and a compacted and sintered part produced from the composition.
KR20090104081A (en) Powder, method of manufacturing a component and component
WO2005099937A2 (en) Powder metallurgical compositions and methods for making the same
US4776885A (en) Sintered composite materials with short metal fibers as matrix
WO2001032337A1 (en) Lubricating agent for mold at elevated temperature, iron-based powder composition for elevated temperature compaction with lubricated mold and high density formed product from iron-based powder composition, and method for producing high density iron-based sintered compact
CN109692951A (en) The manufacturing method of PM self lubricated bearings
JPS6330526B2 (en)
GB2220421A (en) Sintered alloy material and process for the preparation of the same
JP2539246B2 (en) Sintered alloy bearing material and manufacturing method thereof
JP3849118B2 (en) Powder metallurgy and sintered metal bodies
CN107855517A (en) A kind of oiliness bearing powdered metallurgical material and preparation method thereof
JP4121383B2 (en) Iron-base metal bond excellent in dimensional accuracy, strength and sliding characteristics and method for manufacturing the same
EP0011981B1 (en) Method of manufacturing powder compacts
JP2010007141A (en) Sintered oil-retaining bearing, and method for producing the same
JP4770667B2 (en) Iron-based powder mixture for warm mold lubrication molding
JPH0238540A (en) Production of nongreased sliding material
KR101650174B1 (en) Cu-Carbon binded powder and pressed articles and slide material manufactured therewith
JP4507348B2 (en) High-density iron-based powder molded body and method for producing high-density iron-based sintered body
JP7021312B2 (en) Sintered bearing
JP3931503B2 (en) Lubricant for warm mold lubrication, high-density iron-based powder molded body, and method for producing high-density iron-based sintered body
CN1206068C (en) Stainless steel powder hot pressing shaping method
JP2631146B2 (en) Sintered metal body and method for producing the same
JPH10219307A (en) Sintered gear
JP7233257B2 (en) Method for producing ferrous powder for sintered metal parts
KR20070035622A (en) Sliding bearing with solid-state sintered layer