JP7233257B2 - Method for producing ferrous powder for sintered metal parts - Google Patents

Method for producing ferrous powder for sintered metal parts Download PDF

Info

Publication number
JP7233257B2
JP7233257B2 JP2019044737A JP2019044737A JP7233257B2 JP 7233257 B2 JP7233257 B2 JP 7233257B2 JP 2019044737 A JP2019044737 A JP 2019044737A JP 2019044737 A JP2019044737 A JP 2019044737A JP 7233257 B2 JP7233257 B2 JP 7233257B2
Authority
JP
Japan
Prior art keywords
powder
stress
segregation
kpa
powders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019044737A
Other languages
Japanese (ja)
Other versions
JP2020147778A (en
Inventor
尚樹 八代
晃也 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2019044737A priority Critical patent/JP7233257B2/en
Publication of JP2020147778A publication Critical patent/JP2020147778A/en
Application granted granted Critical
Publication of JP7233257B2 publication Critical patent/JP7233257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、焼結金属部品用鉄系粉末製造方法に関する。 The present invention relates to a method for producing ferrous powder for sintered metal parts.

粉末冶金に用いる粉末の粉末特性を評価する方法として、JISには、(1)金属粉の流動度測定方法(JIS Z2502:2012)、(2)金属粉の見掛密度測定方法(JIS Z2504:2012)、および(3)金属粉のタップ密度測定方法(JIS Z2512:2012)がそれぞれ規定されている。 As methods for evaluating powder properties of powders used in powder metallurgy, JIS includes (1) a method for measuring metal powder fluidity (JIS Z2502: 2012), (2) a method for measuring apparent density of metal powder (JIS Z2504: 2012), and (3) a method for measuring the tap density of metal powder (JIS Z2512: 2012), respectively.

このうち、上記(1)は、所定寸法の漏斗に供給した粉末が流れ落ちる時間から金属粉の流動性を評価するものである。金属粉の流動性が低いと、焼結前に圧粉体を成形する際の成形用金型への充填速度を低下させるため、圧粉体の生産速度および圧粉密度を低下させてしまう問題がある(特許文献1)。このような事情から、粉末冶金の分野において、原料粉末の流動性は、圧粉体を成形する際の成形性や金型充填性等を判断する上で重要な指標となっている。 Of these, the above (1) evaluates the fluidity of the metal powder from the time it takes for the powder supplied to a funnel of a predetermined size to flow down. If the fluidity of the metal powder is low, the speed at which the metal powder is filled into the mold for molding the green compact before sintering is reduced, resulting in a reduction in the production speed and green density of the green compact. There is (Patent Document 1). Under such circumstances, in the field of powder metallurgy, the fluidity of the raw material powder is an important index for judging the moldability and mold fillability when molding a green compact.

特開2007-2340号公報Japanese Unexamined Patent Application Publication No. 2007-2340

しかしながら、上記の試験方法による流動性の評価は、漏斗からの粉体の自由落下に依拠しているため、例えば付着力の大きな粒子等を測定する際には、漏斗の出口(オリフィス)で粉体が詰まり、測定不可となるケースがある。そのような測定不可の粉末であっても、金型充填性や成形性に何ら支障がなく、圧粉体の成形が問題なく行える場合は多々ある。このように粉末冶金で用いる粉末に際し、JISに規定の流動性試験だけでは十分に粉末の評価を行うことができない。 However, the evaluation of fluidity by the above test method relies on the free fall of powder from the funnel. There are cases where the body becomes clogged and measurement becomes impossible. Even with such unmeasurable powders, there are many cases where there is no problem with mold filling properties and moldability, and compacting can be performed without problems. As described above, the powder used in powder metallurgy cannot be sufficiently evaluated only by the fluidity test specified in JIS.

近年では、溶製鋼部品の鉄系焼結金属部品への置き換えニーズが高まっている。この置き換えのためには、金属部品の機械的特性向上のため、焼結体に含まれる空孔率や空孔径を極力低減することが望まれる。これらを実現するためには、圧粉体の成形工程完了段階で、圧粉体を十分に緻密化しておくことが有効となるが、原料粉末の流動性のデータだけでは、そのような緻密化を達成できるか否かも予測することができない。 In recent years, there is an increasing need to replace molten steel parts with ferrous sintered metal parts. For this replacement, it is desirable to reduce the porosity and pore diameter contained in the sintered body as much as possible in order to improve the mechanical properties of the metal parts. In order to realize these, it is effective to sufficiently densify the green compact at the completion of the green compact molding process, but such densification cannot be achieved only with the flowability data of the raw material powder. can be achieved or not cannot be predicted.

従って、上記の従来手法の評価で得られる粉体特性(性能指標)によって、その粉末の良否を規定することができない。 Therefore, the quality of the powder cannot be defined by the powder characteristics (performance index) obtained by the evaluation of the above conventional method.

以上のような事情から、本発明は、新規手法を導入して得られた粉体特性、指標により、一定以上の性能、品質を有する製品が得られる焼結金属部品用鉄系粉末および鉄系焼結金属部品を提供する。 In view of the above circumstances, the present invention provides an iron-based powder for sintered metal parts and an iron-based powder that can obtain products having performance and quality above a certain level by using powder characteristics and indices obtained by introducing a new method. The Company provides sintered metal parts.

前記課題を解決するためになされた本発明の焼結金属部品用鉄系粉末製造方法は、Fe-Ni-Mo系合金粉およびFe-Ni-Mo-Cu系合金粉に対して、焼結時の炭素固溶源としての黒鉛粉および成形時の摩擦低減のためのワックス系固体潤滑剤をバインダーで糊付けした各種偏析防止処理粉を形成し、かつ、前記各偏析防止処理粉を室温下で成形圧力980MPaで一軸加圧成形し、円板状試験片を作製し、前記試験片の乾燥重量と、直径、厚さから算出した体積を用いて、前記試験片の圧粉密度を導出することにより、垂直応力22~26kPaにおいて一面せん断試験した単軸崩壊応力が昇順になるような各偏析防止処理粉のデータを並べ、成形圧力980MPaでの圧粉密度が逆となる相関関係を利用して、22~26kPaの垂直応力下で、前記単軸崩壊応力が4.0kPa以下で圧粉密度が7.2g/cm3以上となる前記偏析防止処理粉である焼結金属部品用鉄系粉末を製造するものである。すなわち、本発明は、焼結金属部品を製造するための原料となる粉末に関するものであり、粉末とは、基材となる純鉄粉や合金鋼粉単体、合金鋼粉に添加剤を加えた混合粉、添加剤を、バインダー等を介して付着させた偏析防止処理粉を含む、原料粉末全般を指す。 The method for producing an iron-based powder for sintered metal parts according to the present invention, which has been made to solve the above-mentioned problems , is characterized in that Fe—Ni—Mo alloy powder and Fe—Ni—Mo—Cu alloy powder are subjected to Graphite powder as a carbon solid solution source and a wax-based solid lubricant for reducing friction during molding are glued with a binder to form various segregation-preventing treated powders, and the above-mentioned segregation-preventing treated powders are molded at room temperature. By uniaxially pressing and molding at a pressure of 980 MPa to prepare a disk-shaped test piece, and using the volume calculated from the dry weight, diameter and thickness of the test piece, the green density of the test piece is derived. , By arranging the data of each segregation-preventing treated powder such that the uniaxial collapse stress in the single-sided shear test at a normal stress of 22 to 26 kPa is in ascending order, and using the correlation in which the green density at a molding pressure of 980 MPa is reversed, Under a normal stress of 22 to 26 kPa, the uniaxial collapse stress is 4.0 kPa or less and the compact density is 7.2 g/cm 3 or more. It is something to do. That is, the present invention relates to a powder that is used as a raw material for producing sintered metal parts, and the powder means pure iron powder or alloyed steel powder as a base material, or an alloyed steel powder to which an additive is added. It refers to raw material powders in general, including mixed powders and segregation-preventing treated powders to which additives are adhered via a binder or the like.

一面せん断試験(リング型せん断試験)で評価した流動性指標、具体的には22~26kPaの垂直応力下で測定した単軸崩壊応力の値と、得られる圧粉体、引いては焼結体の密度との間の相関関係を基に、原料粉の単軸崩壊応力を求めることで、同一条件で製造(成形および焼結)した圧粉体および焼結体の密度を予測することができる。 Fluidity index evaluated by a single-sided shear test (ring-type shear test), specifically, the value of uniaxial collapse stress measured under a normal stress of 22 to 26 kPa, the obtained green compact, and by extension the sintered compact By obtaining the uniaxial collapse stress of the raw material powder based on the correlation between the density of the powder, it is possible to predict the density of the green compact and sintered compact manufactured (molded and sintered) under the same conditions. .

基材粉末がFe-Ni-Mo系合金粉およびFe-Ni-Mo-Cu系合金粉であるのが好ましい。 The base powder is preferably Fe--Ni--Mo alloy powder and Fe--Ni--Mo--Cu alloy powder.

さらに、本発明の鉄系焼結金属部品は、前記本発明の焼結金属部品用鉄系粉末を原料として、圧粉密度が7.2g/cm3以上としたものである。 Further, the iron-based sintered metal part of the present invention uses the iron-based powder for sintered metal parts of the present invention as a raw material and has a green density of 7.2 g/cm 3 or more.

以上のように、本発明によれば、一面せん断試験(リング型せん断試験)で評価した流動性指標(具体的には22~26kPaの垂直応力下で測定した単軸崩壊応力の値)と、得られる圧粉体、引いては焼結体の密度との間の相関関係を基に、原料粉の単軸崩壊応力を求めることで、同一条件で製造(成形および焼結)した圧粉体および焼結体の密度を予測することができる。これにより、開発段階において、類似組成の鋼粉同士を比較、検討する際、実際にサンプルを製造しなくても、その鋼粉の良否および序列を予測し、検討する材料をスクリーニングすることができる。また、製造段階では、開発段階で測定した単軸崩壊応力値を基に、原料粉末の受入検査や、長期保管に伴う材料の変質などを調査するのに適用できる可能性があり、製品の品質安定化に寄与できる。 As described above, according to the present invention, the fluidity index (specifically, the value of the uniaxial collapse stress measured under a normal stress of 22 to 26 kPa) evaluated by a single-sided shear test (ring-type shear test), Green compacts manufactured (molded and sintered) under the same conditions by obtaining the uniaxial collapse stress of the raw material powder based on the correlation between the density of the resulting green compact and, by extension, the density of the sintered compact. and the density of the sintered body can be predicted. As a result, when comparing and examining steel powders with similar compositions in the development stage, it is possible to predict the quality and order of steel powders without actually manufacturing samples, and to screen the materials to be examined. . In addition, at the manufacturing stage, the uniaxial collapse stress value measured at the development stage may be applied to incoming inspections of raw material powders and to investigate deterioration of materials due to long-term storage. It can contribute to stabilization.

本発明の実施形態に係るリング型せん断試験機の断面図(図2のA-A線断面図)である。FIG. 2 is a cross-sectional view (cross-sectional view taken along the line AA in FIG. 2) of the ring-type shear tester according to the embodiment of the present invention; リング型せん断試験機の上部セルの下面図である。It is a bottom view of the upper cell of the ring shear tester. 単純崩壊応力σcの求め方を説明する図である。It is a figure explaining how to obtain|require simple collapse stress (sigma)c. 実施例1の偏析防止処理粉について測定した、垂直応力と単軸崩壊応力の結果を示すグラフである。4 is a graph showing the results of normal stress and uniaxial collapse stress measured for the segregation-preventing treated powder of Example 1. FIG.

以下、本発明に係る粉末冶金用粉末の評価方法の実施形態を図1~4に基づいて説明する。 An embodiment of a method for evaluating a powder for powder metallurgy according to the present invention will be described below with reference to FIGS.

本実施形態における粉末冶金用粉末には、基材金属粉(鉄粉、銅粉等)の他、粉体特性、圧粉体特性、および焼結体特性の何れかを改善するための各種添加剤の粉末、例えば炭素固溶源としての黒鉛粉、摺動性改善剤としての固体潤滑剤(黒鉛粉、MoS2粉等)、成形性改善剤としての固体潤滑剤(ステアリン酸亜鉛粉、ワックス粉等)、被削性改善剤(MnS粉)等が含まれる。また、基材金属粉に微量に添加される金属粉(Ni,Mo,Cu,Cr,Mn,Sn等)も粉末冶金用粉末に含まれる。これらの添加金属粉は、単独粉として使用する他、他の金属粉の表面にメッキし、あるいは他の金属粉と合金化させて使用してもよい。合金化の手法は特に問わず、完全合金化(プレアロイ)、拡散合金化、単純混合(焼結時に合金化)等を採用することができる。また、基材金属粉の製法は特に限定されず、還元法、水アトマイズ法、ガスアトマイズ法、カルボニル法、スタンプ法等で製造される各種粉末が使用可能である。基材金属粉として複数種類の金属粉や合金粉を使用することもできる。 In addition to the base metal powder (iron powder, copper powder, etc.), the powder for powder metallurgy in the present embodiment includes various additives for improving any of powder characteristics, green compact characteristics, and sintered compact characteristics. For example, graphite powder as a carbon solid solution source, solid lubricants (graphite powder, MoS2 powder, etc.) as slidability improvers, solid lubricants (zinc stearate powder, wax powder, etc.), a machinability improving agent (MnS powder), and the like. Powder metallurgy powders also include metal powders (Ni, Mo, Cu, Cr, Mn, Sn, etc.) that are added to base metal powders in small amounts. These additive metal powders may be used as individual powders, or may be used after being plated on the surface of other metal powders or alloyed with other metal powders. The method of alloying is not particularly limited, and complete alloying (pre-alloying), diffusion alloying, simple mixing (alloying during sintering), etc. can be employed. Moreover, the method for producing the base metal powder is not particularly limited, and various powders produced by a reduction method, a water atomization method, a gas atomization method, a carbonyl method, a stamp method, etc. can be used. Plural types of metal powders and alloy powders can also be used as the base metal powder.

粉末冶金においては、これらの粉末(原料粉末)をV型混合器等の混合器で混合し、混合した粉末を成形型に供給して圧粉体を圧縮成形した後、焼結が行われる。焼結後の焼結体に、必要に応じてサイジング、熱処理、機械加工等の後処理を行うことにより、歯車、コンロッド、軸受等の各種焼結部品が製作される。 In powder metallurgy, these powders (raw material powders) are mixed in a mixer such as a V-shaped mixer, the mixed powders are supplied to a mold, and a compact is compacted and then sintered. Various sintered parts such as gears, connecting rods, and bearings are manufactured by subjecting the sintered body after sintering to post-treatments such as sizing, heat treatment, and machining as necessary.

本実施形態における上記粉末冶金用粉末の特性評価は、一面せん断試験と呼ばれる手法によって行われる。この一面せん断試験は、粉体層を垂直方向に加圧した状態で、水平方向に横滑りさせたときに生じるせん断応力を測定するものであり、試験方法の詳細はJIS Z8835:2016に規定されている。この一面せん断試験は、土砂の特性評価のため、主に土質工学の分野で活用されている試験方法であるが、本実施形態は、この試験を粉末冶金用粉末の粉末特性の評価に転用するものであり、その際の試験手順は基本的に上記のJIS規定に準じる。 Characteristic evaluation of the powder for powder metallurgy in the present embodiment is performed by a technique called a direct shear test. This single-sided shear test measures the shear stress that occurs when the powder layer is pressed vertically and then slid horizontally, and the details of the test method are specified in JIS Z8835: 2016. there is This single-sided shear test is a test method that is mainly used in the field of soil engineering to evaluate the characteristics of soil, but in this embodiment, this test is diverted to the evaluation of the powder characteristics of powders for powder metallurgy. The test procedure at that time basically conforms to the above JIS regulations.

本実施形態での一面せん断試験では、試験機として、図1に示すリング型せん断試験機1が使用される。リング型せん断試験機1は、回転側となる下部セル2(可動セル)と、静止側となる上部セル3(固定セル)とを主要な構成要素とする。 In the direct shear test in this embodiment, a ring shear tester 1 shown in FIG. 1 is used as a tester. A ring-type shear tester 1 has, as main components, a lower cell 2 (movable cell) on the rotating side and an upper cell 3 (fixed cell) on the stationary side.

下部セル2は、モータ4および減速機5により回転駆動される。下部セル2の回転トルクは、図示しないトルクメータによって測定される。下部セル2の上面には、それぞれ円筒状をなす外壁2aおよび内壁2bが設けられており、外壁2aの内周面と内壁2bの外周面の間に試験対象の粉末を収容する収容部Sが形成されている。下部セル2の中心には上方へ突出する軸部2cが設けられており、下部セル2は、モータ4および減速機5に駆動されて、回転軸Oを中心として一定方向に回転する。 Lower cell 2 is rotationally driven by motor 4 and speed reducer 5 . The rotational torque of the lower cell 2 is measured by a torque meter (not shown). The upper surface of the lower cell 2 is provided with an outer wall 2a and an inner wall 2b each having a cylindrical shape. formed. A shaft portion 2c protruding upward is provided at the center of the lower cell 2, and the lower cell 2 is driven by the motor 4 and the speed reducer 5 to rotate about the rotation axis O in a certain direction.

上部セル3は、穴あきの概略円板状に形成され、中心部の穴が下部セル2の軸部2cに相対回転可能に嵌合されている。上部セル3の下面には、下方に突出する突出部3aが設けられる。突出部3aは、回転軸Oを中心とする円環状をなし、下部セル2の外壁2aの内周面および内壁2bの外周面に対し、相対回転を許容する嵌め合いで嵌合している。突出部3aの下端部は、収容部S内に入り込んでいる。 The upper cell 3 is formed in a substantially disk-like shape with a hole, and the central hole is fitted to the shaft portion 2c of the lower cell 2 so as to be relatively rotatable. The lower surface of the upper cell 3 is provided with a protruding portion 3a that protrudes downward. The projecting portion 3a has an annular shape centered on the rotation axis O, and is fitted to the inner peripheral surface of the outer wall 2a and the outer peripheral surface of the inner wall 2b of the lower cell 2 in such a manner as to allow relative rotation. A lower end portion of the protruding portion 3a is inserted into the housing portion S. As shown in FIG.

このリング型せん断試験機による試験は、収容部Sに測定対象の粉末を規定量充填して粉体層8を形成した後、凹凸タイプの上部セル3を下部セル2上にセットし、上部セル3に所定の垂直荷重Wを与えながらモータ4を駆動することで行われる。垂直荷重Wにより上部セル3のブレード7が粉体層8に食い込むため、粉体層8にせん断面が形成される。下部セル2を一定の回転速度で回転させ、所定の角度だけ回転した時点(例えば15°程度)で試験を終了し、その時の垂直荷重Wから垂直応力σを算出すると共に、その時のトルクメータの測定値から、せん断応力τを算出する。以上の試験を、異なる垂直荷重Wで複数回行い、図3に示すように、各回の垂直応力σとせん断応力τを垂直応力σ-せん断応力τ図にプロットする。 In the test using this ring-type shear tester, after filling a specified amount of the powder to be measured in the storage part S to form a powder layer 8, the uneven type upper cell 3 is set on the lower cell 2, and the upper cell This is done by driving the motor 4 while applying a predetermined vertical load W to the motor 3 . Since the blades 7 of the upper cell 3 bite into the powder layer 8 due to the vertical load W, a sheared surface is formed in the powder layer 8 . The lower cell 2 is rotated at a constant rotational speed, and when it is rotated by a predetermined angle (for example, about 15°), the test is terminated, and the vertical stress σ is calculated from the vertical load W at that time, and the torque meter at that time. Calculate the shear stress τ from the measured values. The above tests are performed multiple times with different vertical loads W, and the vertical stress σ and shear stress τ for each time are plotted in a normal stress σ-shear stress τ diagram as shown in FIG.

プロットした点を結ぶ近似直線が限界状態線CSLを表し、原点を通り、かつ限界状態線CSLに接する円(モール円)と垂直応力軸とが交わる点が単軸崩壊応力σcを表す。なお、この限界状態線CSLの垂直応力軸に対する傾斜角δiが粒子間摩擦指標の内部摩擦角を表す。 The approximate straight line connecting the plotted points represents the limit state line CSL, and the point where a circle (Mohr's circle) passing through the origin and in contact with the limit state line CSL intersects the vertical stress axis represents the uniaxial collapse stress σc. The inclination angle δi of the limit state line CSL with respect to the vertical stress axis represents the internal friction angle of the interparticle friction index.

単軸崩壊応力σcは、各垂直応力で押し固めて成形した粉体層(円柱)を押し崩して流動させるのに必要な応力値であり、数値が小さいほど流動し易い粉であることを意味する。従って、単軸崩壊応力σcの値を粉体の流動性指標として用いることができる。単軸崩壊応力が小さい粉末を使用することによる効果の一例として、金型への原料粉の供給時間が短くなって生産効率が高まること、を挙げることができる。 The uniaxial collapse stress σc is the stress value required to crush and flow the powder layer (cylinder) compacted and compacted by each vertical stress, and the smaller the value, the easier the powder to flow. do. Therefore, the value of the uniaxial collapse stress σc can be used as a fluidity index of powder. As an example of the effect of using a powder having a small uniaxial collapse stress, it is possible to shorten the supply time of the raw material powder to the mold and improve the production efficiency.

前記のような一面せん断試験によれば、重力のみが作用した状態だけでなく、上部から垂直応力が作用した状態でも粉末の特性を評価することができる。従って、粉末冶金に用いる粉末の特性評価方法を多様化し、金型内での圧縮成形時の実際の挙動に則した粉体特性を測定することが可能となる。また、前記一面せん断試験によれば、粉末の流動性、摩擦特性を詳細に評価することができる。 According to the one-sided shear test as described above, it is possible to evaluate the properties of the powder not only in the state where only gravity acts, but also in the state where vertical stress acts from above. Therefore, it becomes possible to diversify the method of evaluating the characteristics of powders used in powder metallurgy, and to measure the characteristics of powders in accordance with the actual behavior during compression molding in a mold. Further, according to the above-mentioned single shear test, it is possible to evaluate the fluidity and frictional properties of the powder in detail.

本発明では、特に流動性に着目する。なお、この評価法で採用する(一面せん断試験で評価できる)流動性の指標は、単軸崩壊応力(単位:kPa)である。従来の評価手法(JISで規定された、漏斗を用いた流動性の評価手法)では、粉体間の性能差を繰返し精度高く区分できないため、本発明のように焼結部品の性能を規定するための指標は得られない。その主因は、自由落下による重力流動のみを反映した結果であるためである。 The present invention particularly focuses on fluidity. The index of fluidity (which can be evaluated by a single-sided shear test) employed in this evaluation method is uniaxial collapse stress (unit: kPa). In the conventional evaluation method (evaluation method of fluidity using a funnel specified by JIS), the performance difference between powders cannot be classified with high repeatability, so the performance of sintered parts is defined as in the present invention. No index is available for The main reason for this is that it is the result of reflecting only the gravitational flow due to free fall.

一方、本実施形態で採用した一面せん断試験(リング型せん断試験)では、試験時の垂直応力を小さくすれば、ほぼ重力流動のみを反映した、JIS法と同様の流動性評価も可能だが、試験時の垂直応力を大きくすることで、金型内で弾性変形領域で圧縮される状況での流動性、つまり、粒子で構成される空隙に、他の粒子が入り込み圧密化される「再配列挙動」時の流動性(=圧縮による粉の充填されやすさ)が評価できる。 On the other hand, in the single-sided shear test (ring-type shear test) adopted in this embodiment, if the vertical stress during the test is reduced, it is possible to evaluate the fluidity similar to the JIS method, which reflects only gravity flow. By increasing the vertical stress at time, the fluidity under compression in the elastic deformation region in the mold, that is, the "rearrangement behavior" in which other particles enter the voids composed of particles and are compacted The fluidity (= ease of powder filling by compression) can be evaluated.

そのため、高垂直応力下、具体的には垂直応力22~26kPaで測定した単軸崩壊応力値と圧縮成形後の圧粉密度との間に相関がみられる(後述の実施例参照)。7.2g/cm3以上の圧粉密度を有する圧粉体を得るためには、単軸崩壊応力値は4.0kPa以下である必要があり、7.3g/cm3以上とするためには、単軸崩壊応力値は概ね1.2kPa以下であれば良いと考えられる(後述の実施例1および2参照)。 Therefore, there is a correlation between the uniaxial collapse stress value measured under a high normal stress, specifically at a normal stress of 22 to 26 kPa, and the green density after compression molding (see Examples below). In order to obtain a green compact having a green density of 7.2 g/cm 3 or more , the uniaxial collapse stress value must be 4.0 kPa or less. , the uniaxial collapse stress value should be approximately 1.2 kPa or less (see Examples 1 and 2 below).

Fe-Ni-Mo系合金粉およびFe-Ni-Mo-Cu系合金粉に対して、焼結時の炭素固溶源としての黒鉛粉および成形時の摩擦低減のためのワックス系固体潤滑剤をバインダーで糊付けした各種偏析防止処理粉を一面せん断試験(リング型せん断試験)し、流動性の指標である単軸崩壊応力[kPa]を求めた。代表例として、実施例1および比較例1の偏析防止処理粉の測定結果(測定時の垂直応力と単軸崩壊応力の相関のグラフ)を図4に示す。 Graphite powder as a carbon solid solution source during sintering and a wax-based solid lubricant for reducing friction during molding are added to Fe-Ni-Mo alloy powder and Fe-Ni-Mo-Cu alloy powder. Various segregation-preventing treated powders pasted with a binder were subjected to a single-sided shear test (ring-shaped shear test) to determine the uniaxial collapse stress [kPa], which is an index of fluidity. As a representative example, the measurement results of the segregation-preventing treated powders of Example 1 and Comparative Example 1 (graph of correlation between normal stress and uniaxial collapse stress during measurement) are shown in FIG.

また、各偏析防止処理粉を室温(約25℃)下で成形圧力980MPaで一軸加圧成形し、φ20×t5mmの円板状試験片を作製した。当該試験片の乾燥重量と、直径、厚さから算出した体積を用いて、当該試験片の圧粉密度[g/cm3]を導出した。なお、試験片の直径および厚さは、マイクロメータを用いて各4回測定した寸法の平均値を使用した。 Further, each segregation-preventing treatment powder was uniaxially press-molded at room temperature (approximately 25° C.) at a molding pressure of 980 MPa to prepare a disc-shaped test piece of φ20×t5 mm. Using the dry weight of the test piece and the volume calculated from the diameter and thickness, the green density [g/cm 3 ] of the test piece was derived. For the diameter and thickness of the test piece, the average value of the dimensions measured four times using a micrometer was used.

一面せん断試験による流動性指標である単軸崩壊応力(垂直応力22~26kPaにおける数値)と、圧粉密度の関係に着目し、圧粉密度が7.3g/cm3以上の場合を◎、7.2g/cm3以上7.3g/cm3未満の場合を○、7.2g/cm3未満の場合を×として評価した。評価結果一覧を表1にまとめる。

Figure 0007233257000001
Focusing on the relationship between the uniaxial collapse stress (numerical value at normal stress of 22 to 26 kPa), which is a fluidity index in a single-sided shear test, and the compact density, when the compact density is 7.3 g / cm 3 or more, ◎, 7 A case of 2 g/cm 3 or more and less than 7.3 g/cm 3 was evaluated as ○, and a case of less than 7.2 g/cm 3 was evaluated as x. Table 1 summarizes the evaluation results.
Figure 0007233257000001

垂直応力22~26kPaにおいて一面せん断試験した単軸崩壊応力が昇順になるように、各偏析防止処理粉のデータを並べた結果、成形圧力980MPaでの圧粉密度は逆に降順の序列となった。 As a result of arranging the data of each segregation-preventing treated powder so that the uniaxial collapse stress in the one-sided shear test at a normal stress of 22 to 26 kPa is in ascending order, the green density at a compacting pressure of 980 MPa was in descending order. .

上述の基準に基づき判定し、実施例1は圧粉密度7.3g/cm3以上のため◎、実施例2~5は同7.2g/cm3以上7.3g/cm3未満のため○、比較例1、2は7.2g/cm3未満のため×とした。 Judging based on the above criteria, Example 1 is ⊙ because the green density is 7.3 g/cm 3 or more, and Examples 2 to 5 are ◯ because the green density is 7.2 g/cm 3 or more and less than 7.3 g/cm 3 , and Comparative Examples 1 and 2 were evaluated as x because they were less than 7.2 g/cm 3 .

従来の漏斗を用いたJIS法では、粉種間の流動性の差異をここまで明確化することは非常に困難であるうえ、自由落下による重力流動のみを反映した結果であるため、流動性と圧粉密度との間に明確な相関は見られない。 With the conventional JIS method using a funnel, it is very difficult to clarify the difference in flowability between powder types, and the result reflects only gravity flow due to free fall. No clear correlation with green density is seen.

一方、一面せん断試験では、試験時の垂直応力を小さくすれば、ほぼ重力流動のみを反映したJIS法と同様の流動性評価も可能だが、試験時の垂直応力を大きくすることで、金型内で弾性変形領域で圧縮される状況での流動性、つまり、粒子で構成される空隙に、他の粒子が入り込み圧密化される再配列挙動時の流動性(=圧縮による粉の充填されやすさ)が評価できる。そのため、圧縮成形後の圧粉密度との相関が見られたと考える。 On the other hand, in the direct shear test, if the vertical stress during the test is reduced, it is possible to evaluate the flowability in the same way as the JIS method, which reflects only gravity flow. In other words, fluidity during rearrangement behavior when other particles enter the voids composed of particles and are compacted (= ease of powder filling due to compression ) can be evaluated. Therefore, it is considered that there is a correlation with the green density after compression molding.

本結果より、高垂直応力下、具体的には垂直応力22~26kPaにおける単軸崩壊応力と圧粉密度の間には明確な相関があり、7.2g/cm3以上の圧粉密度を有する圧粉体を得るためには、単軸崩壊応力値は4.0kPa以下である必要があり、圧粉密度をさらに7.3g/cm3以上とするためには単軸崩壊応力値は概ね1.2kPa以下である必要があると言える。 From this result, there is a clear correlation between the uniaxial collapse stress and the green density under high normal stress, specifically at a normal stress of 22 to 26 kPa, and it has a green density of 7.2 g / cm 3 or more. In order to obtain a green compact, the uniaxial collapse stress value must be 4.0 kPa or less . .2 kPa or less.

1 リング型せん断試験機
2 下部セル(可動セル)
3 上部セル(固定セル)
σc 単軸崩壊応力
δi 内部摩擦角
1 Ring type shear tester 2 Lower cell (movable cell)
3 upper cell (fixed cell)
σc Uniaxial collapse stress δi Internal friction angle

Claims (1)

Fe-Ni-Mo系合金粉およびFe-Ni-Mo-Cu系合金粉に対して、焼結時の炭素固溶源としての黒鉛粉および成形時の摩擦低減のためのワックス系固体潤滑剤をバインダーで糊付けした各種偏析防止処理粉を形成し、かつ、前記各偏析防止処理粉を室温下で成形圧力980MPaで一軸加圧成形し、円板状試験片を作製し、前記試験片の乾燥重量と、直径、厚さから算出した体積を用いて、前記試験片の圧粉密度を導出することにより、垂直応力22~26kPaにおいて一面せん断試験した単軸崩壊応力が昇順になるような各偏析防止処理粉のデータを並べ、成形圧力980MPaでの圧粉密度が逆となる相関関係を利用して、22~26kPaの垂直応力下で、前記単軸崩壊応力が4.0kPa以下で圧粉密度が7.2g/cm3以上となる前記偏析防止処理粉である焼結金属部品用鉄系粉末を製造することを特徴とする焼結金属部品用鉄系粉末製造方法。 Graphite powder as a carbon solid solution source during sintering and a wax-based solid lubricant for reducing friction during molding are added to Fe-Ni-Mo alloy powder and Fe-Ni-Mo-Cu alloy powder. Various segregation-preventing treated powders are pasted with a binder, and each of the segregation-preventing treated powders is uniaxially press-molded at room temperature at a molding pressure of 980 MPa to prepare a disk-shaped test piece, and the dry weight of the test piece. And, by deriving the compacted density of the test piece using the volume calculated from the diameter and thickness, each segregation prevention such that the uniaxial collapse stress in the one-sided shear test at a normal stress of 22 to 26 kPa is in ascending order. By arranging the data of the processed powder, using the correlation that the green density is reversed at a compacting pressure of 980 MPa, under a normal stress of 22 to 26 kPa, the green density is 4.0 kPa or less with the uniaxial collapse stress . A method for producing an iron-based powder for sintered metal parts, characterized in that the iron-based powder for sintered metal parts is produced as the segregation-preventing powder having a grain size of 7.2 g/cm 3 or more.
JP2019044737A 2019-03-12 2019-03-12 Method for producing ferrous powder for sintered metal parts Active JP7233257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019044737A JP7233257B2 (en) 2019-03-12 2019-03-12 Method for producing ferrous powder for sintered metal parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019044737A JP7233257B2 (en) 2019-03-12 2019-03-12 Method for producing ferrous powder for sintered metal parts

Publications (2)

Publication Number Publication Date
JP2020147778A JP2020147778A (en) 2020-09-17
JP7233257B2 true JP7233257B2 (en) 2023-03-06

Family

ID=72430347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019044737A Active JP7233257B2 (en) 2019-03-12 2019-03-12 Method for producing ferrous powder for sintered metal parts

Country Status (1)

Country Link
JP (1) JP7233257B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307348A (en) 2004-03-22 2005-11-04 Jfe Steel Kk Iron-based powder mixture for powder metallurgy
JP2008069460A (en) 2002-05-21 2008-03-27 Jfe Steel Kk Iron-based powder mixture for powder metallurgy, and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069460A (en) 2002-05-21 2008-03-27 Jfe Steel Kk Iron-based powder mixture for powder metallurgy, and method for manufacturing the same
JP2005307348A (en) 2004-03-22 2005-11-04 Jfe Steel Kk Iron-based powder mixture for powder metallurgy

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
上ノ薗 聡 他,偏析防止処理鉄粉の流動特性に及ぼす潤滑剤種類の影響,粉体および粉末冶金,2003年,50巻,10号,p.798-805,https://doi.org/10.2497/jjspm.50.798
廣田 満昭,粉体層の崩壊特性,粉体工学会誌,2007年,第44巻,p.732-741,doi.org/10.4164/sptj.44.732

Also Published As

Publication number Publication date
JP2020147778A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP5247329B2 (en) Iron-based sintered bearing and manufacturing method thereof
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
TWI413685B (en) Lubricant for powder metallurgical compositions
US6616726B2 (en) Material for valve guides
WO2001032337A1 (en) Lubricating agent for mold at elevated temperature, iron-based powder composition for elevated temperature compaction with lubricated mold and high density formed product from iron-based powder composition, and method for producing high density iron-based sintered compact
JP7233257B2 (en) Method for producing ferrous powder for sintered metal parts
JPWO2018216461A1 (en) Manufacturing method of sintered member
JPH07166278A (en) Coppery sliding material and production thereof
JP7233255B2 (en) Method for evaluating filling properties of powder for sintered metal parts
US20160311026A1 (en) Machine component using powder compact and method for producing same
Kumar et al. Tribological behavior of sintered electrolytic iron‐zinc stearate added compacts
JP2018172768A (en) Heat-resistant sintering material having excellent oxidation resistance, high temperature wear resistance, and salt damage resistance, and method for producing the same
WO2004038054A1 (en) A method of controlling the dimensional change when sintering an iron-based power mixture
JP2002348601A (en) Powder metallurgy method, and sintered metallic compact
JP2019074321A (en) Evaluation method of powder for powder metallurgy
Bonnefoy et al. Investigations on friction behaviour of treated and coated tools with poorly lubricated powder mixes
Chen et al. Design of the thixotropic lubricant and its influence on compaction behavior of Cr-alloyed PM steel
JP2002069597A (en) Valve guide material
JP2813159B2 (en) Manufacturing method of aluminum sintered material
US3109224A (en) Method of making bearing pins
RU2378404C2 (en) Method of receiving of antifriction powder material on basis of copper
JP6759389B2 (en) Sintered bearing
JPS6330526B2 (en)
RU2396144C2 (en) Composition of anti-friction powder materials on base of copper
JP7219198B2 (en) Copper alloy sliding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230221

R150 Certificate of patent or registration of utility model

Ref document number: 7233257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150