JPS6318004A - Production of sintered parts - Google Patents

Production of sintered parts

Info

Publication number
JPS6318004A
JPS6318004A JP16122986A JP16122986A JPS6318004A JP S6318004 A JPS6318004 A JP S6318004A JP 16122986 A JP16122986 A JP 16122986A JP 16122986 A JP16122986 A JP 16122986A JP S6318004 A JPS6318004 A JP S6318004A
Authority
JP
Japan
Prior art keywords
powder
sintering
sintered
parts
amt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16122986A
Other languages
Japanese (ja)
Inventor
Kazuyuki Yoshimoto
吉本 和幸
Akihide Takami
明秀 高見
Yuji Takahashi
雄二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP16122986A priority Critical patent/JPS6318004A/en
Publication of JPS6318004A publication Critical patent/JPS6318004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To uniformize the sintering density over the entire part and to prevent the generation of strength defects by a difference in density by using powder materials which are different in sinterability to form the part where the volumetric amt. of green compact is large and the part where said amt. is small and sintering the materials at a specific temp. at the time of molding and sintering parts having the shape in which the volumetric amt. of the green compact varies partially. CONSTITUTION:Steel powder 10 is packed into a mold 11 and is precompacted by an upper punch 12 and a lower punch 13 in order to form a flange part D where the volumetric amt. of the green compact is small at the time of producing a connecting rod, etc., of an automobile by a powder metallurgical method. The upper punch 12 is than raised and spacers 15 are mounted. Powder 16 having the sinterability at the temp. lower than for the iron powder 10 is packed between the spacers 15 in order to compact a web part C where the volumetric amt. of the green compact is large. The lower punch 13 is lowered and the steel powder 10 is packed into the mold and is compacted by the upper punch 12 in order to form the other flange part E. The spacers 15 are removed and the powder C is sintered in the gaseous N2 atmosphere at the temp. above the sintering temp. of the powder DE parts sintered in the liquid phase. The connecting rod which has the uniform sintering part in the web C and the flanges D, E and is free from the strength defects is thus obtd.

Description

【発明の詳細な説明】 発明の産業上の利lザ 本発明は、焼結部品の製造方法に関するものであり、よ
り詳細には、粉末冶金法において、各部の粉末圧縮成形
すべき粉体の体積量(以下、圧粉体積量という。)が異
なるような形状の焼結部品の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Industrial advantages of the invention The present invention relates to a method for manufacturing sintered parts. The present invention relates to a method for manufacturing sintered parts having different shapes in volume (hereinafter referred to as powder volume).

先行技術 粉末冶金法は、他の製造方法に比べ、材料の歩留まりが
良い、寸法精度が良い、などの種々の利点を持っている
。そのため、近年に至り、粉末冶金法により製造した焼
結部品の用途は、益々広がり、機械部品などに広く利用
されるようになっている。しかし、その反面、焼結部品
に要求される形状は、益々多様化し、従来の金型プレス
法では対応することが不可能な形状の焼結部品が要求さ
れることもしばしばであった。自動車のコンロノドなど
、いわゆるアンダーカット部を有する製品も、その一つ
である。
Prior art powder metallurgy methods have various advantages over other manufacturing methods, such as higher material yields and better dimensional accuracy. Therefore, in recent years, the applications of sintered parts manufactured by powder metallurgy have been expanding more and more, and they have come to be widely used in machine parts and the like. However, on the other hand, the shapes required for sintered parts have become increasingly diverse, and sintered parts with shapes that cannot be accommodated by conventional mold pressing methods are often required. Products with so-called undercuts, such as automobile stoves, are one example.

特開昭59−219401号は、かかるアンダ−カット
部を側面に有する焼結部品を製造する際に、アンダーカ
ット部を境に上下に分けて、粉末圧縮成形後、焼結して
焼結部品を製造する方法を提案している。すなわち、例
えば、歯車を製造する場合、第1図に示すように、ダイ
ス1と下パンチ2およびコアロッド3で構成された金型
に、まず原料金属粉末4を充填し、次いで、第2図に示
されるように、上バンチ5を降下させて、第一次の粉末
圧縮成形(以下、圧粉成形という。)を行い、下半部の
一次成形品6を得る。その後、上パンチ5を一旦上昇さ
せて、第3図に示すように、アンダーカット部に相当す
る部分に、セラミック等よりなるスペーサ7を装着し、
原料金属粉末4を充填して、再び上パンチ5を降下させ
て、一体的に本圧粉成形を行い、その後、スペーサ7を
取り外し、あるいは、焼結時に焼結体中へ溶浸させるこ
とにより、第4図に示されるようなアンダーカット部を
側面に有する焼結部品8を得る、というものである。
Japanese Patent Application Laid-Open No. 59-219401 discloses that when manufacturing a sintered part having such an undercut part on the side surface, the sintered part is divided into upper and lower parts with the undercut part as a boundary, and after powder compression molding, the sintered part is sintered. We are proposing a method for manufacturing. That is, when manufacturing gears, for example, as shown in FIG. 1, a mold consisting of a die 1, a lower punch 2, and a core rod 3 is first filled with raw metal powder 4, and then, as shown in FIG. As shown, the upper bunch 5 is lowered and primary powder compression molding (hereinafter referred to as powder molding) is performed to obtain a lower half primary molded product 6. After that, the upper punch 5 is raised once, and as shown in FIG. 3, a spacer 7 made of ceramic or the like is attached to the part corresponding to the undercut part.
The raw metal powder 4 is filled and the upper punch 5 is lowered again to carry out main powder compaction, and then the spacer 7 is removed or infiltrated into the sintered body during sintering. , a sintered part 8 having an undercut portion on the side surface as shown in FIG. 4 is obtained.

発明の解決すべき問題点 ・ 前記特開昭59−219401号に開示された方法
によれば、確かにアンダーカット部を有する焼結部品を
製造することが可能となるが、この方法によって製造さ
れた焼結部品は、第4図のB部の密度がA部の密度に比
し、低くなり、製品の強度が十分得られないという問題
のあることが判明した。この密度差は最も厚い部分の厚
み2Tとアンダーカット部を除いた部分の厚み2tとの
差が大きい程、大きくなることが認められている。これ
は、−次圧粉成形および本圧粉成形の際、厚みの小さい
部分、すなわち、圧粉体積量の少ない部分の圧縮が先に
飽和に達してしまい、それ以上圧縮することができない
状態になるため、これに比し、厚みの大きい部分、すな
わち、圧粉体積量の多い部分は、未だ所望の程度の圧縮
がなされていないにもかかわらず、それ以上圧縮をする
ことが不可能となってしまい、そのため、所望の密度に
圧縮することができず、二つの部分の間の圧縮比が必然
的に異なってくることに起因するものと考えられる。し
かも、この厚みの大きい部分、すなわち、圧粉体積量の
多い部分の密度は、アンダーカット部がない場合に同じ
圧粉体積量の部分を圧粉成形した場合の密度より小さく
なるのが通常であるため、その強度不足は、重大な欠陥
となっていた。このような圧粉体積量の多い部分におけ
る圧縮ひそくを防止するために、さらに、無理に圧縮し
た場合には、粉体粒子間に存在する空気が逃げ場を失い
、過度に圧縮を受ける結果、圧粉時にクラックが生ずる
ことがしばしば認められた。この現象は、とくに圧粉体
積量の少ない部分において、また粉体として粒度の小さ
いものを用いる場合に顕著であり、致命的な欠陥となっ
ていた。
Problems to be Solved by the Invention - According to the method disclosed in JP-A No. 59-219401, it is certainly possible to manufacture a sintered part having an undercut portion. It was found that the sintered parts had a problem in that the density of the B part in FIG. 4 was lower than the density of the A part, and the product did not have sufficient strength. It is recognized that this density difference increases as the difference between the thickness 2T of the thickest portion and the thickness 2t of the portion excluding the undercut portion increases. This is because during the second compaction and the main compaction, the compression of the thinner parts, that is, the parts with less powder volume, reaches saturation first and cannot be compressed any further. Therefore, in contrast, thicker areas, that is, areas with a large volume of compacted powder, cannot be further compressed even though they have not yet been compressed to the desired degree. This is thought to be due to the fact that it cannot be compressed to the desired density and the compression ratio between the two parts inevitably differs. Moreover, the density of this thicker part, that is, the part with a large powder volume, is usually lower than the density when compacting a part with the same powder volume in the absence of an undercut part. Therefore, its lack of strength was a serious defect. In order to prevent compaction in areas with a large volume of compacted powder, if the compaction is forced, the air existing between the powder particles will have nowhere to escape, resulting in excessive compression. Cracks were often observed during compaction. This phenomenon is particularly noticeable in areas with a small volume of compacted powder, or when using powder with a small particle size, and has become a fatal defect.

このような圧粉時における問題は、アンダーカット部を
有する部品に限らず、たとえば、T型断面を有する部品
のように、圧粉体積量に部分的な差異があるような形状
の部品に共通する問題であり、その解決が強く望まれて
いた。
Such problems during powder compaction are not limited to parts with undercuts, but are common to parts with shapes where there are local differences in powder volume, such as parts with a T-shaped cross section. This was a problem that was strongly desired to be solved.

発明の目的 本発明は、圧粉成形時における圧粉体積量が部分により
異なるような形状の焼結部品を製造する方法において、
圧粉体積量が異なる部分間において、密度を同等にする
ことを可能とし、もって圧縮成形による密度差が部品の
各部に存在することに起因する強度欠陥のない焼結部品
を製造する方法を提供することを目的とするものである
Purpose of the Invention The present invention provides a method for manufacturing a sintered part having a shape in which the powder volume during compaction differs depending on the part.
Provides a method for manufacturing sintered parts that makes it possible to equalize the density between parts with different powder volumes, thereby freeing strength defects caused by differences in density due to compression molding in each part of the part. The purpose is to

発明の構成 本発明のかかる目的は、圧粉体積量の多い部分を、圧粉
体積量の少ない部分の成形に用いられる粉体に比して、
低温焼結性の粉体を用いて圧粉成形し、該低温焼結性粉
体が液相焼結または半液相焼結する温度以上でかつ前記
圧粉体積量の少ない部分の成形に用いられる粉体の焼結
温度以上の温度で、全体を焼結することにより達成され
る。
Composition of the Invention The object of the present invention is to form a part with a large volume of compacted powder, compared to a powder used for forming a part with a small volume of compacted powder.
Compacting using low-temperature sinterable powder, and using the low-temperature sintering powder at a temperature equal to or higher than liquid phase sintering or semi-liquid phase sintering and for forming a portion with a small volume of the compacted powder. This is achieved by sintering the entire powder at a temperature higher than the sintering temperature of the powder.

本発明において、圧粉体積量の多い部分の圧粉成形に使
用しうる粉体は、他の部分を圧粉成形する際に用いる粉
体に比して、焼結温度の低い粉体であることを要する。
In the present invention, the powder that can be used for compacting the portion with a large powder volume is a powder whose sintering temperature is lower than that used when compacting other portions. It requires that.

ここに、焼結温度差がどの程度あればよいかは、各部の
成形に使用する粉体の種類によっても異なり、−概に決
定することは困難であるが、通常は、約50〜200℃
の焼結温度差があることが望ましい。焼結温度差が大き
くなり過ぎると、圧粉体積量の多い部分が溶融したり、
あるいは、寸法収縮が過大となり、所望の寸法精度を得
ることができないという問題を生ずるおそれがある。
Here, the degree of sintering temperature difference required varies depending on the type of powder used for molding each part, and is difficult to determine generally, but it is usually about 50 to 200°C.
It is desirable that there is a sintering temperature difference of . If the sintering temperature difference becomes too large, parts with a large volume of green powder may melt, or
Alternatively, dimensional shrinkage may become excessive, resulting in a problem that desired dimensional accuracy cannot be obtained.

本発明において、圧粉体積量の多い部分を低温焼結性の
粉体を用いて圧粉成形し、圧粉体積量の少ない部分の焼
結温度で焼結した場合に、各部の圧粉体積量に差がある
にもかかわらず、焼結後の各部の密度が同等になるのは
、圧粉体積量の多い部分の低温焼結性の粉体が、焼結時
に液相を発生し、焼結を促進することにより、圧粉体積
量の多い部分の密度が上昇するためと考えられる。
In the present invention, when a part with a large volume of green powder is compacted using low-temperature sinterable powder and sintered at the sintering temperature of a part with a small volume of green powder, the volume of green powder in each part is The reason why the densities of each part after sintering are the same despite the difference in volume is because the low-temperature sinterable powder in the parts with a large volume of compacted powder generates a liquid phase during sintering. This is thought to be because the density of the portion with a large volume of green powder increases by promoting sintering.

本発明において、圧粉成形後に成形体全体を焼結する温
度は、圧粉体積量の多い部分に用いた低温焼結性の粉体
が、共晶融液を発生する液相焼結または半液相焼結をす
る温度以上でなければならない。これ未満では、焼結後
の圧粉体積量の多い部分の密度が十分上がらない。圧粉
成形後に成形体全体を焼結する温度は、同時に、他の部
分の圧粉成形に用いる粉体の焼結温度以上でなければな
らない。この温度未満では、成形体全体を焼結すること
はできない。
In the present invention, the temperature at which the entire compact is sintered after compaction is determined by the temperature at which the low-temperature sintering powder used in the area with a large volume of compacted powder undergoes liquid-phase sintering or semi-sintering, which generates a eutectic melt. The temperature must be higher than that for liquid phase sintering. If it is less than this, the density of the portion with a large volume of compacted powder after sintering will not increase sufficiently. The temperature at which the entire compact is sintered after powder compacting must also be higher than the sintering temperature of the powder used for powder compacting other parts. Below this temperature, the entire compact cannot be sintered.

実施例 以下、添付図面に基づき、本発明の実施例について詳細
に説明を加える。
EXAMPLES Hereinafter, examples of the present invention will be described in detail based on the accompanying drawings.

実施例1 第5図に、上面図、第6図に、そのA−A断面図がそれ
ぞれ示されている自動車のコンロッドを本発明により製
造した。第6図から明らかなように、コンロッドを粉末
冶金法によって製造する場合、前述した特開昭59−2
19401号に開示された方法によるときは、圧粉体積
量の多いウェブ部(0部)の密度が、これに比べて圧粉
体積量の少ないフランジ部(D部、E部)に比し、必然
的に小さくなり、十分な強度が得られな(なってしまう
Example 1 An automobile connecting rod, whose top view is shown in FIG. 5 and a sectional view taken along the line A-A in FIG. 6, was manufactured according to the present invention. As is clear from FIG. 6, when manufacturing connecting rods by powder metallurgy,
When using the method disclosed in No. 19401, the density of the web part (0 parts) with a large powder volume is lower than that of the flange parts (parts D and E) with a smaller powder volume, Inevitably, it becomes smaller, and sufficient strength cannot be obtained.

これに反し、本発明の好ましい実施例においては、まず
、コンロッドの、圧粉体積量の少ないフランジ部(D部
)を圧粉成形するための粉体として、1重量%の炭素を
含んだFe粉末に潤滑剤としてのステアリン酸亜鉛1重
量%を混合した粉体10を、5KDIIよりなる型11
に充填した後、第7図に示されるようにして、上パンチ
12と下パンチ13により500kg/cdの圧力を加
えて予備圧粉成形した。しかる後に、予備圧粉成形体1
4を型11に入れたまま、上バンチ12を上げるととも
に、下パンチ13を下げて、第8図に示すように、5K
DIIよりなるスペーサ15を型11内に装着し、更に
、第9図に示されるように、ウェブ部(0部)を圧粉成
形するために、粉体10に比し低温焼結性の粉体16と
して、0.6重量%のP、3重量%のMoおよび1重量
%の炭素を含む低温焼結性のFe粉末に潤滑剤としての
ステアリン酸亜鉛1重量%を混合した粉体16を型11
内に充填した。次いで、第10図に示すように、下パン
チ13をさらに下げ、他のフランジ部(E部)を圧粉成
形するための粉体10を充填して、5000kg/cd
の圧力で圧粉成形した。
On the other hand, in a preferred embodiment of the present invention, Fe containing 1% by weight of carbon is first used as the powder for compacting the flange portion (D section) of the connecting rod with a small powder volume. Powder 10, which is a mixture of powder and 1% by weight of zinc stearate as a lubricant, was put into mold 11 made of 5KDII.
After filling, as shown in FIG. 7, a pressure of 500 kg/cd was applied using the upper punch 12 and the lower punch 13 to perform preliminary compaction. After that, the preliminary compacted compact 1
4 in the mold 11, raise the upper bunch 12 and lower the lower punch 13, as shown in FIG.
A spacer 15 made of DII is installed in the mold 11, and as shown in FIG. The powder 16 is a mixture of low-temperature sinterable Fe powder containing 0.6% by weight of P, 3% by weight of Mo, and 1% by weight of carbon with 1% by weight of zinc stearate as a lubricant. Type 11
filled inside. Next, as shown in FIG. 10, the lower punch 13 is further lowered, and the powder 10 for compacting the other flange part (E part) is filled to a rate of 5000 kg/cd.
It was compacted at a pressure of

圧粉成形後、スペーサ15を取り除き、窒素界囲気中で
1時間にわたり1150℃で焼結した。
After compaction, the spacer 15 was removed, and the product was sintered at 1150° C. for 1 hour in a nitrogen atmosphere.

焼結前のフランジ部(D部およびE部)およびウェブ部
(0部)の密度は、それぞれ6. 9g/c+4.6.
4g/c+1であったが、焼結後の密度は、フランジ部
(D部およびE部)が6. 9g/cJ、ウェブ部(0
部)が7.0g/ciとなり、はぼ同等になったことが
判明した。
The densities of the flange parts (parts D and E) and the web part (part 0) before sintering are 6. 9g/c+4.6.
The density after sintering was 6.4g/c+1 for the flange part (part D and part E). 9g/cJ, web part (0
) was 7.0 g/ci, which was found to be almost the same.

実施例2 また、粉体16におけるPの添加量を、0.2〜1.0
重量%の範囲で変化させて、同様の実験をしたところ、
上述したのと、同様な結果が得られた。
Example 2 In addition, the amount of P added in the powder 16 was varied from 0.2 to 1.0.
When we conducted a similar experiment by varying the weight percentage, we found that
Results similar to those described above were obtained.

実施例3 さらに、粉体16において、Pの代わりに、0.2〜1
.0重量%のBを添加し、同様の実験をしたところ、や
はり上述したのと、同様な結果を得た。
Example 3 Furthermore, in the powder 16, instead of P, 0.2 to 1
.. When a similar experiment was conducted with the addition of 0% by weight of B, the same results as described above were obtained.

実施例4 また、粉体16において、Pの代わりに、C:3.4重
量%、Si:1.97重量%、S:O,S7重量%、M
n:0.69重量%、Mo:0.01重量%、Cr:0
.093重量%、残部がFeよりなる合金鋳鉄粉末を用
いた場合も同様であった。
Example 4 In addition, in the powder 16, instead of P, C: 3.4% by weight, Si: 1.97% by weight, S:O, S7% by weight, M
n: 0.69% by weight, Mo: 0.01% by weight, Cr: 0
.. The same result was obtained when using alloyed cast iron powder containing 0.093% by weight and the balance being Fe.

ただし、粉体16において、Pの代わりに、Bや合金鋳
鉄粉末を用いる場合には、共晶融液の発生温度が、Pに
比べて高い(約1150℃近傍)ため、焼結温度をPを
添加した場合に比べてやや高く、1200℃位にすると
、より好ましい結果が得られ、粉体10は、1200℃
位で焼結しても実質的に変化しないことが判明した。
However, when using B or alloyed cast iron powder instead of P in the powder 16, the temperature at which the eutectic melt is generated is higher than that of P (around 1150°C), so the sintering temperature is set to Powder 10 has a slightly higher temperature than that of 1200°C, which gives more favorable results.
It was found that sintering at a temperature of

本発明は、以上の実施例に限定されることな(特許請求
の範囲に記載した発明の範囲内で種々の変更が可能であ
り、それらも又本発明の範囲に包含されることは言うま
でもない。
The present invention is not limited to the above embodiments (it goes without saying that various modifications can be made within the scope of the invention described in the claims, and these are also included in the scope of the present invention). .

たとえば、前記実施例においては、スペーサ15は、本
圧粉成形後焼結前に取り除いているが、焼結により溶浸
するような材料によって構成してお(ことにより、取り
除(ことなく、そのまま焼結してもよい。また、スペー
サ15としては、金属その他の剛体の表面に、Cuなど
の焼結により溶浸するような材料からなるメッキ層を設
けたものや、かかる材料からなる箔を貼付したものも好
ましく使用しうる。
For example, in the embodiment described above, the spacer 15 is removed after the main powder compaction and before sintering, but it may be made of a material that is infiltrated during sintering (or may not be removed). Alternatively, the spacer 15 may be a metal or other rigid body with a plated layer made of a material that can be infiltrated by sintering, such as Cu, or a foil made of such a material. It can also be preferably used.

また、圧粉成形すべき各粉体を溶剤などと混合して、そ
れぞれスラリー状にし、たとえば、スペーサ15の上下
の部分に溶剤排出孔を設けた型11中に充填し、圧粉す
るようにしてもよい。
Further, each powder to be compacted is mixed with a solvent or the like to form a slurry, and the slurry is filled into a mold 11 having solvent discharge holes in the upper and lower parts of the spacer 15, and compacted. It's okay.

さらには、前記実施例においては、いわゆるアンダーカ
ット部を有するコンロッドを製造する例を示したが、本
発明は、このようにアンダーカット部を有するような形
状の焼結部品の製造にその適用範囲が限られるものでな
いのは、もとよりであって、たとえば、T聖断面を有す
る焼結部品のように、広(、圧粉成形すべき粉体の体積
量が部分的に異なるような形状の焼結部品の製造に好適
に使用しうるものである。
Furthermore, in the above embodiment, an example was shown in which a connecting rod having a so-called undercut portion was manufactured. Of course, this is not limited to a sintered part having a wide shape (such as a sintered part having a T cross section), and where the volume of the powder to be compacted is partially different. It can be suitably used for manufacturing joint parts.

発明の効果 本発明によれば、圧粉体積量の多い部分の成形に、低温
焼結性の粉体を用い、該低温焼結性粉体が、液相焼結ま
たは半液相焼結して共晶融液を発生する温度以上で焼結
を行っているため、圧粉体積量の多い部分の焼結が促進
され、物理的な圧縮不足は不可避であるにもかかわらず
、所望の密度に焼結成形することが可能となり、各部の
圧粉体積量が異なるような形状にもかかわらず、強度欠
陥のない焼結部品の得ることが可能となる。
Effects of the Invention According to the present invention, a low-temperature sinterable powder is used for forming a portion with a large volume of compacted powder, and the low-temperature sinterable powder is subjected to liquid phase sintering or semi-liquid phase sintering. Since sintering is carried out at a temperature higher than that at which a eutectic melt is generated, sintering is promoted in areas with a large volume of compacted powder, and despite the unavoidable lack of physical compaction, it is possible to achieve the desired density. This makes it possible to obtain sintered parts without any strength defects, even if the shapes have different volumes of compacted powder in each part.

また、圧粉成形時に、クラックを成形体に生じさせるこ
となく、圧粉体積量の多い部分を所望な程度に圧縮して
焼結することが可能となる。
Further, during powder compacting, it is possible to compress and sinter a portion with a large powder volume to a desired degree without causing cracks in the compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は、先行技術における焼結部品の製造
ステップを示す概略図である。 第5図は、本発明の一実施例において製造すべき焼結部
品である自動車のコンロッドの路上面図であり、第6図
は、そのA−A略断面図である。 第7図乃至第10図は、本発明の一実施例における焼結
部品の製造ステップを示す概略断面図である。 1・・・ダイス、 2・・・下パンチ、4・・・原料金
属粉末、 5・・・上パンチ、6・・・−次成形品、 
7・・・スペーサ、8・・・焼結部品、 10.16・
・・粉体、11・・・型、  12・・・上パンチ、1
3・・・下パンチ、 14・・・予備圧粉成形体、 15・・・スペーサ 第1図 と 第3図 第 5 図 第2図 第4図 第 8 図 第 6 図 第 7 図 第 9 図 第10  区
1 to 4 are schematic diagrams illustrating the manufacturing steps of a sintered part in the prior art. FIG. 5 is a road view of a connecting rod for an automobile, which is a sintered part to be manufactured in an embodiment of the present invention, and FIG. 6 is a schematic cross-sectional view taken along line A-A. 7 to 10 are schematic cross-sectional views showing the manufacturing steps of a sintered part in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Die, 2...Lower punch, 4...Raw metal powder, 5...Upper punch, 6...-Next molded product,
7... Spacer, 8... Sintered part, 10.16.
...Powder, 11...Mold, 12...Upper punch, 1
3...Lower punch, 14...Preliminary compacted compact, 15...Spacer Fig. 1 and Fig. 3 Fig. 5 Fig. 2 Fig. 4 Fig. 8 Fig. 6 Fig. 7 Fig. 9 Ward 10

Claims (1)

【特許請求の範囲】[Claims] 粉末圧縮成形すべき粉体の体積量が部分的に異なるよう
な形状の焼結部品を製造する方法において、粉末圧縮成
形すべき粉体の体積量の多い部分に他の部分に用いる粉
体に比して低温焼結性の粉体を用いて粉末圧縮成形し、
該低温焼結性粉体が液相焼結または半液相焼結する温度
以上でかつ前記他の部分に用いる粉体の焼結温度以上の
温度で焼結することを特徴とする焼結部品の製造方法。
In a method of manufacturing a sintered part having a shape in which the volume of the powder to be powder compression molded differs partially, the powder used for other parts is In contrast, powder compression molding is performed using low-temperature sinterable powder,
A sintered part characterized in that the low-temperature sinterable powder is sintered at a temperature higher than the temperature at which liquid phase sintering or semi-liquid phase sintering occurs and higher than the sintering temperature of the powder used for the other parts. manufacturing method.
JP16122986A 1986-07-09 1986-07-09 Production of sintered parts Pending JPS6318004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16122986A JPS6318004A (en) 1986-07-09 1986-07-09 Production of sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16122986A JPS6318004A (en) 1986-07-09 1986-07-09 Production of sintered parts

Publications (1)

Publication Number Publication Date
JPS6318004A true JPS6318004A (en) 1988-01-25

Family

ID=15731085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16122986A Pending JPS6318004A (en) 1986-07-09 1986-07-09 Production of sintered parts

Country Status (1)

Country Link
JP (1) JPS6318004A (en)

Similar Documents

Publication Publication Date Title
US4539175A (en) Method of object consolidation employing graphite particulate
US4314399A (en) Method of producing moulds
US5453242A (en) Process for producing sintered-iron molded parts with pore-free zones
US4483820A (en) Method of making sintered powder metallurgical bodies
US5625861A (en) Porous metal body and process for producing same
US4008023A (en) Mold pack for making metal powder articles
US2479364A (en) Method of making molds
KR890014774A (en) Method for producing flat articles from metal powders and alloy plates produced by the method
US5174952A (en) Process for the powder-metallurgical production of a workpiece
JPH02185904A (en) Hot pressing of powder and granule
JPS6318004A (en) Production of sintered parts
DE2915831C2 (en)
JPS596301A (en) High densification of powder metal parts
US5623727A (en) Method for manufacturing powder metallurgical tooling
JPS6318006A (en) Production of sintered parts
US3996047A (en) Method and mold for producing round rods by powder metallurgy
JPS6318005A (en) Production of sintered parts
US3145102A (en) Method of and apparatus for making sintered powdered metal parts
JP2008068166A (en) Method for manufacturing sintered metal-made filter
JP3830802B2 (en) Sintered product manufacturing method and sintered product
JPS6318003A (en) Production of sintered parts
JP2521778B2 (en) Method for manufacturing infiltration-bonded sintered machine parts
JP3322926B2 (en) Manufacturing method of molded body
JPS6119703A (en) Preparation of copper infiltrated ferrous sintered body
US20030063992A1 (en) Methods of filling a die cavity with multiple materials for powder metal compaction