JPH04322481A - Discharge-excited gas laser apparatus - Google Patents

Discharge-excited gas laser apparatus

Info

Publication number
JPH04322481A
JPH04322481A JP3092019A JP9201991A JPH04322481A JP H04322481 A JPH04322481 A JP H04322481A JP 3092019 A JP3092019 A JP 3092019A JP 9201991 A JP9201991 A JP 9201991A JP H04322481 A JPH04322481 A JP H04322481A
Authority
JP
Japan
Prior art keywords
laser
gas
discharge
laser gas
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3092019A
Other languages
Japanese (ja)
Inventor
Takuhiro Ono
小野 拓弘
Naoya Horiuchi
掘内 直也
Keiichiro Yamanaka
山中 圭一郎
Kenichi Takahata
高畑 憲一
Nobuaki Furuya
古谷 伸昭
Takeo Miyata
宮田 威男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3092019A priority Critical patent/JPH04322481A/en
Priority to KR1019920006757A priority patent/KR950013054B1/en
Priority to CA002066875A priority patent/CA2066875C/en
Priority to DE69200247T priority patent/DE69200247T2/en
Priority to EP92106872A priority patent/EP0510605B1/en
Priority to US07/872,247 priority patent/US5239553A/en
Publication of JPH04322481A publication Critical patent/JPH04322481A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To eliminate the influence of a deterioration gas on a downstream-side preliminary ionization means, to stabilize the preliminary ionization between main discharge electrodes, to make a discharge stable and to perform a highly repetitive oscillation by a method wherein a partition wall provided with one or more opening parts is installed and a laser gas stream is branched and separated into a downstream- side preliminary ionization means and a main discharge part. CONSTITUTION:A laser gas whose pressure and composition are prescribed is sealed in a pressure container 101. A partition wall 108 provided with opening parts is constituted of a material which generates little impurity gas when it is irradiated with ultraviolet rays. The opening parts are used to pass one part of a circulating laser gas; they branch a gas stream respectively into a main discharge part and a downstream-side preliminary ionization part; and at the same time, they are arranged so as to correspond to the downstream-side preliminary ionization part in such a way that ultraviolet rays discharged by a downstream-side preliminary ionization means can be radiated between main discharge electrodes. The laser gas flowing in the downstream-side preliminary ionization part is cooled by using a cooler 110; it is cleaned while it is circulated in a circulation route; and after that, it is spouted toward a deterioration gas stream from the opening parts made in the partition wall.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は予備電離手段を有する放
電励起ガスレーザ装置に係り、特に主放電電極間を流れ
るレーザガスと下流側の予備電離手段に流れるレーザガ
ス流を制御することにより、主放電電極間の放電が安定
な、レーザガス寿命の長い高繰り返し性能の高い放電励
起ガスレーザに関するものである。
[Field of Industrial Application] The present invention relates to a discharge-excited gas laser device having a pre-ionization means, and in particular, by controlling the flow of laser gas flowing between the main discharge electrodes and the laser gas flow flowing to the pre-ionization means on the downstream side. The present invention relates to a discharge-excited gas laser with stable discharge during the period of time, a long laser gas life, and high repetition performance.

【0002】0002

【従来の技術】放電励起ガスレーザ、特に放電励起希ガ
スハライドエキシマレーザ(以後エキシマレーザと言う
)は、高効率、高出力、高繰り返しの発振が可能である
ことから、各種の研究用光源としてはもちろんのこと、
半導体プロセス、化学工業、微細加工、医療等への利用
が期待されている。
[Prior Art] Discharge-excited gas lasers, particularly discharge-excited rare gas halide excimer lasers (hereinafter referred to as excimer lasers), are capable of high efficiency, high output, and high repetition rate oscillation, and are therefore used as light sources for various research purposes. Of course,
It is expected to be used in semiconductor processing, chemical industry, microfabrication, medicine, etc.

【0003】以下、従来の放電励起ガスレーザについて
説明する。図4は従来の放電励起ガスレーザの断面模式
図を示すものである。図4において、1はレーザガス2
を封入する圧力容器、3、4は一対の対向する主放電電
極(紙面と垂直方向が長手方向)である。5、6は予備
電離ギャップで、5は上流側、6は下流側であり、スパ
ーク放電により紫外線を放出する。7は循環器で、封入
されたレーザガス2を矢印の方向に貫流させる。8は冷
却器で、放電により温度が上昇したレーザガスを冷却す
る。9は充電コンデンサー(C1)であり図示していな
いが端子10に接続された高圧電源から放電エネルギを
蓄える。11は充電用コイルである。12はサイラトロ
ンであり、図示していないがトリガ信号により高速でO
N−OFFをする。13、14はピーキングコンデンサ
ー(C2)で充電コンデンサー9に蓄えた電荷が移行さ
れる。
A conventional discharge-excited gas laser will be explained below. FIG. 4 shows a schematic cross-sectional view of a conventional discharge-excited gas laser. In FIG. 4, 1 is the laser gas 2
3 and 4 are a pair of opposing main discharge electrodes (the longitudinal direction is perpendicular to the plane of the paper). 5 and 6 are preliminary ionization gaps, 5 is the upstream side and 6 is the downstream side, which emits ultraviolet rays by spark discharge. 7 is a circulator through which the enclosed laser gas 2 flows in the direction of the arrow. A cooler 8 cools the laser gas whose temperature has increased due to discharge. A charging capacitor (C1) 9 stores discharge energy from a high voltage power supply connected to a terminal 10, although not shown. 11 is a charging coil. 12 is a thyratron, which is not shown, but is turned on at high speed by a trigger signal.
Turn N-OFF. 13 and 14 are peaking capacitors (C2) to which the charge stored in the charging capacitor 9 is transferred.

【0004】以上のように構成された放電励起ガスレー
ザについて、以下その動作について説明する。まず、充
電コンデンサー9に蓄えられた電荷はサイラトロン12
がONすることにより、予備電離ギャップ5、6をスパ
ーク放電させピーキングコンデンサー13、14に移行
し、充電される。この時、予備電離ギャップ5、6のス
パーク放電により紫外線が放出され、光電離効果により
主放電電極3、4間のレーザガスが予備的に電離して電
子密度をおよそ108個/cm3に高める。ピーキング
コンデンサー13、14が充電されるにつれて主放電電
極間の印可電圧が上昇する。印可電圧の上昇に伴い主放
電電極間のレーザガスの電子密度が急激に1018個/
cm3程度に増加し、ピーキングコンデンサー13、1
4の電荷が主放電電極3、4間をパルス的に流れ、いわ
ゆる放電状態となる。これにより、主放電電極間のレー
ザガスが励起されレーザ発振に至る。
The operation of the discharge-excited gas laser constructed as described above will be explained below. First, the charge stored in the charging capacitor 9 is the thyratron 12
When turned on, the pre-ionization gaps 5 and 6 are spark-discharged, and the peaking capacitors 13 and 14 are charged. At this time, ultraviolet rays are emitted by the spark discharge in the pre-ionization gaps 5 and 6, and the laser gas between the main discharge electrodes 3 and 4 is preliminarily ionized by the photoionization effect, increasing the electron density to about 10 8 /cm 3 . As the peaking capacitors 13 and 14 are charged, the voltage applied between the main discharge electrodes increases. As the applied voltage increases, the electron density of the laser gas between the main discharge electrodes suddenly increases to 1018 electrons/
cm3, peaking capacitor 13,1
4 charges flow between the main discharge electrodes 3 and 4 in a pulsed manner, resulting in a so-called discharge state. This excites the laser gas between the main discharge electrodes, leading to laser oscillation.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、主放電に伴い高温で、イオン、金属粒子
を含んだ劣化レーザガスが貫流することにより下流側位
置する予備電離手段の温度上昇、損傷を招く。特にエキ
シマレーザに於ける高繰り返し動作時ではその影響が著
しく、下流側予備電離ギャップの摩耗が激しい。例えば
KrFエキシマレーザでは、高温になった予備電離ピン
とふっ素ガスの反応が激しくなり予備電離ピンの摩耗と
同時にふっ素ガスが消耗しレーザガスの寿命と、予備電
離ピンの寿命が短く、安定な高繰り返し動作が達成し難
いという欠点があった。また、下流側予備電離ギャップ
間に主放電電極からの劣化ガスが残留し予備電離が不安
定になり主放電電極間の電子密度が空間的に不均一にな
る。この事は、主放電電流の局在化となりアークの発生
等につながり、レーザ発振効率が低くなる。結果として
、レーザビームサイズの縮小化とレーザ出力の低下を招
くと同時に主放電電極の寿命を短くする。従って、高い
レーザ発振効率で安定したとレーザビームを得るために
は、下流側予備電離ギャップに劣化レーザガスを残留さ
せない事が重要である。そのためには、高速のガス流の
発生やガス流の層流化が必要となり、大容量の循環器を
必要とし、装置が大型化するという課題を有していた。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional configuration, the high temperature and degraded laser gas containing ions and metal particles flows through the main discharge, causing temperature rise and damage to the pre-ionization means located downstream. invite. This effect is particularly noticeable during high repetition operation in an excimer laser, and the wear of the downstream preionization gap is severe. For example, with a KrF excimer laser, the reaction between the high-temperature pre-ionization pin and the fluorine gas becomes intense, and the fluorine gas is consumed at the same time as the pre-ionization pin wears out, shortening the lifespan of the laser gas and the pre-ionization pin, resulting in stable, high-repetition operation. The disadvantage was that it was difficult to achieve. Furthermore, degraded gas from the main discharge electrode remains between the downstream pre-ionization gaps, making pre-ionization unstable and making the electron density between the main discharge electrodes spatially non-uniform. This causes the main discharge current to become localized, leading to the generation of arcs and the like, resulting in a decrease in laser oscillation efficiency. As a result, the laser beam size is reduced, the laser output is reduced, and the life of the main discharge electrode is shortened. Therefore, in order to obtain a stable laser beam with high laser oscillation efficiency, it is important that no degraded laser gas remains in the downstream pre-ionization gap. For this purpose, it is necessary to generate a high-speed gas flow and to make the gas flow laminar, which requires a large-capacity circulator, resulting in an increase in the size of the device.

【0006】本発明は上記従来技術の課題を解決するも
ので、下流側予備電離ギャップに上流側の放電による劣
化ガスの影響をなくし、小容量の循環器で繰り返し性能
の高く、かつレーザガス、予備電離電極寿命の長い放電
励起ガスレーザを提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art, and eliminates the influence of degraded gas caused by upstream discharge on the downstream pre-ionization gap, and achieves high repeat performance in a small capacity circulator, and also provides laser gas and pre-ionization. The purpose of the present invention is to provide a discharge-excited gas laser with a long ionization electrode life.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明は、下流側に配置される予備電離手段(ギャッ
プ)に主放電電極間のレーザガス流を到達させないよう
にレーザガス流を制御する制御手段有する。
[Means for Solving the Problems] In order to achieve this object, the present invention controls the laser gas flow so that the laser gas flow between the main discharge electrodes does not reach the pre-ionization means (gap) arranged on the downstream side. It has control means.

【0008】[0008]

【作用】本発明は上記構成によって、主放電電極間を通
過したレーザガスは、直接的には、下流側予備電離ギャ
ップを通過しない別の経路を経て流れるため、高繰り返
し動作でも下流側予備電離ピンの温度上昇が抑えられ、
かつ摩耗が低減され、安定な予備電離がおこなえるため
、従来装置では不可能であった高繰り返し数まで発振を
する。
[Function] With the above configuration, the present invention allows the laser gas that has passed between the main discharge electrodes to flow through another path that does not directly pass through the downstream preionization gap, so even in high repetition operations, the laser gas that has passed between the main discharge electrodes does not directly pass through the downstream preionization gap. temperature rise is suppressed,
In addition, wear is reduced and stable pre-ionization can be performed, allowing oscillation to occur at a high repetition rate that was impossible with conventional devices.

【0009】[0009]

【実施例】以下図面を参照しながら本発明の実施例につ
いて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described in detail below with reference to the drawings.

【0010】(実施例1)以下、本発明の第1の実施例
について、図面1乃至2を参照しながら説明する。
(Embodiment 1) A first embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

【0011】図1は、本発明の第1の実施例の放電励起
ガスレーザの構成の要部を示す斜視図であり、図2は、
図1のA−A断面を示す断面模式図である。図1乃至図
2において、101は圧力容器でレーザガスが所定の圧
力、組成に封入されている。102は主放電部レーザガ
ス流、103は下流側予備電離部レーザガス流の流れる
方向(例えば貫流方向)を示す。104、105は1対
の対向する主放電電極(紙面と垂直方向が長手方向)で
対向する空間で主放電を行う。106は上流側、107
は下流側予備電離手段(ギャップ)で、主放電電極に沿
って(紙面に垂直方向)複数個設置されており、スパー
ク放電により紫外線を放出し、主放電電極間のレーザガ
スを均一に電離する。108は開口部を有する隔壁で紫
外線照射により不純物ガス発生の少ない材質で構成され
、開口部は貫流するレーザガスの一部を通過させるため
のもので、主放電部、下流側予備電離部にそれぞれガス
流を分岐させると同時に、下流側予備電離手段で放出さ
れた紫外線を主放電電極間に放射できるよう下流側予備
電離に対応して配備されている。109は循環器で、封
入されたレーザガスを貫流させ、110は冷却器で、放
電により温度が上昇したレーザガスを冷却する。111
は充電コンデンサーであり図示していないが端子112
に接続された高圧電源から放電エネルギーを蓄える。 113は充電用コイルで、114はサイラトロンであり
図示しないがトリガ信号により高速でON−OFFする
FIG. 1 is a perspective view showing a main part of the configuration of a discharge-excited gas laser according to a first embodiment of the present invention, and FIG.
FIG. 2 is a schematic cross-sectional view taken along the line AA in FIG. 1. FIG. In FIGS. 1 and 2, 101 is a pressure vessel in which laser gas is sealed at a predetermined pressure and composition. Reference numeral 102 indicates the flow direction of the main discharge section laser gas flow, and 103 indicates the flow direction (for example, the through-flow direction) of the downstream preliminary ionization section laser gas flow. Reference numerals 104 and 105 are a pair of opposing main discharge electrodes (the longitudinal direction is perpendicular to the plane of the paper), and main discharge is performed in opposing spaces. 106 is upstream side, 107
is a downstream preliminary ionization means (gap), which is installed in multiple pieces along the main discharge electrode (perpendicular to the plane of the paper) and emits ultraviolet rays by spark discharge to uniformly ionize the laser gas between the main discharge electrodes. Reference numeral 108 denotes a partition wall having an opening, which is made of a material that generates little impurity gas when irradiated with ultraviolet rays.The opening is for passing a part of the laser gas flowing through, and the gas is provided in the main discharge part and the downstream preliminary ionization part, respectively. It is arranged corresponding to the downstream side pre-ionization so that the ultraviolet rays emitted by the downstream side pre-ionization means can be emitted between the main discharge electrodes at the same time as branching the flow. 109 is a circulator through which the enclosed laser gas flows, and 110 is a cooler that cools the laser gas whose temperature has increased due to discharge. 111
is a charging capacitor, not shown, but terminal 112
stores discharge energy from a high-voltage power supply connected to the 113 is a charging coil, and 114 is a thyratron, which is not shown but is turned on and off at high speed by a trigger signal.

【0012】また、主放電電極104、105の略長手
方向がレーザ発振のための共振方向であり、レーザ光を
射出する。
Further, the substantially longitudinal direction of the main discharge electrodes 104 and 105 is the resonance direction for laser oscillation, and laser light is emitted.

【0013】以上のように構成された本発明の実施例に
ついて、図2を用いてその動作を説明する。まず、充電
コンデンサー111に蓄えられた電荷はサイラトロン1
14がONすることにより、予備電離ギャップ106、
107をスパーク放電させピーキングコンデンサー11
5、に移行し、充電される。この時、予備電離ギャップ
106、107のスパーク放電により紫外線が放出され
、光電離効果により主放電電極104、105間のレー
ザガスを均一に予備的に電離して電子密度をおよそ10
8個/cm3に高める。ピーキングコンデンサー115
が充電されるにつれて主放電電極間の印可電圧が上昇す
る。印可電圧の上昇に伴い主放電電極間のレーザガスの
電子密度が増殖的に急激に1018個/cm3程度に増
加し、ピーキングコンデンサー115の電荷が主放電電
極104、105間のレーザガスを通してパルス的に流
れ、いわゆる放電状態となる。これにより、主放電電極
間のレーザガスが励起されレーザ発振に至る。
The operation of the embodiment of the present invention constructed as described above will be explained with reference to FIG. First, the charge stored in the charging capacitor 111 is the thyratron 1
14 is turned on, the pre-ionization gap 106,
107 to spark discharge and peaking capacitor 11
5, and is charged. At this time, ultraviolet rays are emitted by the spark discharge in the pre-ionization gaps 106 and 107, and the laser gas between the main discharge electrodes 104 and 105 is uniformly and pre-ionized by the photoionization effect, reducing the electron density to about 10
Increase to 8 pieces/cm3. peaking capacitor 115
As the battery is charged, the voltage applied between the main discharge electrodes increases. As the applied voltage increases, the electron density of the laser gas between the main discharge electrodes rapidly increases to about 1018 electrons/cm3, and the charge in the peaking capacitor 115 flows in a pulsed manner through the laser gas between the main discharge electrodes 104 and 105. , a so-called discharge state occurs. This excites the laser gas between the main discharge electrodes, leading to laser oscillation.

【0014】本実施例では、主放電電極の下流側に開口
部を有する隔壁を設け、主放電部を流れるレーザガス流
を下流側予備電離部へと直接流すのではなく、下流側予
備電離部を流れるレーザガスは、冷却器で冷却され、循
環路を循環する間にイオンの寿命、粉塵の沈降等により
浄化された後、循環器から下流側予備電離手段を経て隔
壁に設けられた開口部から上流側放電部の劣化ガス流に
向かって吹き出すようにした。このため、本実施例では
下流側予備電離への劣化レーザガスの影響を完全に除去
でき、高繰返し動作時、主放電電極間の予備電離による
電子密度を容易に空間的に均一化できる。このため安定
した放電が得られ、効率の高いレーザ発振ができる。ま
た、本実施例では、下流側予備電離手段の温度上昇を抑
えられるため、ふっ素ガスの消耗を低減でき、併せて予
備電離手段の損傷を抑えたことから、レーザガス及の置
換は主放電電極間の主放電域のみで良いことから、従来
装置では不可能であった安定な高繰り返し数の発振が可
能となった。
In this embodiment, a partition wall having an opening is provided on the downstream side of the main discharge electrode, so that the laser gas flow flowing through the main discharge part does not flow directly to the downstream pre-ionization part, but rather through the downstream pre-ionization part. The flowing laser gas is cooled by a cooler and purified by the life of ions and the settling of dust while circulating through the circulation path, and then passes from the circulator through downstream preliminary ionization means and then flows upstream from the opening provided in the partition wall. It was designed to blow out toward the degraded gas flow in the side discharge section. Therefore, in this embodiment, the influence of the deteriorated laser gas on the downstream side pre-ionization can be completely eliminated, and during high repetition operation, the electron density due to the pre-ionization between the main discharge electrodes can be easily made uniform spatially. Therefore, stable discharge can be obtained and highly efficient laser oscillation can be achieved. In addition, in this example, since the temperature rise of the downstream pre-ionization means can be suppressed, consumption of fluorine gas can be reduced, and damage to the pre-ionization means can also be suppressed. Because only the main discharge region is required, stable oscillation with a high repetition rate, which was impossible with conventional devices, is now possible.

【0015】(実施例2)以下、本発明の第2の実施例
について、図面を参照しながら説明する。
(Embodiment 2) A second embodiment of the present invention will be described below with reference to the drawings.

【0016】図3は本発明の第2の実施例における放電
励起ガスレーザ装置の断面模式図である。
FIG. 3 is a schematic cross-sectional view of a discharge-excited gas laser device according to a second embodiment of the present invention.

【0017】図3において、201は圧力容器、202
は主放電部レーザガス流、203は下流側予備電離部レ
ーザガス流の貫流方向を示す。204、205は1対の
対向する主放電電極(紙面と垂直が長手方向)、206
は上流側、207は下流側予備電離手段(ギャップ)、
208は少なくとも1つの開口部を有し圧力容器内を2
分する隔壁、209は循環器で封入されたレーザガスを
主放電部に貫流させる。210は冷却器、211は充電
コンデンサー、212は高圧端子、213は充電用コイ
ルで、214はサイラトロン、215はピーキングコン
デンサーで、以上は図2の構成と同様なものである。
In FIG. 3, 201 is a pressure vessel, 202
203 indicates the flow direction of the main discharge section laser gas flow, and 203 indicates the flow direction of the downstream preliminary ionization section laser gas flow. 204 and 205 are a pair of opposing main discharge electrodes (longitudinal direction perpendicular to the page); 206
is the upstream side, 207 is the downstream preliminary ionization means (gap),
208 has at least one opening and has two openings inside the pressure vessel.
The partition wall 209 allows the laser gas enclosed in the circulator to flow through to the main discharge section. 210 is a cooler, 211 is a charging capacitor, 212 is a high voltage terminal, 213 is a charging coil, 214 is a thyratron, and 215 is a peaking capacitor, which is the same as the configuration shown in FIG.

【0018】図2の構成と異なるのは隔壁208により
圧力容器を2つに区分し、外部循環器216を別に設け
、冷却、浄化されたレーザガスの一部を吸引し、隔壁の
開口部より吹き出すようにした点である。この外部循環
器216は、ガス純化装置を含むことも可能である。
The difference from the configuration shown in FIG. 2 is that the pressure vessel is divided into two by a partition wall 208, and an external circulator 216 is separately provided to suck in a portion of the cooled and purified laser gas and blow it out from the opening in the partition wall. This is what we did. This external circulator 216 may also include a gas purification device.

【0019】上記のように構成された放電励起ガスレー
ザについて、以下その動作を説明する。レーザ発振に至
る動作は図2と同じであるので省略する。まず、主放電
部は循環器209によりレーザガスが流されるが、別に
設けられた外部循環器216により吸引され、冷却、浄
化された後、下流側予備電離手段(ギャップ)を経て、
圧力容器を2つに区分する少なくとも1つ以上の開口部
を有する隔壁の前記開口部を通して吹き出すようにした
。これにより、より効果的に下流予備電離部と主放電部
のレーザガス流を分岐分離できる。また、外部循環器の
循環能力を選択することにより、任意に、下流側予備電
離手段のレーザガス流の流量が可変にできる。
The operation of the discharge-excited gas laser constructed as described above will be explained below. The operation leading to laser oscillation is the same as that in FIG. 2, so a description thereof will be omitted. First, laser gas is passed through the main discharge section by a circulator 209, but after being sucked in, cooled and purified by a separately provided external circulator 216, it passes through a downstream preliminary ionization means (gap).
The air was blown out through the opening of a partition wall having at least one opening that divided the pressure vessel into two. Thereby, the laser gas flows of the downstream preliminary ionization section and the main discharge section can be branched and separated more effectively. Further, by selecting the circulation capacity of the external circulator, the flow rate of the laser gas flow of the downstream preionization means can be made variable as desired.

【0020】以上のように少なくとも1つ以上の開口部
を有する隔壁により圧力容器を少なくとも2つに区分し
、外部循環器を設け、下流側予備電離手段の温度上昇を
抑えながら、第1の実施例同様、本実施例でも下流側予
備電離手段への劣化レーザガスの影響を完全に除去でき
、高繰返し動作時、主放電電極間の予備電離による電子
密度が容易に空間的に均一化できる。このため安定した
放電が得られ、効率の高いレーザ発振ができるようにな
り、従来装置では不可能であった高繰り返し数の発振が
可能となった。特に本実施例においては、循環器を別に
設けることにより容易に下流予備電離部と主放電部のレ
ーザガス流を分岐分離でき、また外部循環器の循環能力
を選択することにより、下流側予備電離手段のレーザガ
ス流の流量が任意に可変にでき、最適化が容易に行える
As described above, the pressure vessel is divided into at least two parts by the partition wall having at least one or more openings, and an external circulator is provided. Similarly to the example, in this example, the influence of degraded laser gas on the downstream pre-ionization means can be completely eliminated, and during high repetition operation, the electron density due to pre-ionization between the main discharge electrodes can be easily made uniform spatially. As a result, stable discharge can be obtained, and highly efficient laser oscillation can be performed, making it possible to oscillate at a high repetition rate, which was impossible with conventional devices. In particular, in this embodiment, by providing a separate circulator, the laser gas flow of the downstream pre-ionization section and the main discharge section can be easily branched and separated, and by selecting the circulation capacity of the external circulator, the downstream pre-ionization means The flow rate of the laser gas flow can be arbitrarily varied, making optimization easy.

【0021】実施例としては例示していないが、本実施
例を適用すれば下流側予備電離手段だけでの発振も十分
可能である。この場合発振毎のレーザガス置換は、主放
電部のみ行えば良いこと、また主放電電極間の上流部に
レーザガスの流れを妨げる構造物がないことから主放電
電極間のガス流を容易に層流化でき、小型の循環器でも
従来装置では不可能である高繰り返し発振が可能となこ
とは十分予想できる。
Although not shown as an example, if this example is applied, it is possible to oscillate only with the downstream preliminary ionization means. In this case, the laser gas replacement for each oscillation only needs to be performed in the main discharge section, and since there is no structure that obstructs the flow of laser gas in the upstream area between the main discharge electrodes, the gas flow between the main discharge electrodes can be easily made into a laminar flow. It can be fully predicted that even small circulators will be able to perform high repetition oscillations, which is impossible with conventional devices.

【0022】なお、本実施例において予備電離手段はス
パークギャップとしたが、予備電離手段はコロナ放電手
段としてもよいことは言うまでもない。また上記実施例
は、この発明の理解を容易にするために例示したものに
過ぎず、種々の変形や変更が可能であることはいうまで
もない。
In this embodiment, the pre-ionization means is a spark gap, but it goes without saying that the pre-ionization means may also be a corona discharge means. Further, the above embodiments are merely illustrative to facilitate understanding of the present invention, and it goes without saying that various modifications and changes can be made.

【0023】また圧力容器の隔壁でレーザガスの冷却が
十分行なわれる場合には、冷却器を省略できることはい
うまでもない。
It goes without saying that if the laser gas is sufficiently cooled by the partition wall of the pressure vessel, the cooler can be omitted.

【0024】[0024]

【発明の効果】以上のように本発明は予備電離手段を有
するガスレーザにおいて、少なくとも1つ以上の開口部
を有する隔壁を設け、下流側予備電離手段と主放電部の
レーザガス流を分岐分離することにより、下流側予備電
離手段への劣化ガスの影響を除去し、主放電電極間の予
備電離の安定化が図れ、小容量の循環器でも発振効率の
高い、放電の安定な高繰り返し発振をすることができる
優れた放電励起ガスレーザを実現できるものである。
As described above, the present invention provides a gas laser having a pre-ionization means, in which a partition wall having at least one or more openings is provided to branch and separate the downstream pre-ionization means and the main discharge part laser gas flow. This eliminates the influence of degraded gas on the downstream pre-ionization means, stabilizes the pre-ionization between the main discharge electrodes, and enables high-repetition oscillation with high oscillation efficiency and stable discharge even in small-capacity circulators. This makes it possible to realize an excellent discharge-excited gas laser.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第1の実施例における放電励起ガスレ
ーザの要部斜視図
FIG. 1 is a perspective view of essential parts of a discharge-excited gas laser in a first embodiment of the present invention.

【図2】本発明の第1の実施例における放電励起ガスレ
ーザの断面模式図
[Fig. 2] A schematic cross-sectional diagram of a discharge-excited gas laser in the first embodiment of the present invention.

【図3】本発明の第2の実施例における放電励起ガスレ
ーザの断面模式図
[Fig. 3] A schematic cross-sectional view of a discharge-excited gas laser in a second embodiment of the present invention.

【図4】従来の放電励起ガスレーザの断面模式図[Figure 4] Schematic cross-sectional diagram of a conventional discharge-excited gas laser

【符号の説明】[Explanation of symbols]

101  圧力容器 102  主放電部レーザガス流 103  下流予備電離部レーザガス流104  主放
電電極 105  主放電電極 106  上流予備電離手段 107  下流予備電離手段 108  隔壁 109  循環器 110  冷却器 111  充電コンデンサー 112  端子 113  充電コイル 114  サイラトロン 115  ピーキングコンデンサー 201  圧力容器 202  主放電部レーザガス流 203  下流予備電離部レーザガス流204  主放
電電極 205  主放電電極 206  上流予備電離手段 207  下流予備電離手段 208  隔壁 209  循環器 210  冷却器 211  充電コンデンサー 212  端子 213  充電コイル 214  サイラトロン 215  ピーキングコンデンサー 216  外部循環器
101 Pressure vessel 102 Main discharge section laser gas flow 103 Downstream pre-ionization section laser gas flow 104 Main discharge electrode 105 Main discharge electrode 106 Upstream pre-ionization means 107 Downstream pre-ionization means 108 Partition wall 109 Circulator 110 Cooler 111 Charging condenser 112 Terminal 113 Charging coil 114 Thyratron 115 Peaking condenser 201 Pressure vessel 202 Main discharge section laser gas flow 203 Downstream pre-ionization section laser gas flow 204 Main discharge electrode 205 Main discharge electrode 206 Upstream pre-ionization means 207 Downstream pre-ionization means 208 Partition wall 209 Circulator 210 Cooler 211 Charging condenser 212 Terminal 213 Charging coil 214 Thyratron 215 Peaking capacitor 216 External circulator

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】圧力容器内に封入されたレーザガスと、レ
ーザの射出方向を長手方向とし、かつ相対向して配置さ
れた1組の主放電電極と、前記長手方向と垂直な方向に
前記主放電電極間を通じて前記レーザガスを流すようレ
ーザガス流を発生させるガス流発生手段と、前記主放電
電極の少なくとも下流側に配置される予備電離手段とを
有する放電励起ガスレーザ装置において、前記主放電電
極間を通過したレーザガスが前記下流側に配置した予備
電離手段に直接流れないようにレーザガス流を制御する
制御手段を有することを特徴とする放電励起ガスレーザ
装置。
1. A laser gas sealed in a pressure vessel, a set of main discharge electrodes arranged opposite to each other with the laser emission direction as a longitudinal direction, and a main discharge electrode arranged in a direction perpendicular to the longitudinal direction. A discharge-excited gas laser device comprising: a gas flow generating means for generating a laser gas flow so as to flow the laser gas between the discharge electrodes; and a preliminary ionization means disposed at least on the downstream side of the main discharge electrode; A discharge-excited gas laser device comprising: a control means for controlling a laser gas flow so that the laser gas that has passed through it does not flow directly to the preliminary ionization means disposed on the downstream side.
【請求項2】レーザガス流を制御する制御手段が、予備
電離手段近傍のレーザガスを通すための少なくとも1つ
以上の開口部を有することを特徴とする請求項1記載の
放電励起ガスレーザ装置。
2. The discharge-excited gas laser device according to claim 1, wherein the control means for controlling the laser gas flow has at least one opening for passing the laser gas near the preionization means.
【請求項3】レーザガス流を制御する制御手段が、さら
に予備電離手段近傍のレーザガスを吐出するためのガス
吐出手段を有することを特徴とする請求項2記載の放電
励起ガスレーザ装置。
3. The discharge-excited gas laser apparatus according to claim 2, wherein the control means for controlling the laser gas flow further includes gas discharge means for discharging the laser gas near the preliminary ionization means.
【請求項4】レーザガス流を制御する制御手段として設
けられた少なくとも1つ以上の開口部が、主放電電極間
のレーザガスを予備電離するための紫外線を通すための
窓孔を兼ねることを特徴とする請求項2記載の放電励起
ガスレーザ装置。
4. At least one opening provided as a control means for controlling the laser gas flow also serves as a window hole through which ultraviolet light passes for pre-ionizing the laser gas between the main discharge electrodes. The discharge excited gas laser device according to claim 2.
【請求項5】レーザガス流を制御する制御手段として設
けられた少なくとも1つ以上の開口部は隔壁に設けられ
、前記隔壁が不純物ガス発生の少ない材料で構成されて
いることを特徴とする請求項2記載の放電励起ガスレー
ザ装置。
5. At least one or more openings provided as control means for controlling the laser gas flow are provided in a partition wall, and the partition wall is made of a material that generates little impurity gas. 2. The discharge excited gas laser device according to 2.
【請求項6】隔壁が前記圧力容器と一体になっているこ
とを特徴とする請求項5記載の放電励起ガスレーザ装置
6. The discharge excited gas laser apparatus according to claim 5, wherein the partition wall is integrated with the pressure vessel.
【請求項7】レーザガスの予備電離手段がスパークギャ
ップ予備電離手段であることを特徴とする請求項1記載
の放電励起ガスレーザ装置。
7. The discharge-excited gas laser apparatus according to claim 1, wherein the laser gas pre-ionization means is a spark gap pre-ionization means.
【請求項8】レーザガスの予備電離手段がコロナ予備電
離手段であることを特徴とする請求項1記載の放電励起
ガスレーザ装置。
8. The discharge-excited gas laser apparatus according to claim 1, wherein the laser gas pre-ionization means is a corona pre-ionization means.
【請求項9】レーザガスを冷却するための冷却手段を有
することを特徴とする請求項1記載の放電励起ガスレー
ザ装置。
9. The discharge excited gas laser apparatus according to claim 1, further comprising a cooling means for cooling the laser gas.
【請求項10】レーザガスが圧力容器内を循環すること
を特徴とする請求項1記載の放電励起ガスレーザ装置。
10. The discharge excited gas laser device according to claim 1, wherein the laser gas is circulated within a pressure vessel.
JP3092019A 1991-04-23 1991-04-23 Discharge-excited gas laser apparatus Pending JPH04322481A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3092019A JPH04322481A (en) 1991-04-23 1991-04-23 Discharge-excited gas laser apparatus
KR1019920006757A KR950013054B1 (en) 1991-04-23 1992-04-22 Discharge-pumped gas laser with bapfle partition
CA002066875A CA2066875C (en) 1991-04-23 1992-04-22 Discharge-pumped gas laser with baffle partition for controlled laser gas flow at preionizers
DE69200247T DE69200247T2 (en) 1991-04-23 1992-04-22 Discharge-pumped gas laser with baffle separation for controlled gas flow at pre-ionizers.
EP92106872A EP0510605B1 (en) 1991-04-23 1992-04-22 Discharge-pumped gas laser with baffle partition for controlled laser gas flow at preionizers
US07/872,247 US5239553A (en) 1991-04-23 1992-04-22 Discharge-pumped gas laser with baffle partition for controlled laser gas flow at preionizers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3092019A JPH04322481A (en) 1991-04-23 1991-04-23 Discharge-excited gas laser apparatus

Publications (1)

Publication Number Publication Date
JPH04322481A true JPH04322481A (en) 1992-11-12

Family

ID=14042826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3092019A Pending JPH04322481A (en) 1991-04-23 1991-04-23 Discharge-excited gas laser apparatus

Country Status (1)

Country Link
JP (1) JPH04322481A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177538A (en) * 1984-09-26 1986-04-21 Toyota Motor Corp Sheet adjusting apparatus for car
JPH0290148U (en) * 1988-12-28 1990-07-17
JPH0296217U (en) * 1989-01-13 1990-07-31
JPH03112732A (en) * 1989-09-27 1991-05-14 Showa Mfg Co Ltd Vertical position adjustment device for vehicle seat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177538A (en) * 1984-09-26 1986-04-21 Toyota Motor Corp Sheet adjusting apparatus for car
JPH0290148U (en) * 1988-12-28 1990-07-17
JPH0296217U (en) * 1989-01-13 1990-07-31
JPH03112732A (en) * 1989-09-27 1991-05-14 Showa Mfg Co Ltd Vertical position adjustment device for vehicle seat

Similar Documents

Publication Publication Date Title
US6414978B2 (en) Discharge unit for a high repetition rate excimer or molecular fluorine laser
JPH10223955A (en) Design of aerodynamic chamber for high pulse repetition rate excimer laser
KR950013054B1 (en) Discharge-pumped gas laser with bapfle partition
JP2001168432A (en) Gas laser emitting uv-rays
JPH04322481A (en) Discharge-excited gas laser apparatus
JPS6190485A (en) Pulse laser oscillator
JPH04322478A (en) Discharge-excited gas laser apparatus
JP4129969B2 (en) Discharge excitation laser equipment
JPH057041A (en) Discharge excitation gas laser apparatus
JP3171899B2 (en) Gas laser equipment
JP2592829B2 (en) Gas laser device
JP2002026429A (en) Gas laser device
JPS6190481A (en) Pulse laser oscillator
JP2007103628A (en) Discharge excitation type pulse oscillation gas laser apparatus
JP3159528B2 (en) Discharge pumped excimer laser device
JPH02240978A (en) Gas laser device
JP2001230473A (en) Gas laser device
JP2753088B2 (en) Pulse gas laser oscillator
JPH06275897A (en) Discharge excited gas laser device
JPS6218781A (en) Laser oscillator
JPS6281078A (en) Laser oscillator
JPH05343777A (en) Pulse laser equipment
JPH04346280A (en) Discharge excitation gas laser
JPH03187281A (en) Gas laser oscillator
JPH03235388A (en) Pulse laser