JPH03187281A - Gas laser oscillator - Google Patents

Gas laser oscillator

Info

Publication number
JPH03187281A
JPH03187281A JP32490989A JP32490989A JPH03187281A JP H03187281 A JPH03187281 A JP H03187281A JP 32490989 A JP32490989 A JP 32490989A JP 32490989 A JP32490989 A JP 32490989A JP H03187281 A JPH03187281 A JP H03187281A
Authority
JP
Japan
Prior art keywords
gas laser
main discharge
laser medium
discharge
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32490989A
Other languages
Japanese (ja)
Inventor
Ken Ishikawa
憲 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32490989A priority Critical patent/JPH03187281A/en
Publication of JPH03187281A publication Critical patent/JPH03187281A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To discharge stably under the condition of high-speed pulse repeated operation by dividing the flow of a gas laser medium into the flows on the center side of a laser tube and on the outer side within the laser tube. CONSTITUTION:This has a laser tube, wherein a circular air duct 20 is formed and a gas laser medium is charged at specified pressure, and a solid anode, which forms one hand of the main discharge electrode being the component of the discharge part of this laser tube 21, is provided on the upper stream side of the gas laser medium in the air duct 20. The discharge face of the anode 22 is made in the specified curvature, and the rear side is made in wedge shape viewed in cross section, and the wedge-shaped part divides said flow in two, and forms two flows 23 and 24 with the anode between. A cathode 25, where a discharge part is made in mesh shape, is provided in opposition to the anode 22. Hereby, excited gas laser medium is excluded quickly from the main discharge space with every main discharge of specified width, and the main discharge space 26 is replaced with a gas laser medium flowing from the upper stream side, so the always stable main discharge can be obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はガスレーザ発振装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a gas laser oscillation device.

(従来の技術) 紫外域のレーザ光を出力するエキシマレーザや、大気圧
以上でガスレーザ媒質が封入されたTEACO2レーザ
のようなパルス発振するガスレーザ発振装置は、例えば
特開昭63−228775号に開示されているよう構成
になっていた。すなわち、ガスレーザ媒質が所定の圧力
で封入されたレーザ管(1)を有し、内部には放電手段
、ガスレーザ媒質循環手段が設けられている。上記放電
手段は主放電電極となる陰極(2)および陽極〈3)と
が支持板(4a) 、 (4b)によって電気的に導通
した状態で支持され、それぞれ高電圧、大電流パルスを
供給する電源(5)の高圧側およびアース側に上記支持
板(4a) 、 (4b)を通して接続した構成になっ
ている。陰極(2)側の支持板(4a)には波形成形の
ために、ピーキングコンデンサ(6)を接続した上部ピ
ン電極(7)が主放電空間(8)における光軸に沿って
陰極(2)の両側に所定ピッチで設けられている。また
、支持板(4b)には各上部ピン電極(7)にそれぞれ
対向して下部ピン電極(9)が設けられ、これら上部、
下部ピン電極で上記主放電空間(8)を予備電離する予
備電離電極を構成している。一方、ガスレーザ媒質循環
は、レーザ管(1)内を循環して主放電空間(8)に供
給するファン〈lO)と、ガスレーザ媒質の流れの下流
側に設けられた熱交換器(11)とを備えている。この
ようなガスレーザ発振装置では、陰極(2)、陽極(3
)間のパルス主放電でガスレーザ媒質が急激に膨脹し、
これに伴って発生するガスレーザ媒体内の粗密波のため
次に続く主放電が妨げられていた。従来では主放電時に
発生する衝撃波を吸収する部材を主放電部の近傍に設け
て主放電を安定にすることが行われていた。
(Prior Art) Gas laser oscillation devices that emit pulses, such as excimer lasers that output laser light in the ultraviolet region and TEACO2 lasers that contain a gas laser medium at atmospheric pressure or higher, are disclosed in, for example, Japanese Patent Laid-Open No. 63-228775. It was configured as follows. That is, it has a laser tube (1) in which a gas laser medium is sealed at a predetermined pressure, and a discharge means and a gas laser medium circulation means are provided inside. The above-mentioned discharge means has a cathode (2) and an anode (3), which serve as main discharge electrodes, supported by support plates (4a) and (4b) in an electrically conductive state, and supply high voltage and large current pulses respectively. The support plates (4a) and (4b) are connected to the high voltage side and the ground side of the power source (5) through the support plates (4a) and (4b). The upper pin electrode (7) connected to the peaking capacitor (6) is connected to the cathode (2) along the optical axis in the main discharge space (8) for waveform shaping on the support plate (4a) on the cathode (2) side. are provided at a predetermined pitch on both sides of the Further, the support plate (4b) is provided with lower pin electrodes (9) facing each of the upper pin electrodes (7), and these upper pin electrodes (9),
The lower pin electrode constitutes a pre-ionization electrode that pre-ionizes the main discharge space (8). On the other hand, gas laser medium circulation is carried out by a fan <lO) that circulates within the laser tube (1) and supplies it to the main discharge space (8), and a heat exchanger (11) provided on the downstream side of the flow of the gas laser medium. It is equipped with In such a gas laser oscillation device, a cathode (2) and an anode (3) are used.
) The gas laser medium rapidly expands due to the main discharge pulse between
The subsequent main discharge was obstructed by compression waves within the gas laser medium that were generated accordingly. Conventionally, a member for absorbing shock waves generated during main discharge has been provided near the main discharge portion to stabilize the main discharge.

(発明が解決しようとする課題) 衝撃波を吸収する部材をレーザ管(1)内に設けると、
それだけガスレーザ媒質に接する構成体の表面積が増加
し、不純ガスの1生原因となる。不純ガスは不安定放電
現象を引き起こし、レーザ動作時間の寿命を短くする。
(Problem to be solved by the invention) When a member for absorbing shock waves is provided in the laser tube (1),
The surface area of the structure in contact with the gas laser medium increases accordingly, which becomes a source of impurity gas. Impure gas causes unstable discharge phenomena and shortens the life of the laser operating time.

さらに、衝撃波を吸収する部材はガスレーザ媒質の流れ
を妨げる箇所に設けられないので、上記循環における上
流からのガスレーザ媒質が一時的に押し戻されたり、減
速させられ、主放電空間(8〉でのガスレーザ媒質のガ
ス交換に支障が生じる問題があった。ガス交換に支障を
来すと、前の放電によってそこに生成した不純物質が次
の均一グロー放電の安定性を妨げる現象を起こす。高速
繰返しになればなるほどガス流速は高速になり、その速
度を落とせなくなるので、上記押し戻しや減速作用で低
速になることを防ぐために、ファン(10)の大型化が
要求され、装置全体の電力が大きくなり、電力効率の悪
いレーザ発振装置となる問題があった。本発明はこのよ
うな問題点を解決するためになされたもので、高速なパ
ルス繰返し動作条件のもとで安定して放電するガスレー
ザ発振装置を提供することを目的とする。
Furthermore, since the shock wave absorbing member is not provided at a location that obstructs the flow of the gas laser medium, the gas laser medium from upstream in the circulation is temporarily pushed back or decelerated, and the gas laser medium in the main discharge space (8> There was a problem that the gas exchange of the medium was hindered.When the gas exchange was disrupted, impurities generated there by the previous discharge caused a phenomenon that interfered with the stability of the next uniform glow discharge. The more the gas flow speed increases, the faster it becomes impossible to reduce the speed. Therefore, in order to prevent the speed from becoming low due to the above-mentioned pushback and deceleration effects, the fan (10) is required to be larger, and the power of the entire device increases. There was a problem that the laser oscillation device had poor power efficiency.The present invention was made to solve this problem, and it provides a gas laser oscillation device that stably discharges under high-speed pulse repetition operation conditions. The purpose is to provide

[発明の構成〕 (課題を解決するための手段と作用〉 本発明のガスレーザ発振装置は、レーザ管と、このレー
ザ管内でガスレーザ媒質を循環させる送風手段と、上記
レーザ媒質の上流側に設けられ上記ガスレーザ媒質の流
れを上記レーザ管の中心側と外側部内面側との二つの流
路に分け、放電方向を上記二つの流路に沿う方向にして
設けられた一方の主放電電極と、この一方の主放電電極
に対向して設けられ放電面を形成した対向部にガスレー
ザ媒質通過部が形成された他方の主放電電極とを備えた
もので、放電によって膨脹したガスレーザ媒質は上記二
つの流路のガス流で下流側に流される。
[Structure of the Invention] (Means and Effects for Solving the Problems) The gas laser oscillation device of the present invention includes a laser tube, a blowing means for circulating a gas laser medium within the laser tube, and an air blower provided on the upstream side of the laser medium. The flow of the gas laser medium is divided into two flow paths, one on the center side of the laser tube and one on the inner surface of the outer part, and one main discharge electrode is provided with a discharge direction along the two flow paths; One main discharge electrode is provided opposite to the other main discharge electrode, and a gas laser medium passing portion is formed in the opposing part forming a discharge surface, and the gas laser medium expanded by discharge flows through the two streams mentioned above. It is carried downstream by the gas flow in the channel.

(実施例) 以下、実施例を示す図面に基づいて本発明を説明する。(Example) EMBODIMENT OF THE INVENTION Hereinafter, the present invention will be described based on drawings showing examples.

なお、第4図と共通する部分には同一符号を付しその部
分の詳細な説明は省略する。すなわち、第1図は本発明
の一実施例で、環状の風導(20)が形成され、ガスレ
ーザ媒質が所定の圧力で封入されたレーザ管(21)を
有し、このレーザ管(21)の放電部の構成要素である
主放電電極の一方をなすソリッド状の陽極(22)は風
胴(20)におけるガスレーザ媒質の上流側に設けられ
ている。陽極(22)の放電面は所定の曲率に形成され
、背面側は横断面で見た場合に楔状に形成され、その楔
状で上記上流の流れを部分し、陽極(22〉を間にして
二つの流路(23) 、 (24)を形成している。陽
極(22)に対向して放電部がメツシュ状に形成された
陰極(25)が設けられている。陰極(25)と陽極(
22)との間の起こる主放電方向は上記二つの流路(2
3) 、 (24)の方向に沿っている。また、陰極(
25)の背面側と、上記部分された流路の一方の流路(
23)における主放電空間(26)の近傍とにそれぞれ
ピーキングコンデンサ(27a) 、 (27b)を接
続した予備電離用のビン電極(28) 、 (29)が
設けられている。これらビン電極(2g) 、 (29
)は陽極(22)、陰極(25)と共にパルススイッチ
ング制御部(30)を介して電源(31)に接続してい
る。風胴(20)にはファン(lO)と、ファン(10
〉の上流側に設けられた熱交換器(11〉の他に、ガス
レーザ媒質の下流側にダストフィルタ(32〉が設けら
れている。なお、図示せぬが、主放電空間(26)を間
にして紙面垂直方向に一対の共振器ミラーが設けられて
いる。
Note that parts common to those in FIG. 4 are given the same reference numerals, and detailed explanations of those parts will be omitted. That is, FIG. 1 shows one embodiment of the present invention, which has a laser tube (21) in which an annular wind guide (20) is formed and a gas laser medium is sealed at a predetermined pressure. A solid anode (22) forming one of the main discharge electrodes which is a component of the discharge section is provided upstream of the gas laser medium in the wind barrel (20). The discharge surface of the anode (22) is formed with a predetermined curvature, and the back side is formed into a wedge shape when viewed in cross section, and the wedge shape divides the above-mentioned upstream flow, and the anode (22) is in between. A cathode (25) having a mesh-like discharge portion is provided opposite the anode (22).The cathode (25) and the anode (
The main discharge direction that occurs between the two channels (22) and
3), along the direction of (24). In addition, the cathode (
25) and one of the channels (
Pre-ionization bin electrodes (28) and (29) connected to peaking capacitors (27a) and (27b), respectively, are provided near the main discharge space (26) in 23). These bottle electrodes (2g), (29
) is connected to a power source (31) together with an anode (22) and a cathode (25) via a pulse switching control section (30). The wind body (20) has a fan (lO) and a fan (10
In addition to the heat exchanger (11) provided upstream of the gas laser medium, a dust filter (32) is provided downstream of the gas laser medium. A pair of resonator mirrors are provided in a direction perpendicular to the plane of the paper.

以上の構成になる上記実施例の作用について次に説明す
る。ファン(10)で送風されたガスレーザ媒質は陽極
(22〉の背面側で二つの流路(35) 、 (3G)
に分かれ、陽極(22)および陰極(25)の両側を通
り、ダストフィルタ(32)の方に流れていく。パルス
スイッチング制御部(30)の制御により、予備放電に
続いて主放電が発生する。すなわち、各ビン電極(28
)および(29〉でそれぞれアーク放電による予備放電
が起きると、それぞれ対になるビン電極間のスパークギ
ャップからの紫外線で主放電空間(26)のガスレーザ
媒質が予備電離される。さらに、ピーキングコンデンサ
(27a) 、 (27b)への充電がすすむと次第に
主放電電極間の電圧が十分に高くなり、これにつれて陰
極(25)、陽極(22)間で主放電が所定のパルス幅
で発生する。この主放電で循環中のガスレーザ媒質が励
起され、レーザ光が発生し、上記図示せぬ共振器ミラー
によるレーザ発振でレーザ光が出力される。上記主放電
時に主放電空間(26)が急激に膨脹し、上記励起され
たガスレーザ媒質は主放電空間(26)から爆発的に飛
出す。風胴(20〉の内側および外側に飛び出たガスレ
ーザ媒質は上記二つに分かれた流路における高速流ζこ
よって速やかに下流側に流される。また、同じく上記主
放電方向に進んだガスレーザ媒質は陰極(25)のメツ
シュ部分を通過して下流側に流れる。
The operation of the above embodiment having the above structure will be explained next. The gas laser medium blown by the fan (10) flows through two channels (35) and (3G) on the back side of the anode (22).
The dust passes through both sides of the anode (22) and cathode (25) and flows toward the dust filter (32). Under the control of the pulse switching control section (30), a main discharge occurs following the preliminary discharge. That is, each bin electrode (28
) and (29>), the gas laser medium in the main discharge space (26) is pre-ionized by ultraviolet light from the spark gap between the pair of bin electrodes.Furthermore, the peaking capacitor ( As the charging of 27a) and (27b) progresses, the voltage between the main discharge electrodes gradually becomes sufficiently high, and as a result, a main discharge occurs between the cathode (25) and the anode (22) with a predetermined pulse width. The circulating gas laser medium is excited by the main discharge to generate laser light, and the laser light is output by laser oscillation by the resonator mirror (not shown).During the main discharge, the main discharge space (26) expands rapidly. Then, the excited gas laser medium explodes out from the main discharge space (26).The gas laser medium that jumps out inside and outside the wind barrel (20) flows into the high-speed flow ζ in the two divided flow paths. Therefore, it is quickly flowed downstream.Furthermore, the gas laser medium that has also proceeded in the main discharge direction passes through the mesh portion of the cathode (25) and flows downstream.

なお、上記実施例では、陰極(25)をメツシュ状にし
たが、陽極(22)のようにソリッド状の電極構成にし
てもよい。また、ピン電極(2B)、(29)を異なっ
た箇所に配置したが、どちらか一方の場所(こ両ピン電
極を配置するようにしてもよい。さらに、予備i’a、
m電極はビン電極に限らずX線予備電離、コロナ予備電
離あるいは沿面放電予備電離等の方式を適用できる。
In the above embodiment, the cathode (25) has a mesh shape, but it may have a solid electrode structure like the anode (22). Also, although the pin electrodes (2B) and (29) are placed at different locations, it is also possible to place the pin electrodes at either one of the locations.
The m-electrode is not limited to a bottle electrode, and methods such as X-ray preionization, corona preionization, and creeping discharge preionization can be applied.

[発明の効果] 以上説明したように、励起されたガスレーザ媒質は所定
のパルス幅の主放電毎に速かに主放電空間(26)から
排除され、主放電空間(26)は上流側力1ら流れてき
たガスレーザ媒質と置き換えられるため、常に安定した
主放電が得られることから、高繰返しレーザ発振装置を
実現することができた。
[Effects of the Invention] As explained above, the excited gas laser medium is quickly removed from the main discharge space (26) every time the main discharge has a predetermined pulse width, and the main discharge space (26) is Since the main discharge is replaced by the gas laser medium flowing from the source, a stable main discharge can be obtained at all times, making it possible to realize a high repetition rate laser oscillation device.

なお、一方のピン電極(29〉は上記二つに分けられた
流路の一方に設けたので、アーク放電時に発生する電極
物質のスパッタは下流側に流されてしまい、主放電空間
(2B〉にほとんど飛んでこないためこの点でも主放電
を妨げない。
In addition, since one pin electrode (29) was installed in one of the two divided flow paths, the spatter of the electrode material generated during arc discharge is flowed downstream, and the main discharge space (2B) In this respect, it does not interfere with the main discharge as it hardly flies into the air.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は従来
例を示す断面図である。 (21〉・ ・レーザ管 (22〉・・・陽極 (23) 、 (24)  ・・・流路(25)・・・
陰極
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional example. (21>... Laser tube (22>... Anode (23), (24)... Channel (25)...
cathode

Claims (3)

【特許請求の範囲】[Claims] (1)レーザ管と、このレーザ管内でガスレーザ媒質を
循環させる送風手段と、上記レーザ媒質の上流側に設け
られ上記ガスレーザ媒質の流れを上記レーザ管の中心側
と外側部内面側との二つの流路に分け、放電方向を上記
二つの流路に沿う方向にして設けられた一方の主放電電
極と、この一方の主放電電極に対向して設けられ放電面
を形成した対向部にガスレーザ媒質通過部が形成された
他方の主放電電極とを備えたことを特徴とするガスレー
ザ発振装置。
(1) A laser tube, a blowing means for circulating a gas laser medium within the laser tube, and a blowing means provided on the upstream side of the laser medium to direct the flow of the gas laser medium to the center side and the outer inner surface side of the laser tube. One main discharge electrode is divided into flow channels and is provided with the discharge direction along the two flow channels, and a gas laser medium is provided in an opposing part that is provided opposite to this one main discharge electrode and forms a discharge surface. 1. A gas laser oscillation device comprising: the other main discharge electrode in which a passage portion is formed.
(2)レーザ管と、このレーザ管内でガスレーザ媒質を
循環させる送風手段と、上記レーザ媒質の上流側に設け
られ上記ガスレーザ媒質の流れを上記レーザ管の中心側
と外側部内面側との二つの流路に分け、放電方向を上記
二つの流路に沿う方向にして設けられた一方の主放電電
極と、この一方の主放電電極に対向して設けられた他方
の主放電電極とを備えたことを特徴とするガスレーザ発
振装置。
(2) A laser tube, a blowing means for circulating a gas laser medium within the laser tube, and a blowing means provided on the upstream side of the laser medium to direct the flow of the gas laser medium to the center side and the outer inner surface side of the laser tube. The main discharge electrode is divided into flow paths and is provided with one main discharge electrode provided with a discharge direction along the two flow paths, and the other main discharge electrode provided opposite to this one main discharge electrode. A gas laser oscillation device characterized by:
(3)レーザ管と、このレーザ管内でガスレーザ媒質を
循環させる送風手段と、上記レーザ媒質の上流側に設け
られ上記ガスレーザ媒質の流れを上記レーザ管の中心側
と外側部内面側との二つの流路に分け、放電方向を上記
二つの流路に沿う方向にして設けられた一方の主放電電
極と、この一方の主放電電極に対向して設けられ放電面
を形成した対向部にガスレーザ媒質通過部が形成された
他方の主放電電極と、この他方の主放電電極の背面側も
しくは放電部近傍の上記二つの流路に設けられスパーク
放電する予備電離電極とを備えたことを特徴とするガス
レーザ発振装置。
(3) A laser tube, a blowing means for circulating a gas laser medium within the laser tube, and a blowing means provided on the upstream side of the laser medium to direct the flow of the gas laser medium to the center side and the outer inner surface side of the laser tube. One main discharge electrode is divided into flow channels and is provided with the discharge direction along the two flow channels, and a gas laser medium is provided in an opposing part that is provided opposite to this one main discharge electrode and forms a discharge surface. It is characterized by comprising the other main discharge electrode in which a passage part is formed, and a pre-ionization electrode that is provided in the two flow paths on the back side of the other main discharge electrode or in the vicinity of the discharge part and generates a spark discharge. Gas laser oscillator.
JP32490989A 1989-12-16 1989-12-16 Gas laser oscillator Pending JPH03187281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32490989A JPH03187281A (en) 1989-12-16 1989-12-16 Gas laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32490989A JPH03187281A (en) 1989-12-16 1989-12-16 Gas laser oscillator

Publications (1)

Publication Number Publication Date
JPH03187281A true JPH03187281A (en) 1991-08-15

Family

ID=18170975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32490989A Pending JPH03187281A (en) 1989-12-16 1989-12-16 Gas laser oscillator

Country Status (1)

Country Link
JP (1) JPH03187281A (en)

Similar Documents

Publication Publication Date Title
JP2000315831A (en) Excimer laser or molecular fluorine laser
KR950013054B1 (en) Discharge-pumped gas laser with bapfle partition
KR20060132967A (en) Gas discharge laser chamber improvements
JPH03187281A (en) Gas laser oscillator
JPS61228690A (en) Supersonic excimer laser device
JPS63181387A (en) Pulse gas laser
JPH02240978A (en) Gas laser device
JP2734191B2 (en) Laser device
JP2592829B2 (en) Gas laser device
JPH04322478A (en) Discharge-excited gas laser apparatus
JPH06275897A (en) Discharge excited gas laser device
JPS6281078A (en) Laser oscillator
JPH04322481A (en) Discharge-excited gas laser apparatus
JPH02105477A (en) Pulsed laser oscillator
JP2666149B2 (en) Ultraviolet preionization electrode for discharge-excited gas laser device.
JPS63229772A (en) Highly repetitive pulse laser oscillator
JPH0263176A (en) Pulse laser oscillator
JPH02192188A (en) Gas laser oscillation device
JPS6190481A (en) Pulse laser oscillator
JPH06283780A (en) Gas layer oscillator
JPH05259555A (en) High repetition pulse laser electrode
JPS63228771A (en) Highly repetitive pulsed laser electrode
JPH0256983A (en) Pulse laser oscillator
JPH07162060A (en) Gas laser
JPH03198390A (en) Gas laser oscillator