JPH0432206A - Oxide magnetic material - Google Patents

Oxide magnetic material

Info

Publication number
JPH0432206A
JPH0432206A JP2140598A JP14059890A JPH0432206A JP H0432206 A JPH0432206 A JP H0432206A JP 2140598 A JP2140598 A JP 2140598A JP 14059890 A JP14059890 A JP 14059890A JP H0432206 A JPH0432206 A JP H0432206A
Authority
JP
Japan
Prior art keywords
oxide
mol
magnetic material
magnetic
ferric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2140598A
Other languages
Japanese (ja)
Inventor
Hisato Kasamatsu
笠松 久人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2140598A priority Critical patent/JPH0432206A/en
Publication of JPH0432206A publication Critical patent/JPH0432206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a high density and highly wear-resistant oxide magnetic material by adding the specified quantity of zirconium oxide and calcium oxide as auxiliary constituents to an oxide magnetic material constituting of ferric oxide, manganese oxide, and zinc oxide in a specified composition as principal constituents and sintering and pressing the material by the specified method. CONSTITUTION:At the same time, 0.01-0.4 wt.% of zirconium oxide and 0.005-0.2 wt.% of calcium oxide are added to an oxide magnetic material consisting of 50-56 mol.% of ferric oxide, 20-40 mol.% of manganese oxide, and 6-27 mol.% of zinc oxide. The material is sintered at 1,100-1,350 deg.C in a nitrogenous atmosphere containing a very small amount of oxygen and shaped by hot hydrostatic pressing at 1,000-1,300 deg.C and 600-1,600kg/cm<2> in an argon gas atmosphere. A composition of over 56 mol.% of ferric oxide, under 2 mol.% of manganese oxide, or under 6 mol.% of zinc oxide has a characteristic not suitable for practical use because its effective initial relative magnetic permeability is not higher than 1,500 when zirconium oxide and calcium oxide are added. A composition of under 50 mol.% of ferric oxide, over 40 mol.% of manganese oxide, or over 27 mol.% of zinc oxide has a characteristic not suitable for practical use because its magnetic transformation temperature is not higher than 100 deg.C.

Description

【発明の詳細な説明】 イ0発明の目的 〔産業上の利用分野〕 本発明は、フロッピーディスク装置や、ハードディスク
装置に使用する磁気ヘッド用の磁性材料に於て、高密度
で、且つ磁気記録媒体面との摺動の際、高い耐摩耗特性
を有する磁気ヘッドに適した酸化物磁性材料に関する。
DETAILED DESCRIPTION OF THE INVENTION A.Objective of the Invention [Field of Industrial Application] The present invention provides a magnetic material for a magnetic head used in a floppy disk device or a hard disk device that can be used for high-density and magnetic recording. The present invention relates to an oxide magnetic material suitable for a magnetic head that has high wear resistance when sliding with a medium surface.

〔従来の技術〕[Conventional technology]

近年、オフィスオートメーション、ファクトリ−オート
メーション、およびホームオートメーション化の発展に
伴い、オフィスコンピュータやパーソナルコンピュータ
の普及はめさましいものがある。これらのコンピュータ
の外部記憶装置として必要不可欠なものにフロッピーデ
ィスク装置(FDD)、およびハードディスク装置(H
DD)があるが、これらの装置に使用される磁気ヘッド
用の酸化物磁性材料であるフェライトは、超精密加工を
施すためにできるだけ欠陥がなく、且つ結晶は小粒径の
もので摩耗しにくい材料であることが要求されている、
磁気ヘッド用酸化物磁性材料としては、従来は主成分と
して酸化第二鉄(Fe203)が50〜56モル%、酸
化マンガン(MnO)が20〜40モル%、酸化亜鉛(
ZnO)が6〜27モル%よりなるマンガン亜鉛フェラ
イトに、交流損失を改善することを目的として、0.0
2重量%以下の二酸化硅素(Si02)や、o、 oo
s重量%以下の酸化カルシウム(CaO)が添加されて
おり、又材料の高密度化を目的として結晶の成長を促進
させるため、1重量%以下の酸化錫(SnO)が添加さ
れ、1100℃〜1350℃で微量の酸素が添加された
窒素ガス雰囲気中で焼結した後、高温のアルゴンガス雰
囲気中で熱間静水圧プレス処理(以下HIP処理と称す
)を行い、磁気ヘッド用の酸化物磁性材料として用いら
れていた。
In recent years, with the development of office automation, factory automation, and home automation, office computers and personal computers have become widespread. Floppy disk drives (FDD) and hard disk drives (H
DD), but the ferrite, which is an oxide magnetic material for magnetic heads used in these devices, has as few defects as possible due to ultra-precision machining, and the crystals are small in size, making them less likely to wear out. The material is required to be
Conventionally, the main components of oxide magnetic materials for magnetic heads are 50 to 56 mol% of ferric oxide (Fe203), 20 to 40 mol% of manganese oxide (MnO), and zinc oxide (
For the purpose of improving AC loss, 0.0
Silicon dioxide (Si02) of 2% by weight or less, o, oo
Calcium oxide (CaO) is added in an amount of s wt % or less, and tin oxide (SnO) is added in an amount of 1 wt % or less to promote crystal growth for the purpose of increasing the density of the material. After sintering at 1350°C in a nitrogen gas atmosphere to which a trace amount of oxygen has been added, hot isostatic pressing treatment (hereinafter referred to as HIP treatment) is performed in a high-temperature argon gas atmosphere to create an oxide magnetic material for magnetic heads. It was used as a material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

フロッピーディスク装置に於ては、磁気ヘッドの記録再
生部分は磁気記録媒体表面と常に摺動した状態で使用さ
れており、又ノ1−ドディスク装置に於ては、磁気ディ
スクの始動、及び停止時には必ず記録媒体面との摺動が
発生し、このため長時間にわたる連続使用時に於て、磁
気ヘッドは磁気記録媒体面との摺動面の摩耗による記録
再生特性の劣化を生ずるという問題があり、本発明は高
密度で、且つ高い耐摩耗性を有し、結晶粒が小さく、超
精密加工が可能な磁気ヘッド用の酸化物磁性材料を提供
するにある。
In a floppy disk device, the recording/reproducing part of the magnetic head is always in sliding contact with the surface of the magnetic recording medium, and in a node disk device, it is used to start and stop the magnetic disk. Sometimes sliding with the surface of the recording medium always occurs, and as a result, during continuous use over long periods of time, magnetic heads have the problem of deterioration of recording and reproducing characteristics due to abrasion of the sliding surface with the surface of the magnetic recording medium. The object of the present invention is to provide an oxide magnetic material for a magnetic head that has high density, high wear resistance, small crystal grains, and can be processed with ultra-precision processing.

口0発明の構成 〔課題を解決するための手段〕 本発明は100KH2に於ける実効比透磁率の値が少な
くとも1500以上の特性を有し、しかも従来に比べて
高密度でより耐摩耗特性に優れた磁気ヘッド用の酸化物
磁性材料とするものであり、主成分として酸化第二鉄(
Fe203)が50〜56モル%、酸化マンガン(Mn
O)が20〜40モル%、酸化亜鉛(ZnO)が6〜2
7モル%よりなる酸化物磁性材料に、副成分として酸化
ジルコニウム(Zr02)を0.01〜0.40重量%
、および酸化カルシウム(CaO)を0.005〜0.
20重量%同時に添加し、1100℃〜1350℃の温
度で焼結した後、アルゴンガス中で1000℃〜130
0℃の温度範囲で600kg/cm2〜1600kg/
cm”で熱間静水圧プレスを行うことにより得るもので
、高密度で、且つ高い耐摩耗性を有することを特徴とす
る酸化物磁性材料である。
Structure of the Invention [Means for Solving the Problems] The present invention has a property that the value of effective relative magnetic permeability at 100KH2 is at least 1500 or more, and moreover, it has higher density and more wear resistance than conventional ones. This is an excellent oxide magnetic material for magnetic heads, containing ferric oxide (ferric oxide) as the main component.
Fe203) is 50-56 mol%, manganese oxide (Mn
O) is 20-40 mol%, zinc oxide (ZnO) is 6-2
0.01 to 0.40% by weight of zirconium oxide (Zr02) as a subcomponent to an oxide magnetic material consisting of 7 mol%
, and calcium oxide (CaO) at 0.005 to 0.
After adding 20% by weight at the same time and sintering at a temperature of 1100°C to 1350°C, 1000°C to 130°C in argon gas.
600kg/cm2 to 1600kg/in the temperature range of 0℃
It is an oxide magnetic material that is obtained by hot isostatic pressing at a temperature of 1.5 cm" and is characterized by high density and high wear resistance.

〔作用〕[Effect]

酸化第二鉄が50〜56モル%、酸化マンガンが20〜
40モル%、酸化亜鉛が6〜27モル%の組成範囲から
成る酸化物磁性材料は、高い比透磁率特性と高い飽和磁
束密度を有する酸化物磁性材料として知られているが、
酸化第二鉄が56モル%以上、酸化マンガンが20モル
%以下、酸化亜鉛が6モル%以下の組成範囲では、磁気
ヘッド用の酸化物磁性材料として最も特性上要求される
1001[H2に於ける実効初沈透磁率の値は2000
以下の値となり、本発明に於ける更に酸化ジルコニウム
の添加及びカルシウムを添加する時には実効初沈透磁率
の値は1500以下となるため実用に供する特性を保証
し得す、又酸化第二鉄が50モル%以下酸化マンガンが
40モル%以上、酸化亜鉛の値が27モル%以上の組成
の組合せでは、磁気変態温度は100℃以下となり実用
し得ない特性となるため、本発明の磁気ヘッドの特性を
保証し得る主成分としては、酸化第二鉄が50〜56モ
ル%、酸化マンガンが20〜40モル%、酸化亜鉛が6
〜27モル%の組成範囲となる。本発明に於て、酸化ジ
ルコニウム(Zr02)、及び酸化カルシウム(CaO
)の添加量の増加と共に耐摩耗特性は向上するがこれら
の酸化物の添加量が増加するにつれ1ooxnzに於け
る交流の実効初沈透磁率の値は劣化し、酸化ジルコニウ
ムが0.4重量%、酸化カルシウムがo、 oos重量
%添加時に於て100KH2に於ける実効初沈透磁率の
値はほぼ1500となり、要求特性の下限の値となる故
、本発明に於ては同時に添加される酸化ジルコニウムは
0.4重量%以下、酸化カルシウムは0.2重量%以下
であることが必要である。
Ferric oxide: 50-56 mol%, manganese oxide: 20-56 mol%
An oxide magnetic material having a composition range of 40 mol% and 6 to 27 mol% zinc oxide is known as an oxide magnetic material having high relative permeability characteristics and high saturation magnetic flux density.
In the composition range of 56 mol% or more of ferric oxide, 20 mol% or less of manganese oxide, and 6 mol% or less of zinc oxide, the 1001[H2 The value of effective initial sinking permeability is 2000
The values are as follows, and when zirconium oxide and calcium are further added in the present invention, the value of the effective initial settling permeability becomes 1500 or less, so the properties for practical use can be guaranteed. 50 mol% or less In a composition combination in which manganese oxide is 40 mol% or more and zinc oxide is 27 mol% or more, the magnetic transformation temperature becomes 100°C or less, which is an impractical characteristic. The main components that can guarantee the properties are 50 to 56 mol% of ferric oxide, 20 to 40 mol% of manganese oxide, and 6 to 6 mol% of zinc oxide.
The composition range is 27 mol%. In the present invention, zirconium oxide (Zr02) and calcium oxide (CaO
), the wear resistance properties improve as the amount of these oxides added increases, but as the amount of these oxides increases, the value of the effective initial sinking permeability of AC at 100xnz deteriorates, and zirconium oxide is 0.4% by weight. When o, oos weight percent of calcium oxide is added, the effective initial settling permeability at 100KH2 is approximately 1500, which is the lower limit of the required properties. The content of zirconium must be 0.4% by weight or less, and the content of calcium oxide must be 0.2% by weight or less.

〔実施例〕〔Example〕

次に本発明の酸化物磁性材料について説明する。 Next, the oxide magnetic material of the present invention will be explained.

主成分の原料として酸化第二鉄(Fe203)、酸化マ
ンガン(MnO)、酸化亜鉛(ZnO)を使用し、副成
分として酸化ジルコニウム(ZrO2)、及び酸化カル
シウム(CaO)を添加し、これらの原料を通常のフェ
ライトの製造工程と同様に、ボールミルにで混合し、仮
焼、微粉砕、造粒を行なってプレス用の粉末を得る。こ
のようにして得られた粉末をブロック形状にプレス成形
し、これを微量の酸素ガスを含む窒素ガス雰囲気中で焼
結する。この焼結体をさらにアルゴンガス雰囲気中で熱
間静水圧プレス処理を行ない、後熱処理を施して高密度
の酸化物磁性材料であるフェライトブロックを得る。こ
のブロックを切断して小片にし、直径が300腸履φの
ラップマスターを用いて、粒径が1μのダイヤモンドペ
ーストを使用し、ラップマスターの回転数を60rpm
にアルコール系潤滑剤を用いて一定時間研摩し、摩耗量
を測定した。
Ferric oxide (Fe203), manganese oxide (MnO), and zinc oxide (ZnO) are used as the main component raw materials, and zirconium oxide (ZrO2) and calcium oxide (CaO) are added as subcomponents. Similar to the normal ferrite manufacturing process, the materials are mixed in a ball mill, calcined, pulverized, and granulated to obtain a powder for pressing. The powder thus obtained is press-molded into a block shape, and this is sintered in a nitrogen gas atmosphere containing a trace amount of oxygen gas. This sintered body is further subjected to hot isostatic pressing in an argon gas atmosphere and then subjected to post-heat treatment to obtain a ferrite block which is a high-density oxide magnetic material. Cut this block into small pieces, use a lap master with a diameter of 300 mm, use diamond paste with a particle size of 1 μ, and set the rotation speed of the lap master to 60 rpm.
was polished for a certain period of time using an alcohol-based lubricant, and the amount of wear was measured.

実施例1 主成分として酸化第二鉄(Fe20:+)53モル%、
酸化マンガン(MnO) 30モル%、酸化亜鉛(Zn
O)17モル%に、添加物として酸化ジルコニウム(Z
r02)が0.1重量%となる様に秤量し添加した原料
を、ボールミルにて40時間混合し、後濾過、乾燥した
粉末を950℃の大気中で2時間仮焼する。この粉末を
更にボールミルを用い20時間微粉砕を行ない、バイン
ダとしてポリビニールアルコール(PVA)を1重量%
添加混合して成形用粉末を得る。この得られた粉末を4
0mmX 40■鵬X 101m■のブロックに成形し
1重量比で0.5%の酸素を添加した窒素雰囲気中で、
1250℃、3時間焼成し、さらにこの焼結体をアルゴ
ンガス中で、1200℃、1000kg/cm2.3時
間熱間静水圧プレス処理を行ない、これを窒素ガス中で
、条件が800℃、1時間の後熱処理を行なう。この得
られたブロックより5曹mX5■菖X3fi鳳の小片を
切り出し、摩耗評価用試験試料とした。研摩特性の評価
方法として、前述のラップマスターを用いた試験条件に
よりこの小片を、粒径が1μのダイヤモンドペーストを
使用して研磨し、時間ごとの摩耗量を測定した。このよ
うにして得られた結果を第1図の曲線Aに示す。なお第
1図に於て、曲線りは、従来の磁気ヘッド用の酸化物磁
性材料の摩耗量を示し、酸化ジルコニウムや酸化カルシ
ウムの添加されていないこの種の酸化物磁性材料の摩耗
量を示す特性である。
Example 1 53 mol% of ferric oxide (Fe20:+) as the main component,
Manganese oxide (MnO) 30 mol%, zinc oxide (Zn
Zirconium oxide (Z) as an additive to 17 mol% of
The raw materials weighed and added so that r02) is 0.1% by weight are mixed in a ball mill for 40 hours, then filtered and dried, and the powder is calcined for 2 hours in the atmosphere at 950°C. This powder was further finely pulverized for 20 hours using a ball mill, and 1% by weight of polyvinyl alcohol (PVA) was added as a binder.
Add and mix to obtain a powder for molding. This obtained powder was
It was molded into a block of 0 mm x 40 x 101 m in a nitrogen atmosphere with 0.5% oxygen added per weight ratio.
The sintered body was fired at 1250°C for 3 hours, and the sintered body was subjected to hot isostatic pressing at 1200°C and 1000kg/cm for 2.3 hours in an argon gas atmosphere. After a period of time, heat treatment is performed. From this obtained block, a small piece of 5 Soda m x 5 Iris x 3 Fi Otori was cut out and used as a test sample for wear evaluation. As a method for evaluating the polishing characteristics, this small piece was polished using a diamond paste with a particle size of 1 μm under the test conditions using the Lap Master described above, and the amount of wear over time was measured. The results thus obtained are shown in curve A in FIG. In Fig. 1, the curved line indicates the amount of wear of conventional oxide magnetic materials for magnetic heads, and indicates the amount of wear of this type of oxide magnetic material to which zirconium oxide or calcium oxide is not added. It is a characteristic.

実施例2 実施例1と同じ組成を主成分とする原料粉末に、酸化ジ
ルコニウム(Zr02)を0.2重量%添加し、実施例
1と同様な製造条件により得られたブロックを、実施例
1と同様に評価用の小片に切断して摩耗量を測定した。
Example 2 A block obtained by adding 0.2% by weight of zirconium oxide (Zr02) to a raw material powder having the same composition as in Example 1 as a main component and under the same manufacturing conditions as in Example 1 was prepared as in Example 1. Similarly, the pieces were cut into small pieces for evaluation and the amount of wear was measured.

測定の結果は第1図曲線Bの如くである。The measurement results are shown in curve B in Figure 1.

実施例3 実施例1と同じ組成を主成分とする原料粉末に、酸化ジ
ルコニウム(Zr02)を0.04重量%、酸化カルシ
ウム(CaO)を0.2重量%添加し、実施例1と同一
の製造工程を経て摩耗特性評価用の小片を得た。
Example 3 0.04% by weight of zirconium oxide (Zr02) and 0.2% by weight of calcium oxide (CaO) were added to the raw material powder having the same composition as in Example 1 as the main component. Through the manufacturing process, small pieces for evaluating wear characteristics were obtained.

摩耗量の測定結果は第1図曲線Cに示す。The measurement results of the amount of wear are shown in curve C in Figure 1.

実施例4 主成分が酸化第二鉄(Fe203)50.5モル%、酸
化マンガン(MnO)27.0モル%、酸化亜鉛(Zn
O)20.5モル%の酸化物磁性材料に、添加物として
酸化ジルコニウム(Zr02)0.05重量%、酸化カ
ルシウム(CaO)を0.2重量%添加し、実施例1と
同様な工程により酸化物磁性材料の粉末を作成し、プレ
スにより成形体を得る。この成形体を1350℃にて酸
素が重量比で0.5%添加した窒素ガス雰囲気中で3時
間焼成し、この焼結体を1250℃、1000kg/c
m2.3時間、アルゴンガス中で熱間静水圧プレス処理
を行ない、これを窒素ガス中で後熱処理を行なった。得
られたブロックの摩耗量を測定した結果は第2図曲線E
の如くであった。
Example 4 The main components were 50.5 mol% of ferric oxide (Fe203), 27.0 mol% of manganese oxide (MnO), and zinc oxide (Zn
O) Add 0.05% by weight of zirconium oxide (Zr02) and 0.2% by weight of calcium oxide (CaO) as additives to 20.5 mol% of oxide magnetic material, and perform the same process as in Example 1. A powder of oxide magnetic material is prepared and a molded body is obtained by pressing. This compact was fired at 1350°C for 3 hours in a nitrogen gas atmosphere to which 0.5% oxygen was added by weight.
Hot isostatic pressing was performed in argon gas for 2.3 hours, followed by post-heat treatment in nitrogen gas. The results of measuring the wear amount of the obtained block are shown in curve E in Figure 2.
It was like that.

なお第2図に於て、曲MFは、酸化カルシウム(CaO
)及び酸化ジルコニウム(Zr02)が添加されていな
い時の摩耗量の値である。
In Figure 2, the song MF is calcium oxide (CaO
) and the wear amount when zirconium oxide (Zr02) is not added.

第3図は主成分として酸化第二鉄(Fe203)が53
モル%、酸化マンガン(MnO)が30モル%、酸化亜
鉛(ZnO)が17モル%の酸化物磁性材料に、酸化ジ
ルコニウム(ZrO3)を0.1〜0.4重量%、酸化
カルシウムを無添加、0.1重量%、0.2重量%添加
した時の実施例1と同一工程により作られた試料の、各
添加物の添加量に対する100KH2に於ける実効初沈
透磁率(μe)の値を示す、酸化ジルコニウム(ZrO
2)及び酸化カルシウム(ZaO)の添加量が増加する
につれ実効初沈透磁率(μe)の値は劣化する。
Figure 3 shows ferric oxide (Fe203) as the main component.
An oxide magnetic material containing 30 mol% of manganese oxide (MnO) and 17 mol% of zinc oxide (ZnO), 0.1 to 0.4% by weight of zirconium oxide (ZrO3), and no addition of calcium oxide. , 0.1% by weight, 0.2% by weight of the sample made by the same process as Example 1, the value of effective initial settling permeability (μe) at 100KH2 for the amount of each additive added Zirconium oxide (ZrO
2) and the value of effective initial settling permeability (μe) deteriorates as the amount of calcium oxide (ZaO) added increases.

以上に示すように、本発明による磁気ヘッド用の酸化物
磁性材料は、従来の磁気ヘッド用の酸化物磁性材料に比
較して耐摩耗性に優れているため、磁気ヘッド用材料と
して用いるのに適している。
As shown above, the oxide magnetic material for magnetic heads according to the present invention has superior wear resistance compared to conventional oxide magnetic materials for magnetic heads, so it is suitable for use as a material for magnetic heads. Are suitable.

また、磁気特性の実効初沈透磁率の特性値も磁気ヘッド
材として充分な特性を有しているため、フロッピーディ
スク装置やハードディスク装置に限らず、家庭用及び業
務用のVTRヘッド、及びオーディオヘッド等にも同様
に使用することが可能である。
In addition, the characteristic value of effective initial magnetic permeability of magnetic properties is sufficient for magnetic head materials, so it can be used not only for floppy disk devices and hard disk devices, but also for home and commercial VTR heads and audio heads. It can also be used in the same way.

また、本発明に於て、酸化ジルコニウム(Zr02)及
び酸化カルシウム(CaO)の添加量の上限を限定した
のは、その量が特許請求の範囲を超えると、急激に実効
初沈透磁率(μe)の値が劣化するためである。熱間静
水圧プレスの圧力を800kg/cm”〜1600kg
/cm2に限定したのは、600kg/cm2以下の圧
力では十分なHIP効果が得られず気孔が残存しやすく
、高密度が得られないためであり、1600kg/c朧
2を超えると800℃以下の温度迄圧力を加えたまま冷
却する必要があることから、HIP時の歪が大きくなり
、実効初沈透磁率の値を劣化するので好ましくない。
Furthermore, in the present invention, the upper limit of the amount of zirconium oxide (Zr02) and calcium oxide (CaO) added is limited because if the amount exceeds the claimed range, the effective initial sinking permeability (μe ) is deteriorated. Pressure of hot isostatic press is 800kg/cm”~1600kg
/cm2 because if the pressure is less than 600kg/cm2, a sufficient HIP effect cannot be obtained and pores tend to remain, making it impossible to obtain high density. Since it is necessary to cool the steel while applying pressure to a temperature of , the strain during HIP becomes large and the value of the effective initial sinking permeability deteriorates, which is not preferable.

ハ0発明の効果 〔発明の効果〕 酸化第二鉄が50〜56モル%、酸化マンガンが20〜
40モル%、酸化亜鉛が6〜27モル%を主成分とする
酸化物磁性材料に、酸化ジルコニウムを0.01〜0.
4重量%、及び酸化カルシウムをo、 oos〜0.2
重量%添加し、1100℃〜1350℃で焼結した後、
アルゴンガス中テ1000℃〜1300℃の温度テロo
okglc12〜1600kg/c履2にて熱間静水圧
プレスを行うことにより、高密度で、且つ高い耐摩耗特
性を有する磁気ヘッド用の酸化物磁性材料が得られる様
になった。
C0 Effect of the invention [Effect of the invention] Ferric oxide is 50-56 mol%, manganese oxide is 20-56 mol%
Zirconium oxide is added to an oxide magnetic material mainly containing 40 mol% and 6 to 27 mol% of zinc oxide.
4% by weight, and calcium oxide o, oos~0.2
After adding % by weight and sintering at 1100°C to 1350°C,
Temperature terror between 1000℃ and 1300℃ in argon gas
By performing hot isostatic pressing at okglc12 to 1600 kg/c2, it has become possible to obtain an oxide magnetic material for magnetic heads that has high density and high wear resistance properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による磁気ヘッド用の酸化物磁性材料の
摩耗量を示す特性図で、曲線Aは実施例1による試料の
特性図、曲線Bは実施例2による試料の特性図、曲線C
は実施例3による試料の特性図、曲MDは実施例1、実
施例2、実施例3と同じ組成、工程にて作製された酸化
物磁性材料で、本発明による酸化ジルコニウム、及び酸
化カルシウム等の添加物を含有しないものの特性図であ
る。 第2図は本発明の実施例4により作製した酸化物磁性材
料の摩耗量を示す特性図で、曲線Eは実施例4による試
料の特性図、曲線Fは実施例4に於て酸化ジルコニウム
と、酸化カルシウムの添加のない試料の特性図。 第3図は本発明の実施例1と基本組成が同じ組成の酸化
物磁性材料の、酸化カルシウムと酸化ジルコニウムの添
加量による100IH2に於ける実効初沈透磁率(μe
)の変化を示した特性図。 第1図 唐摩崎崗    冷) 第2図 特許出願人  株式会社トーキン
FIG. 1 is a characteristic diagram showing the wear amount of the oxide magnetic material for a magnetic head according to the present invention, where curve A is a characteristic diagram of a sample according to Example 1, curve B is a characteristic diagram of a sample according to Example 2, and curve C is a characteristic diagram of a sample according to Example 2.
is a characteristic diagram of the sample according to Example 3, and the song MD is an oxide magnetic material produced by the same composition and process as in Example 1, Example 2, and Example 3, including zirconium oxide, calcium oxide, etc. according to the present invention. FIG. 2 is a characteristic diagram of a product containing no additives. FIG. 2 is a characteristic diagram showing the wear amount of the oxide magnetic material produced according to Example 4 of the present invention. Curve E is the characteristic diagram of the sample according to Example 4, and curve F is the characteristic diagram of the sample of Example 4. , Characteristic diagram of the sample without addition of calcium oxide. Figure 3 shows the effective initial sinking permeability (μe
) is a characteristic diagram showing changes in Figure 1: Karamasakigou Cold) Figure 2: Patent applicant Tokin Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1.主成分として酸化第二鉄(Fe_2O_3)が50
〜56モル%、酸化マンガン(MnO)が20〜40モ
ル%、酸化亜鉛(ZnO)が6〜27モル%よりなる酸
化物磁性材料に、副成分として酸化ジルコニウム(Zr
O_2)を0.01〜0.4重量%、および酸化カルシ
ウム(CaO)を0.005〜0.2重量%同時に添加
し、微量の酸素を含む窒素雰囲気中で1100℃〜13
50℃の温度で焼結した後、アルゴンガス雰囲気中で1
000℃〜1300℃の温度で600kg/cm^2〜
1600kg/cm^2に於て熱間静水圧プレスを行い
形成したことを特徴とする酸化物磁性材料。
1. Ferric oxide (Fe_2O_3) as the main component is 50%
Zirconium oxide (Zr
0.01 to 0.4% by weight of O_2) and 0.005 to 0.2% by weight of calcium oxide (CaO) were added simultaneously at 1100°C to 13% in a nitrogen atmosphere containing a trace amount of oxygen.
After sintering at a temperature of 50 °C, 1
600kg/cm^2~ at a temperature of 000℃~1300℃
An oxide magnetic material formed by hot isostatic pressing at 1600 kg/cm^2.
JP2140598A 1990-05-29 1990-05-29 Oxide magnetic material Pending JPH0432206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2140598A JPH0432206A (en) 1990-05-29 1990-05-29 Oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2140598A JPH0432206A (en) 1990-05-29 1990-05-29 Oxide magnetic material

Publications (1)

Publication Number Publication Date
JPH0432206A true JPH0432206A (en) 1992-02-04

Family

ID=15272427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2140598A Pending JPH0432206A (en) 1990-05-29 1990-05-29 Oxide magnetic material

Country Status (1)

Country Link
JP (1) JPH0432206A (en)

Similar Documents

Publication Publication Date Title
JPS61158862A (en) Magnetic head slider material
JPS5836974A (en) Low magnetic loss mn-zn ferrite and manufacture
JPH0432206A (en) Oxide magnetic material
JPS6224380B2 (en)
JPS62143857A (en) Non-magnetic material for magnetic head
JPH06333725A (en) High-density ferrite
KR0143068B1 (en) A method of oxide magnetized material
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
JP3825079B2 (en) Manufacturing method of non-magnetic ceramics
JPH01259508A (en) Oxide magnetic material
JPH03141611A (en) Fineparticle organization mn-zn ferrite material and its manufacture
JPH0354164A (en) Oxide magnetic material
JPH08157254A (en) Oxide magnetic material
JPH0729718A (en) Manufacture of ferrite of high density
JPS6224386B2 (en)
JPS60194507A (en) Ceramic substrate material for magnetic head
JPS63134559A (en) Non-magnetic ceramics for magnetic head
JP2000138117A (en) Manufacture of ferrite material for power source
JP2566143B2 (en) High density and high coefficient of thermal expansion ferrite for composite magnetic head and manufacturing method thereof
JPH0122228B2 (en)
JP3353379B2 (en) Non-magnetic ceramic material for magnetic head
KR0137076B1 (en) Non-magnetic ceramic substrate for magnetic head
JP2949297B2 (en) Porcelain composition for magnetic head
JPH01252565A (en) Non-magnetic porcelain material for magnetic head and production thereof
JPS60194506A (en) Ceramic substrate material for magnetic head