JPH0354164A - Oxide magnetic material - Google Patents

Oxide magnetic material

Info

Publication number
JPH0354164A
JPH0354164A JP1188862A JP18886289A JPH0354164A JP H0354164 A JPH0354164 A JP H0354164A JP 1188862 A JP1188862 A JP 1188862A JP 18886289 A JP18886289 A JP 18886289A JP H0354164 A JPH0354164 A JP H0354164A
Authority
JP
Japan
Prior art keywords
oxide
ferrite
cao
mol
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1188862A
Other languages
Japanese (ja)
Inventor
Hisato Kasamatsu
笠松 久人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP1188862A priority Critical patent/JPH0354164A/en
Publication of JPH0354164A publication Critical patent/JPH0354164A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the density and abrasion resistance of an oxide ferrite by adding specific amounts of Al2O3 and CaO to an oxide ferrite having a specific composition composed of ferric oxide, manganese oxide and zinc oxide. CONSTITUTION:The objective oxide magnetic material is produced by adding 0.01-0.3wt.% of Al2O3 and 0-0.2wt.% of CaO as subsidiary components to an oxide ferrite used as a main component and composed of 50-56mol% of ferric oxide, 20-40mol% of manganese oxide and 6-30mol% of zinc oxide. The magnetic material has high density and excellent abrasion resistance compared with conventional ferrite material. It has sufficiently good magnetic properties for the use as a head material. When the amounts of Al2O3 and CaO exceed the upper limit in the above composition, the magnetic permeability of the material abruptly decreases.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高密度で且つ高耐磨耗性を有する磁気ヘッド材
料に適した酸化物磁性材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oxide magnetic material suitable for a magnetic head material having high density and high wear resistance.

〔従来の技術] 近年、オフィス・オートメーション(OA)及びホーム
オートメーション(HA)化の推進に伴いオフィス舎コ
ンピュータの及びパーソナノレコンピュータの普及は目
覚ましいものがある。これらのコンピュータの外部記憶
装置として必要不可欠なものにフロッピーディスク装置
(HDD)およびハードディスク装置がある。
[Background Art] In recent years, with the promotion of office automation (OA) and home automation (HA), office computers and personal computers have become widespread. Floppy disk drives (HDDs) and hard disk drives are indispensable external storage devices for these computers.

[発明が解決しようとする課題] しかしながら、これらの装置に使用されるヘッド用フェ
ライトとして、超精密加工を施す為には、できるだけ欠
陥の無い、且つ小粒径のものであること、且つヘッドと
して長時間媒体に接触するためにできるだけ磨耗しにく
い材料であるこどが要求される。
[Problems to be Solved by the Invention] However, in order to perform ultra-precision machining, the ferrite for the head used in these devices must be as defect-free as possible and have a small particle size, and the ferrite for the head must be Since the material is in contact with the medium for a long period of time, it is required that the material is as resistant to wear as possible.

そこで、本発明の技術課題は、ヘッド材料として要求さ
れるこれらの条件を満足するように、高密度で且つ高耐
磨耗性の特徴を有する酸化物磁性材料を提供することに
ある。
Therefore, a technical object of the present invention is to provide an oxide magnetic material having high density and high wear resistance so as to satisfy these conditions required for a head material.

[課題を解決するための手段] 本発明によれば、主成分として酸化第2鉄50〜56モ
ル%,酸化マンガン20〜40モル%,酸化亜鉛6〜3
0モル%よりなる酸化物フェライトに副成分として、酸
化アルミニウム(Al201)0.01重量%及び酸化
カルシウム(CaO)0〜0.2重量%を同時に添加し
てなる高密度で且つ高耐磨耗性を有することを特徴とす
る酸化物磁性材料が得られる。
[Means for Solving the Problems] According to the present invention, the main components are 50 to 56 mol% of ferric oxide, 20 to 40 mol% of manganese oxide, and 6 to 3 mol% of zinc oxide.
High density and high wear resistance made by simultaneously adding 0.01% by weight of aluminum oxide (Al201) and 0 to 0.2% by weight of calcium oxide (CaO) as subcomponents to 0 mol% oxide ferrite. An oxide magnetic material is obtained which is characterized by having a magnetic property.

すなわち、本発明の酸化物磁性材料においては、主戊分
として酸化第2鉄50〜56モル%,酸化マンガン20
〜40モル%,酸化亜鉛6〜30モル%よりなる酸化物
フェライトに、副成分として、酸化アルミニウム(AI
,O,)0.01〜0.3重量%及び酸化カルシウム(
CaO)O〜0.2重瓜%を同時に添加し、これらの原
料を通常のフェライトの製造工程と同様にボールミルに
て混合し、仮焼、微粉砕、造粒してプレス用の粉末を?
1る。
That is, in the oxide magnetic material of the present invention, 50 to 56 mol% of ferric oxide and 20% of manganese oxide are main components.
~40 mol% of zinc oxide, 6~30 mol% of zinc oxide, and aluminum oxide (AI) as a subcomponent.
,O,) 0.01-0.3% by weight and calcium oxide (
CaO)O ~ 0.2% of heavy melon is added at the same time, and these raw materials are mixed in a ball mill in the same way as in the normal ferrite manufacturing process, calcined, pulverized, and granulated to produce a powder for pressing.
1 Ru.

このようにして、得られた粉末を、ブロック形状にブレ
ス戊形し、これをN2及び02雰囲気中で焼成する。こ
の焼結体を更にArガス中で熱間静水圧プレス処理を行
い、後熱処理を施して、高密度のフェライトブロックを
得る。このブロックを切断して小片にし、ラップマスタ
ーにて1μダイヤペーストを使用し、一定時間研磨し磨
耗量を測定した結果、酸化アルミニウム及び酸化カルシ
ウムを含まない高密度のフェライトに比較して、かなり
改善されていることが認められた。
The powder thus obtained is pressed into a block shape and fired in an N2 and 02 atmosphere. This sintered body is further subjected to hot isostatic pressing in Ar gas, and then subjected to post-heat treatment to obtain a high-density ferrite block. This block was cut into small pieces, polished for a certain period of time using a Lap Master using 1μ diamond paste, and the amount of wear was measured. The results showed a significant improvement compared to high-density ferrite that does not contain aluminum oxide or calcium oxide. It was recognized that

尚、本発明において、添加量の上限を酸化アルミニウム
(A 12 0s )0.3重量%及び酸化カルシウム
(Cab)0.2重量%と限定したのは、その量を越え
ると急激に透磁率の値が劣化するためである。更に、本
発明の酸化物磁性材料を製造する為に、HIP処理の圧
力を600〜1600kg/cm2に限定したのは、6
00kg./cm2以下の圧力では、十分なHIP効果
が得られず、気孔が残存し易く、高密度が得られない為
であり、また、1600kg/cm2を越えると、HI
P時の歪が大きく成り過ぎて、磁気特性が劣化するので
、好ましくない。
In addition, in the present invention, the upper limit of the amount of addition is limited to 0.3% by weight of aluminum oxide (A 12 0s) and 0.2% by weight of calcium oxide (Cab) because the magnetic permeability decreases rapidly when these amounts are exceeded. This is because the value deteriorates. Furthermore, in order to produce the oxide magnetic material of the present invention, the pressure of HIP treatment was limited to 600 to 1600 kg/cm2.
00kg. /cm2 or less, sufficient HIP effect cannot be obtained, pores tend to remain, and high density cannot be obtained.
This is not preferable because the distortion at P becomes too large and the magnetic properties deteriorate.

[実施例] 次に、実施例により、本発明を具体的に説明する。[Example] Next, the present invention will be specifically explained with reference to Examples.

失施例1、 Fe203:53モル%,MnO:30モル%.ZnO
:17モル%を主成分とし、添加物としてAL2 0v
  : O.lwt%となるように秤量した原料をボー
ルミルにて、40Hr混合し、濾過、乾燥した粉末を9
00℃大気中で2Hr仮焼した。
Missing Example 1, Fe203: 53 mol%, MnO: 30 mol%. ZnO
: 17 mol% as main component, AL2 0v as additive
:O. The raw materials weighed to be lwt% were mixed in a ball mill for 40 hours, filtered, and the dried powder was mixed for 90 hours.
It was calcined for 2 hours in the atmosphere at 00°C.

この粉末をボールミルにて、20Hr更に微粉砕を行い
、バインダー:PVAを1%混合して、成形用粉末を得
た。
This powder was further finely pulverized in a ball mill for 20 hours, and 1% of binder: PVA was mixed to obtain a molding powder.

得られた粉末をたて32mm,よこ32mm,高さ10
mmのブロックに成形し、N2雰囲気中で、1250℃
、3Hr焼成し、更にこの焼結体を、Arガス中で、1
200”C,1000kg/cm2.3Hr熱間静水圧
プレス(H I P)処理を行い、高密度のフェライト
ブロックを得た。
The obtained powder is 32 mm in length, 32 mm in width, and 10 in height.
Formed into a block of mm and heated at 1250°C in a N2 atmosphere.
, 3 hours, and the sintered body was heated for 1 hour in Ar gas.
A high-density ferrite block was obtained by hot isostatic pressing (HIP) at 200"C, 1000 kg/cm2.3 hours.

この151られたブロックより、たて5mm, よこ5
 rn m ,高さ3mmの小片を切出し、磨耗評価用
のテストピースとした。評価としてラップマスターにて
、この小片を1μダイヤモンドペーストを使用して研磨
し、時間ごとの磨耗量を測定した。
From this 151 block, height 5mm, width 5
A small piece with a height of rn m and a height of 3 mm was cut out and used as a test piece for wear evaluation. For evaluation, this small piece was polished using a 1μ diamond paste using a lap master, and the amount of wear over time was measured.

このようにして、得られた結果を第1図中の曲線Aとし
て示した。
The results thus obtained are shown as curve A in FIG.

丈施例2, 実施例1と同じ主成分に、A1203を0.2%添加し
た原料粉末を、実施例1と同様に粉末製造、一時焼成、
HIP、後熱処理を行った。このようにして得られたブ
ロックの磨耗量は、第1図中の曲線Bとして示した。
Length Example 2 A raw material powder containing the same main components as in Example 1 with 0.2% A1203 added was powder-manufactured, temporarily fired, and
HIP and post-heat treatment were performed. The amount of wear of the block thus obtained is shown as curve B in FIG.

実施例3. 実施例1と同じ主成分に、Al203を0.05wt%
,CaOを0.03wt%添加した原料粉末を、実施例
1と同様の工程にて、ブロックを得た。
Example 3. The same main components as in Example 1, with 0.05 wt% Al203
, CaO added in an amount of 0.03 wt% was used in the same process as in Example 1 to obtain a block.

このブロックの磨耗量は、第1図中の曲線Cとして示し
た。
The amount of wear of this block is shown as curve C in FIG.

実施例4. Fe20,:52.0モル%.MnO:26.0モル%
,ZnO:22モル%を主成分とし、添加物としてAl
2 0s  :0.05wt%,CaOを0.02wt
%となるように秤量した原料を実施例1と同様にして、
粉末を作製し、プレス或形体を得た。
Example 4. Fe20: 52.0 mol%. MnO: 26.0 mol%
, ZnO: 22 mol% as the main component, and Al as an additive.
20s: 0.05wt%, CaO 0.02wt
% of the raw materials weighed in the same manner as in Example 1,
A powder was prepared and a pressed form was obtained.

この成形体を1300℃にて、0.5%02のN2雰囲
気中で、3Hr焼威し、焼結体を生成し、この焼結体を
1200℃,1000kg/cm23Hr,Arガス中
で、HIP処理して、高密度フェライトブロックを得た
。この高密度フェライトブロックの磨耗量は、第2図中
の曲線Eとして示した。
This compact was burned at 1300°C in a 0.5% N2 atmosphere for 3 hours to produce a sintered body, which was then subjected to HIP at 1200°C, 1000kg/cm23Hr in Ar gas. After processing, a high density ferrite block was obtained. The amount of wear of this high-density ferrite block is shown as curve E in FIG.

実施例5. 実施例1と同じ主成分に、At203及びCaOを添加
した原料粉末を、実施例1と同様に粉末製造、一時焼成
、HIP,後熱処理を行った。磁気特性(透磁率)をa
llJ定し、その結果を第3図に示した。
Example 5. A raw material powder containing the same main components as in Example 1 and the addition of At203 and CaO was subjected to powder production, temporary calcination, HIP, and post-heat treatment in the same manner as in Example 1. The magnetic property (magnetic permeability) is a
llJ was determined and the results are shown in FIG.

図中の曲線G,H,IはCaO添加量が夫々Owt%,
0.1wt%,0.2wt%の場合の値を示したもので
ある。
Curves G, H, and I in the figure show that the amount of CaO added is Owt%, respectively.
The values are shown for cases of 0.1 wt% and 0.2 wt%.

CaO量が増加するにつれて、透磁率が幾分低下する。As the amount of CaO increases, the permeability decreases somewhat.

従って、CaOは10%以下でならなければならないこ
とが判明した。また、A l 2 0 3量が増加する
と、曲線G,H,Iいずれも、同様な減少率で透磁率も
減少し、Al203量が0.3wt%より大になると著
しく低下するので、0.3%以下でならなければならな
いことが判明した。
Therefore, it was found that CaO must be 10% or less. Furthermore, when the amount of Al203 increases, the magnetic permeability also decreases at a similar rate of decrease in curves G, H, and I, and when the amount of Al203 exceeds 0.3 wt%, the permeability decreases significantly. It turned out that it had to be 3% or less.

比較例1, 実施例1と同様な主成分のみよりなる原料を実施例1と
同様な方注で、フェライトブロックを作製し、このフェ
ライトブロックの耐磨耗性評価を行った。その結果を第
2図中の曲線Dとして示した。
A ferrite block was prepared using a raw material consisting only of the same main components as in Comparative Example 1 and Example 1 in the same manner as in Example 1, and the wear resistance of this ferrite block was evaluated. The results are shown as curve D in FIG.

第1図から曲線A,B,Cで示される木允明の実施例1
,2.3によるフェライトは、CaOAl203を添加
しない曲iDのフェライトよりも耐磨耗性に優れている
ことが判る。
Embodiment 1 of Mutsumei shown by curves A, B, and C from Fig. 1
It can be seen that the ferrite according to , 2.3 has better wear resistance than the ferrite of curve iD to which CaOAl203 is not added.

比較例2. 失施例4と同様の主成分のみよりなる原料より、丈施例
1と同様な方法で粉末を作製し、実施例4と同様な方法
で、フェライトブロックを得て、このフェライトブロッ
クの耐磨耗性評価を行った。
Comparative example 2. A powder was prepared in the same manner as in Example 1 from a raw material consisting only of the same main components as in Example 4, and a ferrite block was obtained in the same manner as in Example 4. Wearability evaluation was performed.

その結果を、第2図中の曲線Eとして示した。The results are shown as curve E in FIG.

第2図から曲線Eの本発明の実施例4によるフェライト
は、曲線Fで示されるCaO,Al20,を添加しない
フェライトよりも、耐磨耗性に優れていることが判る。
From FIG. 2, it can be seen that the ferrite according to Example 4 of the present invention, shown by curve E, has better wear resistance than the ferrite shown by curve F, which does not contain CaO or Al20.

更に、第3図から本発明の実施例1,2,3.4に係る
フェライトは、Cab,Al20,を添加しないフェラ
イトに比較して幾分透磁率は劣るものの、ヘッド材とし
ては十分な磁気特性を有することが分かる。
Furthermore, as shown in FIG. 3, the ferrites according to Examples 1, 2, and 3.4 of the present invention have a magnetic permeability that is sufficient as a head material, although their magnetic permeability is somewhat inferior to that of ferrites that do not contain Cab or Al20. It can be seen that it has the following characteristics.

従って、本発明に係る酸化物磁性材料は、磁気特性に限
らず、ヘッド材としても、十分な特性を有することが判
明した。
Therefore, it has been found that the oxide magnetic material according to the present invention has sufficient properties not only for magnetic properties but also for head materials.

[允明の効果] 以上説明しt:: ;f:1’ク,本発明による酸化物
フェライトは、既存フェライト材に比較して耐磨耗性に
優れていることが判る。また、磁気特性としても、ヘッ
ド材として充分な特性を有しているので、OA機器に限
らず、家庭用及び営業用のVTRヘッドその他広汎に使
用することが可能である。
[Effect of Yumei] From the above explanation, it can be seen that the oxide ferrite according to the present invention has excellent wear resistance compared to existing ferrite materials. Furthermore, since it has sufficient magnetic properties as a head material, it can be used not only for office automation equipment but also for home and commercial VTR heads and a wide range of other applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸化物磁性材料の磨耗量と加工時間との関係を
示す図で、曲線A,B,Cは実施例1,2.3、曲線D
は比較例1を夫々示し、第2図は酸化物磁性材料の磨耗
量と加工特開との関係を示す図で、曲線Eは実施例4,
曲線Fは比較例2を示し、第3図は本発明の実施例5に
係る酸化物磁性材料へのCaOとAlzO3Jnとの添
加量による透磁率の変化を示す図で、曲線G,H,iは
CaOがOwt%.0.1wt%,0.2wt%,を夫
々示す。 ?摩耗量(μm) 摩耗!(μm)
Figure 1 is a diagram showing the relationship between the amount of wear of oxide magnetic materials and processing time, where curves A, B, and C represent Examples 1 and 2.3, and curve D
2 shows the relationship between the amount of wear of the oxide magnetic material and the processing patent, and curve E shows the results of Example 4,
Curve F shows Comparative Example 2, and FIG. 3 shows changes in magnetic permeability depending on the amounts of CaO and AlzO3Jn added to the oxide magnetic material according to Example 5 of the present invention. is CaO Owt%. 0.1wt% and 0.2wt% are shown, respectively. ? Amount of wear (μm) Wear! (μm)

Claims (1)

【特許請求の範囲】[Claims] 1.主成分として酸化第2鉄50〜56モル%,酸化マ
ンガン20〜40モル%.酸化亜鉛6〜30モル%より
なる酸化物フェライトに副成分として、酸化アルミニウ
ム(Al_2O_3)0.01〜0.3重量%及び酸化
カルシウム(CaO)0〜0.2重量%を同時に添加し
てなる高密度で且つ高耐磨耗性を有することを特徴とす
る酸化物磁性材料。
1. The main components are 50-56 mol% of ferric oxide and 20-40 mol% of manganese oxide. Made by simultaneously adding 0.01 to 0.3% by weight of aluminum oxide (Al_2O_3) and 0 to 0.2% by weight of calcium oxide (CaO) as subcomponents to oxide ferrite consisting of 6 to 30 mol% of zinc oxide. An oxide magnetic material characterized by high density and high wear resistance.
JP1188862A 1989-07-24 1989-07-24 Oxide magnetic material Pending JPH0354164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1188862A JPH0354164A (en) 1989-07-24 1989-07-24 Oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1188862A JPH0354164A (en) 1989-07-24 1989-07-24 Oxide magnetic material

Publications (1)

Publication Number Publication Date
JPH0354164A true JPH0354164A (en) 1991-03-08

Family

ID=16231165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1188862A Pending JPH0354164A (en) 1989-07-24 1989-07-24 Oxide magnetic material

Country Status (1)

Country Link
JP (1) JPH0354164A (en)

Similar Documents

Publication Publication Date Title
CN101169996B (en) A low power consumption Mn-Zn ferrite magnetic material for ultra-high temperature condition and its making method
CN113087515B (en) Manganese zinc ferrite with high saturation magnetic induction intensity, wide temperature range and low magnetic core loss, preparation method thereof and application of potassium tetrafluoroaluminate
WO2023005782A1 (en) Mn-zn ferrite material and preparation method therefor
JPS5836974A (en) Low magnetic loss mn-zn ferrite and manufacture
JPS61191562A (en) Alumina base antiabrasive material
JPS61256967A (en) Manufacture of mn-zn ferrite
JPH0354164A (en) Oxide magnetic material
JP2627637B2 (en) Oxide magnetic material
JPH03184307A (en) High-frequency low-loss ferrite for power supply
JP2706975B2 (en) Method for producing Mn-Zn ferrite material
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
JPH0352424B2 (en)
JP2566143B2 (en) High density and high coefficient of thermal expansion ferrite for composite magnetic head and manufacturing method thereof
TWI437590B (en) Wide temperature type and low hysteresis coefficient of the magnetic core manufacturing methods
JP2870996B2 (en) Regeneration method of ferrite polishing powder
JPH0122228B2 (en)
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
JPS6319447B2 (en)
JPH0432206A (en) Oxide magnetic material
JPS61280602A (en) Manufacture of highly concentrated ferrite
JPS6177304A (en) Manufacture of mn-zn ferrite
JPS60194507A (en) Ceramic substrate material for magnetic head
JP2004022619A (en) Ferrite for lan card and method of manufacturing the same
JPS60194506A (en) Ceramic substrate material for magnetic head
JPS62278162A (en) Oxide ferrite composition and manufacture