JPH01259508A - Oxide magnetic material - Google Patents

Oxide magnetic material

Info

Publication number
JPH01259508A
JPH01259508A JP63087368A JP8736888A JPH01259508A JP H01259508 A JPH01259508 A JP H01259508A JP 63087368 A JP63087368 A JP 63087368A JP 8736888 A JP8736888 A JP 8736888A JP H01259508 A JPH01259508 A JP H01259508A
Authority
JP
Japan
Prior art keywords
oxide
magnetic material
mgo
oxide magnetic
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63087368A
Other languages
Japanese (ja)
Other versions
JP2627637B2 (en
Inventor
Hisato Kasamatsu
笠松 久人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63087368A priority Critical patent/JP2627637B2/en
Publication of JPH01259508A publication Critical patent/JPH01259508A/en
Application granted granted Critical
Publication of JP2627637B2 publication Critical patent/JP2627637B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To improve hardwearing properties by adding magnesium oxide MgO and calcium oxide CaO, both of specific amounts, to raw material iron oxide Fe2O3, manganese oxide MnO, and zinc oxide ZnO, all of specified contents. CONSTITUTION:A chief ingredientinvolves 20-40mol% manganese oxide MnO, 6-30% zinc oxide ZnO, and ferric oxide Fe2O3 as a remaining fraction. A sub-ingredient involving 0.01-0.2wt.% magnesium oxide MgO and 0-0.2 wt.% calcium oxide is added to the chief ingredient. Those ingredients are mixed and formed into a block by calcination, fine grinding, and granulation, and sintered in the atmosphere of N2. Herein, MgO is limited to 0.01-0.2wt.% and CaO to 0-0.2wt.%, to prevent permeability from being lowered. Thus, the title magnetic material with excellent hardwearing properties is yielded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度でかつ高耐摩耗性を有する、磁気ヘッ
ド材料に適した酸化物磁性材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oxide magnetic material that has high density and high wear resistance and is suitable as a magnetic head material.

〔従来の技術〕[Conventional technology]

近年、OA(オフィスオートメーション)およびHA(
ホームオートメーション)化の推進に伴い、オフィスコ
ンピュータおよびパーソナルコンピュータの普及はめざ
ましいものがある。これらのコンピュータの外部記憶8
置として必要不可欠なものにフロッピーディスク装置f
f (FDD)及びハードディスクl1l(HDD>が
ある。
In recent years, OA (office automation) and HA (
With the advancement of home automation, the spread of office computers and personal computers has been remarkable. External storage of these computers8
A floppy disk device is an essential item for
f (FDD) and hard disk l1l (HDD>).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

これらの装置に使用される磁気ヘッド用フェライトとし
て、超精密な加工を施すために、できるだけ欠陥のない
、かつ小粒径のものであること、また、ヘッドとして長
時間媒体と接触するために、できるだけ摩耗しにくい材
料であることが要求される。
The ferrite for magnetic heads used in these devices must be as defect-free and small in size as possible in order to be processed with ultra-precision processing, and in order to be in contact with the medium for a long time as a head. It is required that the material be as wear-resistant as possible.

本発明の技術的課題は、ヘッド材料として要求されるこ
れらの条件を満足するよう、高密度でかつ高耐摩耗性を
有する酸化物磁性材料を提供するものである。
A technical object of the present invention is to provide an oxide magnetic material having high density and high wear resistance so as to satisfy these conditions required for a head material.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、酸化マンガン(MnO)20〜40モ
ル%、酸化亜鉛(ZnO)6〜30%、残部が実質的に
酸化第二鉄(Fe203>よりなる主成分と、副成分と
して酸化マグネシウム(Mgo)を0.01〜0.21
ffi%、酸化カルシウム(CaO)をO−0,21量
%含有し、高密度で高耐摩耗性を有することを特徴とす
る酸化物磁性材料が得られる。
According to the present invention, the main component consists of 20 to 40 mol% of manganese oxide (MnO), 6 to 30% of zinc oxide (ZnO), and the balance substantially consists of ferric oxide (Fe203), and magnesium oxide as a subcomponent. (Mgo) from 0.01 to 0.21
ffi%, calcium oxide (CaO) in an amount of O-0.21%, and is characterized by having high density and high wear resistance.

すなわち、本発明においては、主成分として酸化鉄原料
Fe2O3、酸化マンガンMno、酸化亜鉛znOを使
用し、これに副成分として酸化マグネシウムMCl0及
び酸化カルシウムCaOを添加し、これらの原料を通常
のフェライトの製造工程と同様にボールミルにて混合し
、仮焼、微粉砕、造粒してプレス用の粉末を得る。この
ようにして得られた粉末をブロック形状に成形し、これ
をN2雰囲気中で焼成する。この焼結体をさらにArガ
ス中で熱間静水圧プレス<1−11P)処理を行ない、
後熱処理を施して、得られるものである。
That is, in the present invention, iron oxide raw materials Fe2O3, manganese oxide Mno, and zinc oxide znO are used as main components, magnesium oxide MCl0 and calcium oxide CaO are added as subcomponents, and these raw materials are used as ordinary ferrite. Similar to the manufacturing process, the mixture is mixed in a ball mill, calcined, pulverized, and granulated to obtain a powder for pressing. The powder thus obtained is formed into a block shape, and this is fired in an N2 atmosphere. This sintered body is further subjected to hot isostatic pressing <1-11P) in Ar gas,
It is obtained by performing post-heat treatment.

その結果、製造された磁性材料はラップマスターにて1
μmダイヤペーストを使用し一定時間研摩し、摩耗量を
判定した結果、従来の高密度フェライトに比較し、かな
り改善されていることが認められた。
As a result, the produced magnetic material was heated to 1.
As a result of polishing using μm diamond paste for a certain period of time and determining the amount of wear, it was found that it was significantly improved compared to conventional high-density ferrite.

また、本発明において、添加lMC70に関しては0.
01〜0.2重量%、CaOに関しては0〜0.2重量
%と限定したのは、その量を変えると急激に透磁率の値
が劣化するためである。
In addition, in the present invention, the added lMC70 is 0.
The reason why CaO is limited to 0 to 0.2% by weight is that if the amount is changed, the magnetic permeability value will deteriorate rapidly.

また、本発明の酸化物磁性材料の製造上はHIP処理の
圧力は800〜1600kL/cnで製造されることが
好ましい。というのは、800kq/d以下の圧力では
十分なHIP効果が得られず、気孔が残存しやすく、高
密度が得られないためでアリ、マタ、1600k(1/
cne越エルト、HIP時の歪が大きくなりすぎて、磁
性材料が劣化するからである。
Further, in manufacturing the oxide magnetic material of the present invention, it is preferable that the HIP treatment is performed at a pressure of 800 to 1600 kL/cn. This is because a sufficient HIP effect cannot be obtained at a pressure below 800 kq/d, pores tend to remain, and high density cannot be obtained.
This is because the distortion during HIP becomes too large and the magnetic material deteriorates.

〔実施例〕〔Example〕

本発明の実施例について説明する。 Examples of the present invention will be described.

第1図は、本発明の実施例1〜3に係る酸化物磁性材料
の研摩量と時間との関係を示す。
FIG. 1 shows the relationship between polishing amount and time of oxide magnetic materials according to Examples 1 to 3 of the present invention.

この図において、曲線11は、実施例1に係る酸化物磁
性材料、曲線12は実施例2に係る酸化物磁性材料、曲
線13は実施例3に係る酸化物磁性材料、曲線51は比
較の為に、実施例1と同じ材料で添加物を含有しない材
料を実施例1の方法により製造された酸化物磁性材料(
比較例1)についての研摩量と時間との関係をそれぞれ
示している。実施例1〜3の材料から切り出したたて5
men、よこ5 rum N高さ3imの試片を1μm
のダイヤにて研磨し各時間ごとの摩耗量を測定したもの
である。
In this figure, curve 11 is the oxide magnetic material according to Example 1, curve 12 is the oxide magnetic material according to Example 2, curve 13 is the oxide magnetic material according to Example 3, and curve 51 is for comparison. The same material as in Example 1 but containing no additives was used as an oxide magnetic material produced by the method in Example 1 (
The relationship between the amount of polishing and time for Comparative Example 1) is shown. Freshly cut from the materials of Examples 1 to 3 5
men, width 5 rum N height 3 mm specimen 1 μm
The amount of wear was measured at each time by polishing with a diamond.

このことから、本発明の実施例1〜3に係る酸化物磁性
材料は、既存フェライト材に比較して耐摩耗性に優れて
いることがわかった。
From this, it was found that the oxide magnetic materials according to Examples 1 to 3 of the present invention had excellent wear resistance compared to existing ferrite materials.

第2図は、本発明の実施例4に係る酸化物磁性材料の研
磨量と時間との関係を示す。
FIG. 2 shows the relationship between the polishing amount and time of the oxide magnetic material according to Example 4 of the present invention.

この図において、曲線21は、実施例4に係る酸化物磁
性材料についての測定結果である。
In this figure, a curve 21 is the measurement result for the oxide magnetic material according to Example 4.

比較例として、実施例4と同じ組成の材料(比較例2)
で、添加物については含有しない酸化物磁性材料の測定
結果を併記した。
As a comparative example, a material with the same composition as Example 4 (Comparative Example 2)
The measurement results for oxide magnetic materials that do not contain additives are also shown.

この図から、本発明の実施例4に係る酸化物磁性材料は
、上記実施例1〜3に係る酸化物磁性材料と同様に耐摩
耗性にすぐれていることがわかった。
From this figure, it was found that the oxide magnetic material according to Example 4 of the present invention has excellent wear resistance like the oxide magnetic materials according to Examples 1 to 3 above.

本発明の実施例に係る磁性材料の製造方法について述べ
る。
A method for manufacturing a magnetic material according to an embodiment of the present invention will be described.

実施例1 本発明の実施例1に係る磁性材料は次のように製造され
た。
Example 1 A magnetic material according to Example 1 of the present invention was manufactured as follows.

Fe2O353モル%とMnO30モル%とZn0 1
7モル%とを主成分とし、この原料に添加物としてMg
O0,02wt%を含有する様に秤量した原料を、ボー
ルミルにて4QHr混合し、濾過、乾燥した粉末を85
0℃大気中で2[1「仮焼した。続いてこの粉末をボー
ルミルにて2011「さらに微粉砕を行ない、バインダ
ーとしてポリビニルアルコール(PVA)を1%混合し
て成形用粉末を得た。この成形用粉末をたて32朋、よ
こ32an、高さが10藺のブロックに成形した。
Fe2O353 mol%, MnO30 mol% and Zn0 1
7 mol% as the main component, and Mg as an additive to this raw material.
The raw materials weighed to contain 0.02 wt% of O were mixed in a ball mill for 4Qhr, filtered, and the dried powder was heated to 85% by weight.
The powder was calcined at 0°C in the atmosphere for 20 minutes.Then, this powder was further finely pulverized in a ball mill, and 1% polyvinyl alcohol (PVA) was mixed as a binder to obtain a powder for molding. The molding powder was molded into a block measuring 32 mm in length, 32 mm in width, and 10 mm in height.

N2雰囲気中で1250℃、311r焼成(−次焼成)
し、焼結体を得た。さらにこの焼結体をArガス中で1
200℃、 1000k(1/cn、 411rHI 
P処理し、得られた圧粉体を後熱処理工程として800
℃でづHr、N2ガス中で98理し酸化物磁性材料のブ
ロックを得た。
1250℃, 311r firing in N2 atmosphere (-second firing)
A sintered body was obtained. Furthermore, this sintered body was placed in Ar gas for 1
200℃, 1000k (1/cn, 411rHI
After P treatment, the resulting green compact was subjected to a post-heat treatment step of 800
A block of oxide magnetic material was obtained by annealing at 98° C. in N2 gas.

実施例2 本発明の実施例2に係る酸化物磁性材料は次のように製
造された。
Example 2 An oxide magnetic material according to Example 2 of the present invention was manufactured as follows.

実施例1と同じ組成を主成分とする原料粉末に、MqO
を0,1wt%添加し、実施例1と同様に混合粉砕、濾
過、乾燥、仮焼、i粉砕して粉末製造し、−次焼成、H
I P、後熱処理を行ない、酸化物磁性材料のブロック
を得た。
MqO was added to the raw material powder mainly having the same composition as in Example 1.
0.1 wt% was added, mixed and pulverized, filtered, dried, calcined and pulverized in the same manner as in Example 1 to produce a powder, followed by subsequent calcination, H
IP and post-heat treatment were performed to obtain a block of oxide magnetic material.

実施例3 本発明の実施例3に係る酸化物磁性材料は次のように製
造された。
Example 3 An oxide magnetic material according to Example 3 of the present invention was manufactured as follows.

実施例1と同じ組成を主成分とする原料粉末に、MgO
を0.03wt%、CaOを○、Q4wt%添加し、実
施例1と同様の工程にてブロックを得た。
MgO was added to the raw material powder mainly having the same composition as in Example 1.
A block was obtained in the same process as in Example 1 by adding 0.03 wt% of CaO and 4 wt% of CaO.

実施例4 本発明の実施例4に係る酸化物磁性材料は次のように製
造された。
Example 4 An oxide magnetic material according to Example 4 of the present invention was manufactured as follows.

Fe2O3を52.5モル%、MnOを27モル%、z
noを20.5モル%の組成を主成分とし、この原料に
添加物としてMCl0を0.05wt%、CaOを0.
02Vt%添加し、実施例1と同様に混合粉砕、濾過、
乾燥、仮焼、微粉砕して粉末を作成し、プレスして成形
体を得た。この成形体を1300℃ににて0.5%の0
2を含むN2雰囲気中で311r焼成し、得られた焼結
体を1250”C,1000ka/cId、 4Hr、
 A rガス中でHIP処理し、さらに750”Cで1
+(rN2ガス中で後熱処理を行なって酸化物磁性材料
のブロックを得た。
Fe2O3 52.5 mol%, MnO 27 mol%, z
The main component is 20.5 mol% of NO, and 0.05 wt% of MCl0 and 0.05 wt% of CaO are added to this raw material as additives.
02Vt% was added, mixed and pulverized, filtered and filtered in the same manner as in Example 1.
A powder was prepared by drying, calcining, and finely pulverizing, and a molded body was obtained by pressing. This molded body was heated to 1300°C with a concentration of 0.5%
The resulting sintered body was fired at 1250"C, 1000ka/cId, 4Hr,
HIPed in Ar gas and further heated at 750"C for 1
A block of oxide magnetic material was obtained by post-heat treatment in +(rN2 gas).

〔発明の効果〕〔Effect of the invention〕

以上のべたとおり、本発明の酸化物磁性材料は、既存の
フェライト系酸化物磁性材料に比較して耐摩耗性に優れ
ているため、磁気ヘッド材として用いるのに適している
ことがわかる。また、磁気へラド材として充分な磁気特
性を有しているため、0AII器に限らず、家庭用及び
業務用のVTRヘッドその他広汎に使用することができ
る。
As described above, the oxide magnetic material of the present invention has excellent wear resistance compared to existing ferrite-based oxide magnetic materials, and is thus found to be suitable for use as a magnetic head material. In addition, since it has sufficient magnetic properties as a magnetic helad material, it can be used not only for 0AII devices but also for a wide range of household and business VTR heads and other uses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1〜3および比較例1に係る酸
化物磁性材料のi!iI4摩耗試験結果を示す図、第2
図tよ本発明の実施例4及び比較例2に係る酸化物磁性
材料の耐摩耗試験結果を示す図である。 2祁工隔i(〜1.n) □加工晴間(M in )
FIG. 1 shows the i! of oxide magnetic materials according to Examples 1 to 3 of the present invention and Comparative Example 1. Diagram showing iI4 wear test results, 2nd
FIG. t is a diagram showing the results of a wear resistance test of oxide magnetic materials according to Example 4 of the present invention and Comparative Example 2. 2 machining interval i (~1.n) □ machining interval (M in )

Claims (1)

【特許請求の範囲】[Claims] 1.酸化マンガン(MnO)20〜40モル%、酸化亜
鉛(ZnO)6〜30%、残部が実質的に酸化第二鉄(
Fe_2O_3)よりなる主成分と、副成分として酸化
マグネシウム(MgO)を0.01〜0.2重量%、酸
化カルシウム (CaO)を0〜0.2重量%含有し、 高密度で高耐摩耗性を有することを特徴とする酸化物磁
性材料。
1. 20 to 40 mol% of manganese oxide (MnO), 6 to 30% of zinc oxide (ZnO), and the balance is substantially ferric oxide (
The main component is Fe_2O_3), and contains 0.01 to 0.2% by weight of magnesium oxide (MgO) and 0 to 0.2% by weight of calcium oxide (CaO) as subcomponents, and has high density and high wear resistance. An oxide magnetic material characterized by having:
JP63087368A 1988-04-11 1988-04-11 Oxide magnetic material Expired - Lifetime JP2627637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63087368A JP2627637B2 (en) 1988-04-11 1988-04-11 Oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63087368A JP2627637B2 (en) 1988-04-11 1988-04-11 Oxide magnetic material

Publications (2)

Publication Number Publication Date
JPH01259508A true JPH01259508A (en) 1989-10-17
JP2627637B2 JP2627637B2 (en) 1997-07-09

Family

ID=13912954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63087368A Expired - Lifetime JP2627637B2 (en) 1988-04-11 1988-04-11 Oxide magnetic material

Country Status (1)

Country Link
JP (1) JP2627637B2 (en)

Also Published As

Publication number Publication date
JP2627637B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
EP1101736B1 (en) Mn-Zn ferrite and production thereof
EP4378910A1 (en) Mn-zn ferrite material and preparation method therefor
JPS61256967A (en) Manufacture of mn-zn ferrite
JPH01259508A (en) Oxide magnetic material
JP2914554B2 (en) Method for producing high permeability MnZn ferrite
JPH0521223A (en) Manufacture of ferrite
JPH05190315A (en) Polycrystal mn-zn ferrite
JPH0696930A (en) Transformer using microcrystalline ferrite
US2987481A (en) Manganese-zinc ferrite
JP2566143B2 (en) High density and high coefficient of thermal expansion ferrite for composite magnetic head and manufacturing method thereof
JPS61280602A (en) Manufacture of highly concentrated ferrite
KR0143068B1 (en) A method of oxide magnetized material
JPH03141611A (en) Fineparticle organization mn-zn ferrite material and its manufacture
JPS6177304A (en) Manufacture of mn-zn ferrite
US3297576A (en) Method of making memory core
JP3552817B2 (en) Method for producing low-loss oxide magnetic material
JPH0345032B2 (en)
JPH09180926A (en) Low loss oxide magnetic material
JPH0122228B2 (en)
JP2706975B2 (en) Method for producing Mn-Zn ferrite material
JPH0817617A (en) Ni based ferrite core of high permeability and high saturation magnetic flux density and its manufacture
JPS60194507A (en) Ceramic substrate material for magnetic head
JP3008566B2 (en) Manufacturing method of oxide magnetic material
JPH0432206A (en) Oxide magnetic material
JP2000138117A (en) Manufacture of ferrite material for power source