JPH04321562A - Sintered silicon nitride - Google Patents

Sintered silicon nitride

Info

Publication number
JPH04321562A
JPH04321562A JP3116635A JP11663591A JPH04321562A JP H04321562 A JPH04321562 A JP H04321562A JP 3116635 A JP3116635 A JP 3116635A JP 11663591 A JP11663591 A JP 11663591A JP H04321562 A JPH04321562 A JP H04321562A
Authority
JP
Japan
Prior art keywords
value
silicon nitride
sintered body
sintering
al2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3116635A
Other languages
Japanese (ja)
Other versions
JP2539960B2 (en
Inventor
Takao Nishioka
隆夫 西岡
Kenji Matsunuma
健二 松沼
Yoshie Kouno
高ノ 由重
Masaya Miyake
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3116635A priority Critical patent/JP2539960B2/en
Publication of JPH04321562A publication Critical patent/JPH04321562A/en
Application granted granted Critical
Publication of JP2539960B2 publication Critical patent/JP2539960B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sintered silicon nitride having a strength higher than that of fiber-reinforced sintered material by mixing a sintering assistant such as rare-earth metal to Al2O3 etc., and sintering the mixture to get a composition falling within a prescribed range. CONSTITUTION:Si3N4 raw material powder produced by imide decomposition process, etc., is mixed with 5-15wt.% of a sintering assistant such as Y2O3 and Al2O3 and the mixture is sintered to obtain the objective sintered silicon nitride having a composition falling within the range encircled by lines connecting the points A, B, C, D and E of the diagram (excluding the composition on the line D-E). The ordinate of the diagram is the weight ratio of the rare-earth metal and lanthanide metal oxide to Al2O3 and AlN in the sintering assistant and the abscissa is the ratio of measured Z value to the theoretical Z value (Z value is a measure of the amount of substituted solid solution of Al and oxygen element in the crystal of beta-silicon aluminum oxynitride [beta'- Si6-zAlzOzN8-z (0<=z<=4.2)] of the obtained sintered material).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は構造用セラミックスとし
て注目されている高強度のSi3N4系焼結体に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength Si3N4 sintered body, which is attracting attention as a structural ceramic.

【0002】0002

【従来の技術】一般にセラミックスの強度は気孔率や結
晶粒径、表面状態に影響を受ける。構造用セラミックス
として注目されているSi3N4系焼結体の強度もこれ
らに支配される。
2. Description of the Related Art Generally, the strength of ceramics is affected by porosity, crystal grain size, and surface condition. These factors also govern the strength of Si3N4-based sintered bodies, which are attracting attention as structural ceramics.

【0003】Si3N4系焼結体の強度を向上させる試
みとして、焼結助剤の開発、焼結方法の開発が図られて
いる。例えばホットプレス焼結ではAm.Ceram.
Soc.Bull.,52(1973)pp560で〜
100Kg/m2(曲げ強度)が、又常圧焼結では昭和
56年窯業協会年会講演予稿集、(1981)178で
〜100Kg/m2(曲げ強度)が報告されている。い
ずれも気孔率を極力少なくすることによって強度向上を
図っている。
In an attempt to improve the strength of Si3N4-based sintered bodies, efforts have been made to develop sintering aids and sintering methods. For example, in hot press sintering, Am. Ceram.
Soc. Bull. , 52 (1973) pp560 ~
100 Kg/m2 (bending strength), and ~100 Kg/m2 (bending strength) in pressureless sintering is reported in Proceedings of the 1981 Ceramics Association Annual Meeting, 178 (1981). In both cases, strength is improved by minimizing porosity.

【0004】又、主たる焼結助剤としてY2O3を用い
たSi3N4−Y2O3−Al2O3系窒化ケイ素焼結
体の製造方法が特公昭49−21091号、特公昭48
−38448号に開示されている。
[0004] Also, a method for manufacturing a Si3N4-Y2O3-Al2O3-based silicon nitride sintered body using Y2O3 as the main sintering aid is disclosed in Japanese Patent Publications No. 49-21091 and Japanese Patent Publication No. 48
-38448.

【0005】これらは該当特公明細書中に示されている
ように、β結晶格子のSi3N4が維持状組織を有し、
これがマトリックス相中に分散することから強度、靭性
を向上し得るものと考えられている。すなわちこれはβ
晶Si3N4格子が六方晶でありC軸方向に異方性成長
をすることを積極的に利用したものであり、とくに特公
昭48−38448号やまた窯業協会誌94巻pp96
(1986)に示される如く、繊維状のβ晶Si3N4
の結晶粒が長手方向に10数μm以上成長している場合
がある。
As shown in the relevant patent specification, these Si3N4 in the β crystal lattice have a maintenance-like structure,
Since this is dispersed in the matrix phase, it is thought that strength and toughness can be improved. In other words, this is β
The crystal Si3N4 lattice is hexagonal and it actively utilizes the fact that it grows anisotropically in the C-axis direction, and is particularly published in Special Publication No. 1983-38448 and Ceramics Association Journal Vol. 94, pp. 96.
(1986), fibrous β-crystalline Si3N4
In some cases, crystal grains of 10-odd micrometers or more grow in the longitudinal direction.

【0006】一方特公昭56−51153号ではβ相S
i3N4格子内のSiの一部がAl,Nの一部がOによ
り置換された、所謂Si−Al−O−N格子を含んだ焼
結体が強度、耐熱衝撃性、耐酸化性に優れたものである
ことを開示している。ここでは原料Si3N4とAl2
O3の各粉末を混合し焼結することで該β相シリコンア
ルミニウムオキシナイトライド格子を形成するものであ
る。
On the other hand, in Japanese Patent Publication No. 56-51153, β-phase S
A sintered body containing a so-called Si-Al-O-N lattice in which part of the Si in the i3N4 lattice is replaced by Al and part of the N by O has excellent strength, thermal shock resistance, and oxidation resistance. Discloses that it is a thing. Here, raw materials Si3N4 and Al2
The β-phase silicon aluminum oxynitride lattice is formed by mixing and sintering O3 powders.

【0007】[0007]

【発明が解決しようとする課題】しかしながら前記技術
では、繊維状組織の成長を強化機構とするため、それ自
体有効な材料の強化機構と考えられるがその成長を充分
に制御されない場合には、異常粒成長あるいは気孔の発
生が伴う可能性があり必ずしも強度を向上させるために
有効であるとは考えられない。
[Problems to be Solved by the Invention] However, in the above technology, since the growth of fibrous tissue is used as a strengthening mechanism, it is considered to be an effective material strengthening mechanism in itself, but if the growth is not sufficiently controlled, abnormalities may occur. This may involve grain growth or the generation of pores, so it is not necessarily considered effective for improving strength.

【0008】またとくに特公昭49−21091号に示
される繊維状組織を呈するためにはホットプレス焼結を
用いる場合や、あるいは窯業協会誌94巻pp167(
1986)に示されるようにあらかじめ繊維状に成長さ
せる熱処理を施したβ晶のSi3N4原料を添加するこ
とによりこの繊維状組織の成長を積極的に用いる場合は
なお更である。
In particular, hot press sintering may be used to obtain the fibrous structure as shown in Japanese Patent Publication No. 49-21091, or as described in Ceramic Industry Association Journal Vol. 94, pp. 167 (
This is especially true when the growth of this fibrous structure is actively utilized by adding a β-crystalline Si3N4 raw material that has been heat-treated to grow into a fibrous structure, as shown in (1986).

【0009】一方特公昭56−51153号のβ’−サ
イアロン構造のセラミック材料については発明者らの種
々の実験結果より、β’相シリコンアルミニウムオキシ
ナイトライド格子のAl及びOの固溶量の増加に対し該
結晶粒の長軸粒径/短軸粒径(=アスペクト比)の比が
小さくなり繊維状組織の比率が低下しこれに伴い窒温曲
げ強度及び靭性の低下が観察されることが明らかとなっ
た。
On the other hand, regarding the β'-sialon structure ceramic material disclosed in Japanese Patent Publication No. 56-51153, various experimental results by the inventors show that the amount of solid solution of Al and O in the β' phase silicon aluminum oxynitride lattice increases. On the other hand, the ratio of long axis grain size/short axis grain size (=aspect ratio) of the crystal grains becomes smaller, the ratio of fibrous structure decreases, and a decrease in nitrogen temperature bending strength and toughness is observed accordingly. It became clear.

【0010】また類似した内容についてはZiegle
r,Gら(Science  ofCeramics 
 vol  12(1984)pp361)がAl2O
3及びY2O3を助剤としたSi3N4材料においてY
2O3量に対してAl2O3添加量を増加させることに
よりアスペクト比が低下することを示しており、発明者
らの見い出した内容を間接的に示しているものと考えら
れる。以上の内容よりSi3N4系焼結体の強度及び靭
性を向上させるためには繊維状Si3N4結晶粒の形態
の制御とそれに因果関係があると考えられる。結晶格子
内へのAl及びOの固溶量の最適化が重要であるという
考えに至った。
[0010] For similar content, see Ziegle.
r, G et al. (Science of Ceramics
vol 12 (1984) pp361) is Al2O
Y in Si3N4 materials with 3 and Y2O3 as auxiliary agents.
This shows that the aspect ratio decreases by increasing the amount of Al2O3 added relative to the amount of 2O3, and is thought to indirectly indicate the findings of the inventors. From the above content, it is considered that in order to improve the strength and toughness of the Si3N4-based sintered body, there is a causal relationship between controlling the morphology of the fibrous Si3N4 crystal grains. We have come to the idea that it is important to optimize the amount of solid solution of Al and O in the crystal lattice.

【0011】本発明では前記の如くマトリックス中に長
大な繊維状結晶を分散せしめるのではなく細粒かつ高ア
スペクト比かつ均一粒であり、また結晶粒内に固溶して
いるAl及びO元素の固溶量の低いβ晶によりマトリッ
クス相を構成させた焼結体が前記の繊維強化型焼結体以
上に高強度を有することを見いだしたものである。
In the present invention, instead of dispersing long fibrous crystals in the matrix as described above, the particles are fine grains, have a high aspect ratio, are uniform, and contain Al and O elements dissolved in the crystal grains. It has been discovered that a sintered body whose matrix phase is composed of β crystals having a low amount of solid solution has higher strength than the fiber-reinforced sintered body described above.

【0012】0012

【課題を解決するための手段】前述した様にAl及びO
元素の固溶量の低いβ’晶をある組成範囲で析出させる
ことにより構成されることを見い出した。その組成範囲
を図1で示す。ここで横軸には測定Z値と理論Z値の比
を示す。ここでZ値とはS6−ZAlZOZN8−Zで
示されるβ−サイアロン結晶構造のZに相当する値であ
りAl及びOの置換固溶量を示す。一方測定Z値とは焼
結体のX線回析結果より求まり理論Z値とは添加したA
lが全てSi3N4格子内に置換固溶したと想定した場
合のZ値である。また図1の縦軸には原料として添加し
たAl2O3と希土類金属及びランタンド金属酸化物の
比を添加重量比で示す。この図1において図中で示され
るA,B,C,D,Eで囲まれた斜線部分の範囲(ただ
しDEを結ぶ直線上は含まない)においてAl及びO元
素の固溶量の低い細粒が高アスペクト比かつ均一なβ晶
よりマトリックス相が構成され強度、信頼性の高い焼結
体が得られることが明らかとなった。本発明をより効果
を上げるためには好ましくは次の焼結条件を満足するこ
とが望ましい。
[Means for solving the problem] As mentioned above, Al and O
It has been found that the structure is formed by precipitating β' crystals with a low amount of dissolved elements within a certain composition range. The composition range is shown in FIG. Here, the horizontal axis shows the ratio between the measured Z value and the theoretical Z value. Here, the Z value is a value corresponding to Z of the β-sialon crystal structure represented by S6-ZAlZOZN8-Z, and indicates the amount of Al and O substituted solid solution. On the other hand, the measured Z value is determined from the X-ray diffraction results of the sintered body, and the theoretical Z value is the value of the added A.
This is the Z value when it is assumed that all l is substituted and dissolved in the Si3N4 lattice. Moreover, the vertical axis of FIG. 1 shows the ratio of Al2O3 added as a raw material to rare earth metals and lanthanide metal oxides in addition weight ratio. In this Figure 1, fine grains with a low solid solution amount of Al and O elements are found in the shaded area surrounded by A, B, C, D, and E (excluding the straight line connecting DE). It has become clear that the matrix phase is composed of highly uniform β-crystals with a high aspect ratio, and that a sintered body with high strength and reliability can be obtained. In order to make the present invention more effective, it is desirable that the following sintering conditions be satisfied.

【0013】(1)Si3N4原料粉末の製法がイミド
分解法によるものであり原料粉末に含まれる酸素不純物
の内その60%以上が原料粉末の表面部に存在すること
。 (2)1350〜1650℃、2時間以上N2ガス雰囲
気中で熱処理を行うこと。 (3)上記(2)の熱処理についで1700℃以上19
00℃以下で、2時間以上、N2ガス雰囲気中で最終焼
結を行うこと。
(1) The Si3N4 raw material powder is manufactured by an imide decomposition method, and 60% or more of the oxygen impurities contained in the raw material powder are present on the surface of the raw material powder. (2) Heat treatment at 1350 to 1650°C for 2 hours or more in an N2 gas atmosphere. (3) After the heat treatment in (2) above, the temperature is 1700℃ or higher19
Final sintering shall be performed in a N2 gas atmosphere at 00°C or less for 2 hours or more.

【0014】以上の(1)〜(3)の条件は発明者らが
Si3N4の結晶格子内にAl及びOが置換固溶する過
程について調査した結果、この過程が3つの過程に分か
れることより導びかれた条件である。すなわち
The conditions (1) to (3) above were derived from the inventors' investigation of the process of substitution solid solution of Al and O in the crystal lattice of Si3N4, which revealed that this process is divided into three processes. This is a condition that has been rejected. i.e.

【001
5】(第1の過程)1350℃〜1650℃、2時間以
上N2ガス雰囲気中で熱処理する前期過程でありこの間
に添加したα−Si3N4が高温型のβ結晶に変態する
過程。ここでβ結晶は一度Al,Oを置換固溶しZ値/
理論Z値よりも高い値を示す。すなわち周知の如く液相
を介しかつAl,Oを置換固溶しα→βへの結晶変態を
伴う過程である。
001
5] (First step) This is the initial step of heat treatment at 1350° C. to 1650° C. in an N2 gas atmosphere for 2 hours or more, during which the added α-Si3N4 transforms into high-temperature type β crystals. Here, the β crystal once replaces Al and O as a solid solution, and the Z value/
Shows a value higher than the theoretical Z value. That is, as is well known, this is a process that involves a crystal transformation from α to β through a liquid phase, with substitutional solid solution of Al and O.

【0016】(第2の過程)第1の過程の後期であり変
態したβ結晶が核となりβ結晶化が進行する過程。この
過程で100%β結晶化が完了した段階で焼結体のZ値
はほぼ理論Z値に近似する。
(Second process) This is the latter stage of the first process, and is a process in which the transformed β crystals serve as nuclei and β crystallization progresses. In this process, when 100% β crystallization is completed, the Z value of the sintered body approximately approximates the theoretical Z value.

【0017】(第3の過程)1700℃以上、2時間以
上N2ガス雰囲気中での焼結工程であり、この間で焼結
体のZ値は理論Z値以下となり、β晶の結晶粒は異方性
の高いアスペクト比の大きい結晶成長を行う。またこの
間で焼結体は理論密度の95%以上にち密化を達成する
(Third process) This is a sintering process at 1700° C. or higher for 2 hours or more in an N2 gas atmosphere. During this time, the Z value of the sintered body becomes less than the theoretical Z value, and the β crystal grains become different. Growth of highly oriented crystals with a large aspect ratio is performed. During this period, the sintered body achieves densification to 95% or more of the theoretical density.

【0018】上述した3つの過程により発明者らはβ晶
内に一度置換固溶したAl及びOが再度結晶格子内より
析出されその際に異方性の高いかつ高アスペクト比の結
晶成長をすることを見い出した。またこうした固溶物を
含まないβ晶はそのへき開強度も高いと考えられるため
焼結体自体の強度向上に寄与することを見い出だした。 この現象の詳細な機構は明らかではないが、Al2O3
及び希土類金属及びランタニド金属酸化物を併用するこ
とによりAl,Oの置換固溶による結晶変態速度の促進
、また最後の焼結体を密化過程における希土類及びラン
タンド金属酸化物をAl及びOと反応性が高いため一度
固溶したAl,Oが再析出すると考えられる。
Through the above-mentioned three processes, the inventors discovered that Al and O, which had once been substituted and dissolved in the β-crystal, are precipitated again from within the crystal lattice, and at this time, the crystal grows with high anisotropy and a high aspect ratio. I discovered that. Furthermore, it has been found that β-crystals that do not contain solid solutions are thought to have high cleavage strength, and thus contribute to improving the strength of the sintered body itself. Although the detailed mechanism of this phenomenon is not clear, Al2O3
By using rare earth metals and lanthanide metal oxides in combination, the rate of crystal transformation is accelerated by substitutional solid solution of Al and O, and the rare earth and lanthanide metal oxides are reacted with Al and O during the final densification process of the sintered body. It is thought that Al and O, which were once solid-dissolved, re-precipitate because of their high properties.

【0019】ここでAl2O3及び希土類及びランタニ
ド金属酸化物は焼結直前に各々この酸化物粉末形態を有
するものであればとくに原料粉末としてこの酸化物粉末
を添加することを必須としない。すなわち例えばAlあ
るいはYなどのアルコキシド塩による添加や、Alある
いはYなどの有機物塩として添加し焼結直前の酸化処理
過程を経た後結果的に焼結直前に上記の酸化物形態を有
する場合もこの発明性を十分に達成するものである。こ
れにより焼結体のち密化が達成されると共に及びへき開
強度の高い異方性β結晶が多く析出し、曲げ強度が10
0kg/mm2以上の特性を安定して有する窒化珪素及
びβ´−サイアロン焼結体を得る。
[0019] Here, it is not essential that Al2O3, rare earth metal oxides, and lanthanide metal oxides be added as raw material powders, as long as they each have the form of oxide powder immediately before sintering. In other words, for example, when it is added as an alkoxide salt such as Al or Y, or when it is added as an organic salt such as Al or Y, and after going through an oxidation treatment process immediately before sintering, it ends up having the above oxide form immediately before sintering. It fully achieves inventiveness. As a result, the sintered body is densified, and many anisotropic β crystals with high cleavage strength are precipitated, resulting in a bending strength of 10
A sintered body of silicon nitride and β'-sialon that stably has characteristics of 0 kg/mm 2 or more is obtained.

【0020】一方Al2O3及び希土類およびランタニ
ド金属酸化物の添加量については、その総量が5重量%
未満であると焼結性が十分でなく、ち密化が十分に進行
せず15重量%を越えてそれ以上であれば結晶粒の粒成
長が不均一となり強度劣化を生じることから本発明を満
足する助剤添加量の範囲は5重量%以上15重量%以下
とする。
On the other hand, the total amount of Al2O3 and rare earth and lanthanide metal oxides is 5% by weight.
If it is less than 15% by weight, the sinterability will not be sufficient and densification will not proceed sufficiently, and if it exceeds 15% by weight, the grain growth of the crystal grains will be non-uniform and strength deterioration will occur, which satisfies the present invention. The range of the amount of the auxiliary added is 5% by weight or more and 15% by weight or less.

【0021】[0021]

【実施例】イミド分解法を製法とするSi3N4原料粉
末(平均粒径0.5μm、α結晶化率96.5%)及び
市販のY2O3(平均粒径0.9μm)及びAl2O3
(平均粒径0.4μm)を表1に示す配合組成でエタノ
―ル中、100時間湿式ボ―ルミル混合した。これを2
0μmのメッシュにて異物、凝集粒を除去した後乾燥し
、70×70×10mm3の成形体にCIP成形(CI
P圧力3000kg/cm2)した後1550℃で6時
間N2ガス2気圧下で熱処理した後さらに1750℃で
6時間、N2ガス2気圧下で焼結した。この焼結体をさ
らに1700℃で1時間、N2ガス1000気圧下でH
IP処理した。得られた焼結体よりJISP、1601
準拠3×4×35mm3の焼結体を切出し、研削し加工
した後、ダイヤモンドペ―スト#3000により0.2
Sに仕上げ所定の評価テストに供して得られた結果を表
1中に示す。また得られた焼結体のZ値については、特
公昭56−51153に準拠してAl2O3の固溶量と
して求めた結果についても同表中に示す。また各焼結体
の組織の評価についてはZiegler、Gら(Sci
ence  of  Ceramics  vol  
12(1984)pp361)に示される手法に準じ2
次元断面上得られる組織より平均結晶粒径及びアスペク
ト比を各々100〜300個のサンプリング数について
行いその結果を同表中に示す。
[Example] Si3N4 raw material powder manufactured by imide decomposition method (average particle size 0.5 μm, alpha crystallization rate 96.5%), commercially available Y2O3 (average particle size 0.9 μm) and Al2O3
(average particle size: 0.4 μm) were mixed in a wet ball mill in ethanol for 100 hours using the formulation shown in Table 1. This 2
After removing foreign matter and agglomerated particles with a 0 μm mesh, it was dried, and then CIP molded (CI
After heating at 1550°C for 6 hours under 2 atmospheres of N2 gas, the product was further sintered at 1750°C for 6 hours under 2 atmospheres of N2 gas. H
IP processed. From the obtained sintered body, JISP, 1601
After cutting out a sintered body of compliant size 3 x 4 x 35 mm3, grinding and processing, 0.2 mm with diamond paste #3000.
Table 1 shows the results obtained by subjecting the finished product to S to a predetermined evaluation test. Regarding the Z value of the obtained sintered body, the results obtained as the amount of solid solution of Al2O3 in accordance with Japanese Patent Publication No. 56-51153 are also shown in the same table. Regarding the evaluation of the structure of each sintered body, see Ziegler, G et al.
ence of Ceramics vol.
12 (1984) pp361) 2
The average crystal grain size and aspect ratio were determined for 100 to 300 samples each from the structure obtained on the dimensional cross section, and the results are shown in the table.

【0022】[0022]

【表1】[Table 1]

【0023】[0023]

【発明の効果】本発明では窒化珪素マトリックス中に長
大な繊維状結晶を分散せしめるのではなく、細粒かつ高
アスペクト比かつ均一粒であり、また、結晶粒内に固溶
しているAl及びO元素の固溶量の低いβ晶によりマト
リックス相を構成させた焼結体が繊維強化型焼結体以上
に高強度を有するものとなる。
Effects of the Invention In the present invention, long fibrous crystals are not dispersed in the silicon nitride matrix, but fine grains, high aspect ratio, and uniform grains are formed, and Al and A sintered body whose matrix phase is composed of β crystals with a low solid solution amount of O element has higher strength than a fiber-reinforced sintered body.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の組成範囲を示すグラフである。FIG. 1 is a graph showing the composition range of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  焼結助剤として添加する希土類金属及
びランタニド系金属酸化物の1種もしくは2種以上と酸
化アルミニウム及び窒化アルミニウムの1種又は2種の
添加重量比を縦軸にとり、焼結体のX線回折法により測
定されるβ´−シリコンアルミニウムオキシナイトライ
ド[β´−Si6−ZAlZOZN8−Z(0≦Z≦4
.2)]結晶相中のAl及びO元素の置換固溶量を示す
測定z値と、添加した酸化アルミニウム及び窒化アルミ
ニウムの1種又は2種のAl元素が全てβ´−シリコン
アルミニウムオキシナイトライド結晶相中に置換固溶し
たとして算出される理論z値との比を横軸とした図1に
示されるA,B,C,D,Eの各点を結ぶ直線、ただし
直線DE上は含まない、で囲まれる範囲で示されること
を特徴とする窒化珪素系焼結体。
Claim 1: The weight ratio of one or more rare earth metals and lanthanide metal oxides added as sintering aids to one or two aluminum oxides and aluminum nitrides is plotted on the vertical axis. β'-Silicon aluminum oxynitride [β'-Si6-ZAlZOZN8-Z (0≦Z≦4
.. 2)] Measured z value indicating the amount of substituted solid solution of Al and O elements in the crystal phase, and one or two types of Al elements of added aluminum oxide and aluminum nitride are all β'-silicon aluminum oxynitride crystals. A straight line connecting the points A, B, C, D, and E shown in Figure 1 with the horizontal axis representing the ratio to the theoretical z value calculated as a solid solution by substitution in the phase, but does not include the line DE. A silicon nitride-based sintered body characterized by being represented by a range surrounded by .
【請求項2】  焼結助剤の添加総量が5重量%以上1
5重量%以下である請求項1記載の窒化珪素系焼結体。
[Claim 2] The total amount of sintering aids added is 5% by weight or more1
The silicon nitride-based sintered body according to claim 1, wherein the content is 5% by weight or less.
JP3116635A 1991-04-22 1991-04-22 Silicon nitride-based sintered body and method for manufacturing the same Expired - Lifetime JP2539960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3116635A JP2539960B2 (en) 1991-04-22 1991-04-22 Silicon nitride-based sintered body and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3116635A JP2539960B2 (en) 1991-04-22 1991-04-22 Silicon nitride-based sintered body and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04321562A true JPH04321562A (en) 1992-11-11
JP2539960B2 JP2539960B2 (en) 1996-10-02

Family

ID=14692082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3116635A Expired - Lifetime JP2539960B2 (en) 1991-04-22 1991-04-22 Silicon nitride-based sintered body and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2539960B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068220A1 (en) * 2004-12-22 2006-06-29 Ngk Spark Plug Co., Ltd. Sialon insert and cutting tool equipped therewith

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5238161B2 (en) 2004-11-26 2013-07-17 京セラ株式会社 Silicon nitride sintered body and method for manufacturing the same, member for molten metal, member for hot working, member for excavation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124774A (en) * 1988-07-01 1990-05-14 Sumitomo Electric Ind Ltd High-strength silicon nitride-type sintered compact

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124774A (en) * 1988-07-01 1990-05-14 Sumitomo Electric Ind Ltd High-strength silicon nitride-type sintered compact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068220A1 (en) * 2004-12-22 2006-06-29 Ngk Spark Plug Co., Ltd. Sialon insert and cutting tool equipped therewith

Also Published As

Publication number Publication date
JP2539960B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
JP2882575B2 (en) High thermal conductive silicon nitride ceramics and method for producing the same
JPH08143400A (en) High strength and high toughness silicon nitride sintered compact
JP4325824B2 (en) Method for producing high thermal conductivity silicon nitride sintered body
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
JPH06219840A (en) Silicon nitride sintered compact and its production
US5269989A (en) Cermet or ceramic/glass composites including self-reinforced β-Silicon nitride, and method of making same
JPH04321562A (en) Sintered silicon nitride
JPH0543333A (en) Production of high-strength sialon-based sintered compact
KR20210088361A (en) Method for Preparing Silicon Nitride Sintered Body and The Silicon Nitride Sintered Body Prepared by The Same
JP3297740B2 (en) Low temperature sintering method of silicon carbide powder.
JPH02302368A (en) Silicon carbide sintered compact having high toughness and its production thereof
US5672553A (en) Superplastic silicon nitride sintered body
JP3137405B2 (en) Manufacturing method of silicon nitride based ceramics
JP3141505B2 (en) Aluminum nitride sintered body and method for producing the same
JPH075390B2 (en) Method for producing high-strength silicon nitride sintered body
JPH05148026A (en) Sintered silicon nitride
JP2004091243A (en) Method for manufacturing sintered compact of silicon nitride, and sintered compact of silicon nitride
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JP2539968B2 (en) Silicon nitride-based sintered body
JPH1160338A (en) High heat conduction and high strength silicon nitride sintered compact and its production
DE19850597A1 (en) New alpha-sialon material, useful as a cutting material, in machine and equipment construction and in the chemical industry, has a sialon phase containing magnesium and yttrium, rare earth metal and-or calcium
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JP3044287B2 (en) Silicon nitride composite sintered body and method for producing the same
JP2597774B2 (en) Silicon nitride based sintered body and method for producing the same
JPH02233560A (en) High-strength calcined sialon-based compact

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 15

EXPY Cancellation because of completion of term