JPH04318982A - Thin film thermoelectric element - Google Patents

Thin film thermoelectric element

Info

Publication number
JPH04318982A
JPH04318982A JP3085409A JP8540991A JPH04318982A JP H04318982 A JPH04318982 A JP H04318982A JP 3085409 A JP3085409 A JP 3085409A JP 8540991 A JP8540991 A JP 8540991A JP H04318982 A JPH04318982 A JP H04318982A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
film pattern
type semiconductor
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3085409A
Other languages
Japanese (ja)
Inventor
Yutaka Shimabara
豊 島原
Yukio Yoshino
幸夫 吉野
Yasunobu Yoneda
康信 米田
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP3085409A priority Critical patent/JPH04318982A/en
Publication of JPH04318982A publication Critical patent/JPH04318982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To decrease a resistance value of a junction in a thin film thermoelectric element having an iron silicide semiconductor thin film pattern provided on a board. CONSTITUTION:A p-type semiconductor thin film pattern 4 and an n-type semiconductor thin film pattern 6 made of iron silicide are formed on a glass board 3, and a hot/cold connection part is connected by a thin film pattern 8 made of an electrode material having a different iron silicon composition ratio from those of these thin films.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、赤外線センサ、温度
センサ、熱センサなどのセンサまたは熱電力変換器とし
て用いられる薄膜熱電素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film thermoelectric element used as a sensor such as an infrared sensor, a temperature sensor, or a thermal sensor or as a thermoelectric power converter.

【0002】0002

【従来の技術】赤外線センサ、温度センサ、熱センサな
どのセンサまたは熱電力変換器として用いられる熱電素
子は、熱電対を多数直列接続したサーモパイル型熱電素
子が用いられている。このように熱電対を多数直列接続
することによって、微少温度差を検出できる高感度な赤
外線、温度または熱などを検出するセンサとして、また
は高効率の熱電力変換素子として利用することができる
。特に、センサ用途には小型化、高感度化、高応答速度
化のために主に薄膜型の熱電素子が用いられる。
2. Description of the Related Art Thermopile type thermoelectric elements in which a large number of thermocouples are connected in series are used as thermoelectric elements used as sensors such as infrared sensors, temperature sensors, thermal sensors, or thermoelectric converters. By connecting a large number of thermocouples in series in this way, it can be used as a highly sensitive sensor that detects infrared rays, temperature, or heat that can detect minute temperature differences, or as a highly efficient thermoelectric conversion element. In particular, thin film thermoelectric elements are mainly used for sensor applications in order to achieve miniaturization, high sensitivity, and high response speed.

【0003】一方、センサとしてではなく、熱電力変換
を目的として珪化鉄を用いた薄膜熱電変換素子が特公平
2−8466号公報および特開昭63−102382号
公報で開示されている。
On the other hand, thin film thermoelectric conversion elements using iron silicide are disclosed in Japanese Patent Publication No. 2-8466 and Japanese Patent Application Laid-open No. 102382-1982 for the purpose of thermoelectric power conversion rather than as a sensor.

【0004】0004

【発明が解決しようとする課題】鉄珪化物薄膜による薄
膜熱電素子は、高感度で高温域まで使用できるという特
性を備えている。
[Problems to be Solved by the Invention] Thin film thermoelectric elements made of iron silicide thin films have the characteristics of being highly sensitive and usable up to high temperature ranges.

【0005】しかしながら、従来の鉄珪化物薄膜を用い
た薄膜熱電素子は、鉄珪化物からなるp型半導体薄膜パ
ターンと、n型半導体薄膜パターンが基板上において多
数直列接続して構成されているが、その接合部にp−n
接合が形成され、接合部の抵抗値が高くなる傾向があっ
た。
However, conventional thin film thermoelectric elements using iron silicide thin films are constructed by connecting a large number of p-type semiconductor thin film patterns made of iron silicide and n-type semiconductor thin film patterns in series on a substrate. , p-n at the junction
A bond was formed, and the resistance value at the bonded portion tended to increase.

【0006】鉄珪化物熱電材料の特性はFe−Siの比
および不純物濃度で大きく変化する。金属間化合物であ
る鉄珪化物は有効な熱電特性を有する単相範囲としてF
eSi1.95〜FeSi2.05が知られている。こ
の単層範囲の材料にCoなどのドナーまたはMnなどの
アクセプタをドープすれば良好な熱電特性を有する材料
が得られるが、これらの熱電材料を直接p−n接合した
場合、接合界面に抵抗層が形成され、薄膜熱電素子全体
の抵抗値が増大する。
The properties of iron silicide thermoelectric materials vary greatly depending on the Fe-Si ratio and impurity concentration. Iron silicides, which are intermetallic compounds, have F as a single-phase range with effective thermoelectric properties.
eSi1.95 to FeSi2.05 are known. If this single-layer material is doped with a donor such as Co or an acceptor such as Mn, a material with good thermoelectric properties can be obtained, but when these thermoelectric materials are directly p-n bonded, a resistive layer is formed at the bonding interface. is formed, and the resistance value of the entire thin film thermoelectric element increases.

【0007】p−n接合などによる高抵抗層の形成は、
センサ用途では感度の減少、ノイズの増加の原因となり
、熱電力変換素子用途では変換効率の減少を招くという
問題があった。
[0007] Formation of a high resistance layer using a p-n junction, etc.
When used as a sensor, it causes a decrease in sensitivity and increases noise, and when used as a thermoelectric conversion element, it causes a decrease in conversion efficiency.

【0008】この発明の目的は、高抵抗層形成の原因と
なるp−n接合の生じることのない低抵抗の薄膜熱電素
子を提供することにある。
[0008] An object of the present invention is to provide a low resistance thin film thermoelectric element in which no pn junction is formed which causes the formation of a high resistance layer.

【0009】[0009]

【課題を解決するための手段】p−n接合を回避する一
般的な方法は、p−n熱電対の接点間にオーミック接触
を得る電極を形成することである。これには金属電極が
考えられるが、Ptなどの貴金属はn型半導体との間で
オーミック接触を得ることができず、かつ高価であり、
Niなどの卑金属はオーミック接触が得られるものの密
着性が低い。
SUMMARY OF THE INVENTION A common method to avoid p-n junctions is to form electrodes that provide ohmic contact between the contacts of a p-n thermocouple. Metal electrodes can be considered for this, but noble metals such as Pt cannot make ohmic contact with n-type semiconductors and are expensive.
Although ohmic contact can be obtained with base metals such as Ni, adhesion is low.

【0010】発明者等は、鉄珪化物の鉄と珪素の単層範
囲から外れた組成比の薄膜をp型およびn型の鉄珪化物
薄膜間に製膜することによって、密着性が高く且つオー
ミック接触材料として利用できることを見出した。従来
、単層範囲から外れた鉄珪化物は低熱起電力、高導電率
の材料であった。これは、過剰のFeまたはSiが不純
物として作用し、一種の縮退半導体または半金属となる
からである。本願発明ではこの材料をp型およびn型の
鉄珪化物薄膜間を接続する電極材料として利用する訳で
ある。
[0010] The inventors have developed a thin film with a composition ratio outside the range of a single layer of iron and silicon between p-type and n-type iron silicide thin films, thereby achieving high adhesion and It was discovered that it can be used as an ohmic contact material. Conventionally, iron silicides outside the single layer range have been materials with low thermoelectromotive force and high electrical conductivity. This is because excess Fe or Si acts as an impurity and becomes a kind of degenerate semiconductor or metalloid. In the present invention, this material is used as an electrode material for connecting p-type and n-type iron silicide thin films.

【0011】この発明の薄膜熱電素子は、基板上にそれ
ぞれ鉄珪化物を主体とするp型半導体薄膜パターンおよ
びn型半導体薄膜パターンを形成し、これら半導体薄膜
パターンの温冷接部をそれぞれ前記p型およびn型の半
導体薄膜と異なる鉄珪素組成比を有する電極材料からな
る薄膜パターンで接続したことを特徴とする。
In the thin film thermoelectric element of the present invention, a p-type semiconductor thin film pattern and an n-type semiconductor thin film pattern mainly made of iron silicide are formed on a substrate, and the hot and cold junctions of these semiconductor thin film patterns are connected to the p-type semiconductor thin film pattern, respectively. It is characterized in that it is connected by a thin film pattern made of an electrode material having a different iron-silicon composition ratio from the type and n-type semiconductor thin films.

【0012】0012

【作用】この発明の薄膜熱電素子では、それぞれ鉄珪化
物を主体とするp型半導体薄膜パターンおよびn型半導
体薄膜パターンが基板上に形成されていて、これら半導
体薄膜パターンの温冷接部がそれぞれ前記p型およびn
型の半導体薄膜と異なる鉄珪素組成比を有する電極材料
の薄膜パターンで接続されている。この電極材料は前述
したように密着性が高く鉄珪化物を主体とするp型半導
体薄膜パターンおよびn型半導体薄膜パターンに対しオ
ーミック接触する。そのため、接合界面に高抵抗層が形
成されることなく、低抵抗の薄膜熱電素子が得られる。
[Operation] In the thin film thermoelectric element of the present invention, a p-type semiconductor thin film pattern and an n-type semiconductor thin film pattern, each mainly made of iron silicide, are formed on a substrate, and the hot and cold junctions of these semiconductor thin film patterns are respectively The p-type and n
The semiconductor thin film of the type is connected with a thin film pattern of an electrode material having a different iron-silicon composition ratio. As described above, this electrode material has high adhesion and makes ohmic contact with the p-type semiconductor thin film pattern and the n-type semiconductor thin film pattern, which are mainly made of iron silicide. Therefore, a low-resistance thin-film thermoelectric element can be obtained without forming a high-resistance layer at the bonding interface.

【0013】[0013]

【実施例】先ず、鉄珪化物を主体とする半導体薄膜パタ
ーン形成用のターゲットの製造方法について述べる。
EXAMPLE First, a method for manufacturing a target for forming a pattern of a semiconductor thin film mainly composed of iron silicide will be described.

【0014】先ず、純度99.99%以上のFeの粉末
と純度99.99%以上のSiの粉末をモル比で1:2
になるように混合し、円板状に予備プレスした後、Ar
中で2000kg/cm2 、1000℃でHIP(熱
間静水圧プレス)を行う。これにより、図1および図3
に示す珪化鉄プレート1を得る。
First, Fe powder with a purity of 99.99% or more and Si powder with a purity of 99.99% or more were mixed in a molar ratio of 1:2.
After mixing and pre-pressing into a disk shape, Ar
HIP (hot isostatic pressing) is performed at 2000 kg/cm 2 and 1000° C. in the chamber. As a result, Figures 1 and 3
An iron silicide plate 1 shown in FIG. 1 is obtained.

【0015】一方、p型用不純物として純度99.99
%以上のCrの粉末と純度99.99%以上のSiの粉
末をモル比で1:2になるように混合し、それぞれ角板
状に予備プレスした後、Ar中で2000kg/cm2
 、1000℃でHIPを行い、またn型用不純物とし
て純度99.99%以上のCoの粉末と純度99.99
%以上のSiの粉末をモル比で1:2になるように混合
し、それぞれ角板状に予備プレスした後、Ar中で20
00kg/cm2、1000℃でHIPを行う。
On the other hand, as a p-type impurity, the purity is 99.99.
% or higher Cr powder and 99.99% or higher purity Si powder were mixed at a molar ratio of 1:2, pre-pressed into a rectangular plate shape, and then pressed at 2000 kg/cm2 in Ar.
, HIP was performed at 1000°C, and Co powder with a purity of 99.99% or more and Co powder with a purity of 99.99% were used as n-type impurities.
% or more of Si powder was mixed at a molar ratio of 1:2, pre-pressed into a rectangular plate shape, and then heated in Ar for 20 min.
HIP is performed at 00 kg/cm2 and 1000°C.

【0016】これによりCrSi2 焼結体からなるp
型用不純物チップとCoSi2 焼結体からなるn型用
不純物チップを得る。
[0016] As a result, p made of CrSi2 sintered body
An n-type impurity chip consisting of a mold impurity chip and a CoSi2 sintered body is obtained.

【0017】そして、図1に示すように珪化鉄プレート
1にp型用不純物チップ2をのせてp型用ターゲットを
作成し、図2に示すようにガラス基板3上にマスクを用
いてスパッタリングを行い、p型用半導体薄膜パターン
4を形成する。図2において(A)は実施例、(B)は
比較例である。このときのスパッタリング条件は次の通
りである。
Then, as shown in FIG. 1, a p-type impurity chip 2 is placed on an iron silicide plate 1 to create a p-type target, and as shown in FIG. 2, sputtering is performed on a glass substrate 3 using a mask. Then, a p-type semiconductor thin film pattern 4 is formed. In FIG. 2, (A) shows an example, and (B) shows a comparative example. The sputtering conditions at this time are as follows.

【0018】基板温度:300℃ 高周波出力:500W〜1.5kW レート:1〜10μm/hr 次に、図3に示すように珪化鉄プレート1に前記n型用
不純物チップ5をのせてn型用ターゲットを作成し、図
4に示すようにガラス基板3上にマスクを用いてn型半
導体薄膜パターン6を形成する。このように実施例では
n型半導体薄膜パターン6をp型半導体薄膜パターン4
には直接接続しない。比較例ではこれを直接接続して一
対の薄膜熱電素子を構成する。
Substrate temperature: 300° C. High frequency output: 500 W to 1.5 kW Rate: 1 to 10 μm/hr Next, as shown in FIG. 3, the n-type impurity chip 5 is placed on the iron silicide plate 1, A target is created, and an n-type semiconductor thin film pattern 6 is formed on a glass substrate 3 using a mask as shown in FIG. In this way, in the embodiment, the n-type semiconductor thin film pattern 6 is replaced by the p-type semiconductor thin film pattern 4.
Do not connect directly to In the comparative example, these are directly connected to form a pair of thin film thermoelectric elements.

【0019】なお、このときのスパッタリング条件は上
記と同じである。
Note that the sputtering conditions at this time are the same as above.

【0020】次に、組成比のずれた珪化鉄薄膜作成のた
めのターゲットとして、図5に示すように珪化鉄プレー
ト1に純度99.99%以上の金属FeまたはSiから
なるチップ7をのせる。そして図6に示すように、マス
クを用いてガラス基板3上に電極8を形成する。このと
きのスパッタリング条件も前記と同じである。
Next, as a target for creating an iron silicide thin film with a different composition ratio, a chip 7 made of metal Fe or Si with a purity of 99.99% or more is placed on the iron silicide plate 1 as shown in FIG. . Then, as shown in FIG. 6, electrodes 8 are formed on the glass substrate 3 using a mask. The sputtering conditions at this time are also the same as above.

【0021】その後、図6に示した実施例の素子と図4
(B)に示した比較例の素子を真空中または、Ar中に
於いて600〜800℃で熱処理を行い、膜を安定化さ
せる。
After that, the device of the embodiment shown in FIG.
The element of the comparative example shown in (B) is heat treated at 600 to 800° C. in vacuum or Ar to stabilize the film.

【0022】図4(B)に示した比較例としての薄膜熱
電素子と図6に示した実施例としての薄膜熱電素子につ
いて、それぞれゼーベック係数、順方向の比抵抗および
逆方向の比抵抗を測定したところ表1の結果を得た。
The Seebeck coefficient, forward specific resistance, and reverse specific resistance were measured for the thin film thermoelectric element as a comparative example shown in FIG. 4(B) and the thin film thermoelectric element as an example shown in FIG. As a result, the results shown in Table 1 were obtained.

【0023】[0023]

【表1】[Table 1]

【0024】このように実施例によれば、比抵抗は順方
向、逆方向ともに低く、接合部のオーミック接触が抵抗
値の減少に大きく寄与していることがわかる。
As described above, according to the examples, the specific resistance is low in both the forward and reverse directions, and it can be seen that the ohmic contact at the junction greatly contributes to the reduction of the resistance value.

【0025】[0025]

【発明の効果】この発明によれば、p型半導体薄膜パタ
ーンとn型半導体薄膜パターン間の接合部の抵抗値が低
減するため、素子抵抗が減少し、センサ用途では感度の
上昇、ノイズの減少によりS/N比が向上し、また熱電
力変換素子用途では変換効率が向上する。
[Effects of the Invention] According to the present invention, the resistance value of the junction between the p-type semiconductor thin film pattern and the n-type semiconductor thin film pattern is reduced, so the element resistance is reduced, and in sensor applications, sensitivity is increased and noise is reduced. This improves the S/N ratio and also improves the conversion efficiency when used as a thermoelectric conversion element.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】p型半導体薄膜形成用ターゲットの平面図であ
る。
FIG. 1 is a plan view of a target for forming a p-type semiconductor thin film.

【図2】基板に対するp型半導体薄膜パターンの形成例
を示す図である。
FIG. 2 is a diagram showing an example of forming a p-type semiconductor thin film pattern on a substrate.

【図3】n型半導体薄膜形成用ターゲットの平面図であ
る。
FIG. 3 is a plan view of a target for forming an n-type semiconductor thin film.

【図4】基板に対するn型半導体薄膜パターンの形成例
を示す図である。
FIG. 4 is a diagram showing an example of forming an n-type semiconductor thin film pattern on a substrate.

【図5】電極形成用ターゲットの平面図である。FIG. 5 is a plan view of a target for forming an electrode.

【図6】基板に対する電極の形成例を示す図である。FIG. 6 is a diagram showing an example of forming electrodes on a substrate.

【符号の説明】[Explanation of symbols]

1−珪化鉄プレート 2−p型用不純物チップ 3−基板 4−p型半導体薄膜パターン 5−n型用不純物チップ 6−n型半導体薄膜パターン 7−金属FeまたはSiからなるチップ8−電極材料か
らなる薄膜パターン
1 - Iron silicide plate 2 - P-type impurity chip 3 - Substrate 4 - P-type semiconductor thin film pattern 5 - N-type impurity chip 6 - N-type semiconductor thin film pattern 7 - Chip made of metal Fe or Si 8 - From electrode material thin film pattern

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上にそれぞれ鉄珪化物を主体とするp
型半導体薄膜パターンおよびn型半導体薄膜パターンを
形成し、これら半導体薄膜パターンの温冷接部をそれぞ
れ前記p型およびn型の半導体薄膜と異なる鉄珪素組成
比を有する電極材料からなる薄膜パターンで接続したこ
とを特徴とする薄膜熱電素子。
Claim 1: P containing mainly iron silicide on the substrate.
forming a type semiconductor thin film pattern and an n-type semiconductor thin film pattern, and connecting the hot and cold junctions of these semiconductor thin film patterns with a thin film pattern made of an electrode material having an iron-silicon composition ratio different from that of the p-type and n-type semiconductor thin films, respectively. A thin film thermoelectric element characterized by:
JP3085409A 1991-04-17 1991-04-17 Thin film thermoelectric element Pending JPH04318982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3085409A JPH04318982A (en) 1991-04-17 1991-04-17 Thin film thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3085409A JPH04318982A (en) 1991-04-17 1991-04-17 Thin film thermoelectric element

Publications (1)

Publication Number Publication Date
JPH04318982A true JPH04318982A (en) 1992-11-10

Family

ID=13858005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3085409A Pending JPH04318982A (en) 1991-04-17 1991-04-17 Thin film thermoelectric element

Country Status (1)

Country Link
JP (1) JPH04318982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016856A1 (en) * 1995-10-31 1997-05-09 Technova Inc. Thick-film thermoelectric element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016856A1 (en) * 1995-10-31 1997-05-09 Technova Inc. Thick-film thermoelectric element
US5864087A (en) * 1995-10-31 1999-01-26 Technova Inc. Thermoelectric device

Similar Documents

Publication Publication Date Title
Allison et al. A bulk micromachined silicon thermopile with high sensitivity
JP3216378B2 (en) Thermoelectric device and method of manufacturing the same
US5886390A (en) Thermoelectric material with diffusion-preventive layer
Bhatt et al. Bismuth telluride based efficient thermoelectric power generator with electrically conducive interfaces for harvesting low-temperature heat
JPH04318982A (en) Thin film thermoelectric element
Kiely et al. The design and fabrication of a miniature thermoelectric generator using MOS processing techniques
US3072733A (en) Thermoelectric generator
JPH04328880A (en) Thin film thermoelement
JPH02214175A (en) Thin-film thermoelectric element
JPS5810874A (en) Thermocouple element
JPH1022530A (en) Thermoplastic conversion element
JP3134359B2 (en) Thin film thermoelectric element
JPH04313284A (en) Thin-film thermoelectric element
JP2645552B2 (en) Silicon / germanium / gold mixed crystal thin film conductor
US3460996A (en) Thermoelectric lead telluride base compositions and devices utilizing them
JPS62252977A (en) Thermocouple element and manufacture thereof
US20210249579A1 (en) Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of n-type and p-type thermoelectric legs
JPS6174379A (en) Thermocouple
US3899360A (en) Stabilized p-type lead telluride
JP2982275B2 (en) Manufacturing method of thin film thermoelectric element
JPH03283601A (en) Thin diamond film temperature sensor
JPH021379B2 (en)
JPH03261183A (en) Thin film thermocouple element
JPH04133368A (en) Germanium thin-film p-type conductor and manufacture thereof
JPH057021A (en) Manufacture of thin film thermoelectric element