JPH03283601A - Thin diamond film temperature sensor - Google Patents

Thin diamond film temperature sensor

Info

Publication number
JPH03283601A
JPH03283601A JP8451790A JP8451790A JPH03283601A JP H03283601 A JPH03283601 A JP H03283601A JP 8451790 A JP8451790 A JP 8451790A JP 8451790 A JP8451790 A JP 8451790A JP H03283601 A JPH03283601 A JP H03283601A
Authority
JP
Japan
Prior art keywords
substrate
thin film
type
diamond
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8451790A
Other languages
Japanese (ja)
Inventor
Shiro Karasawa
唐澤 志郎
Masaru Kobayashi
賢 小林
Yoshiaki Abe
阿部 喜昭
Atsushi Nimura
仁村 敦
Kotaro Shinohara
篠原 小太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAGAWA PREF GOV
TECHNOL SEVEN CO Ltd
Kanagawa Prefecture
Original Assignee
KANAGAWA PREF GOV
TECHNOL SEVEN CO Ltd
Kanagawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAGAWA PREF GOV, TECHNOL SEVEN CO Ltd, Kanagawa Prefecture filed Critical KANAGAWA PREF GOV
Priority to JP8451790A priority Critical patent/JPH03283601A/en
Publication of JPH03283601A publication Critical patent/JPH03283601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To acquire a temperature sensor of good heat responsibility by carrying out heat dissipation through a lead line from an electrode which is provided to an opposite side of a high resistance diamond substrate or a silicon carbide substrate formed solidly. CONSTITUTION:A P-type or N-type thin diamond semiconductor film 2 is successively formed by vapor growth to upper and lower sides, right and left, and front and rear sides of a high resistance diamond substrate or silicon carbide substrate formed solidly. Electrodes 3, 4 consisting of metal which is in ohmic- contact are provided to upper and lower side thin films 2. The thin film 2 is used as a resistor and detects variation in temperature as variation in resistance value of the resistor. Heat dissipation is carried out through a lead line in this way from the electrodes 3, 4 provided to two opposite sides of the high resistance diamond substrate or silicon carbide substrate 1 of high heat conductivity and small specific heat; thereby, it is possible to realize good heat dissipation and small heat time constant. A temperature sensor of good heat responsibility can be acquired in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱放散のよいダイヤモンド薄膜温度センサに
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a diamond thin film temperature sensor with good heat dissipation.

(従来の技術) 従来、単結晶ダイヤモンド基板又はSimN、等の絶縁
物の基板上に単結晶又は多結晶のダイヤモンド半導体薄
膜を形成したいわゆるブレーナ型のサーミスタや、Mo
等の金属基板上に゛多結晶のダイヤモンド半導体薄膜を
形成したいわゆるダイオード型のサーミスタが知られて
いる(特開昭63−184304号公報参照)。
(Prior Art) Conventionally, so-called Brehner-type thermistors in which a single-crystal or polycrystalline diamond semiconductor thin film is formed on an insulating substrate such as a single-crystal diamond substrate or SimN, and Mo
A so-called diode-type thermistor in which a polycrystalline diamond semiconductor thin film is formed on a metal substrate is known (see Japanese Patent Laid-Open No. 184304/1983).

(発明が解決しようとする課題) 上記のブレーナ型のサーミスタは基板の一面に電極を設
け、これにリード線を接続するものであるから、熱放散
が基板の一面に制約される。
(Problems to be Solved by the Invention) Since the Brehner-type thermistor described above has an electrode provided on one surface of the substrate and a lead wire connected to the electrode, heat dissipation is restricted to one surface of the substrate.

また上記のダイオード型のサーミスタはアルミニウム、
モリブデン等の金属を用いるため熱放散が基板材料の熱
伝導率(アルミニウムの熱伝導率ρは2.I3V/ca
4.その比熱Cは0.87J/g4 )に制約される。
In addition, the diode type thermistor mentioned above is aluminum,
Since a metal such as molybdenum is used, heat dissipation is determined by the thermal conductivity of the substrate material (the thermal conductivity ρ of aluminum is 2.I3V/ca
4. Its specific heat C is limited to 0.87 J/g4).

した1がって両サーミスタとも熱応答特性が余りよくな
いという課題があった。
Therefore, both thermistors had a problem in that their thermal response characteristics were not very good.

本発明は従来のものより熱応答性の優れた温度センサを
得ることをその目的とするものである。
An object of the present invention is to obtain a temperature sensor with better thermal response than conventional ones.

(課題を解決するための手段) 上記の目的を達成するために、本願の第1発明は、直方
体に成形された高抵抗のダイヤモンド基板または炭化硅
素基板の上下面及び少なくとも3側面に気相成長により
P形またはN形ダイヤモンド半導体薄膜を連続して形成
し、前記上下面の薄膜上にオーミック接触する金属から
成る電極を各々設けて成り、前記P形またはN形ダイヤ
モンド半導体薄膜を抵抗体として用い温度の変化を該抵
抗体の抵抗値の変化として検知することを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the first invention of the present application provides vapor phase growth on the upper and lower surfaces and at least three side surfaces of a high-resistance diamond substrate or silicon carbide substrate formed into a rectangular parallelepiped. A P-type or N-type diamond semiconductor thin film is continuously formed by the method, and electrodes made of metal that make ohmic contact are provided on the thin films on the upper and lower surfaces, respectively, and the P-type or N-type diamond semiconductor thin film is used as a resistor. It is characterized in that a change in temperature is detected as a change in the resistance value of the resistor.

第2発明は、直方体に成形されたP+形低抵抗ダイヤモ
ンド基板上該基板より高抵抗のP形ダイヤモンド半導体
薄膜を気相成長により形成し、前記基板上及び該P形ダ
イヤモンド半導体薄膜上にオーミック接触する金属から
成る電極を各々対向するように設けて成り、該半導体薄
膜を抵抗体として用い、温度の変化を該抵抗体の抵抗値
の変化として検知することを特徴とする。
The second invention is to form a P type diamond semiconductor thin film having a higher resistance on a P+ type low resistance diamond substrate formed into a rectangular parallelepiped by vapor phase growth, and to make ohmic contact with the P type diamond semiconductor thin film on the substrate and the P type diamond semiconductor thin film. The semiconductor thin film is used as a resistor, and a change in temperature is detected as a change in the resistance value of the resistor.

(作 用) 温度センサの熱容量をH1熱放散定数をKとするとき、
温度センサの熱応答特性は次式で表わされる。
(Function) When the heat capacity of the temperature sensor is H1 and the heat dissipation constant is K,
The thermal response characteristic of the temperature sensor is expressed by the following equation.

T−Ta=(To −T、 )exp(−t/r)  
−(1)ここでtは時間、Tはセンサチップの温度、T
oはセンサチップの初期温度、T、はセンサチップの変
化後の平衡温度、τは熱時定数であり、熱時定数τは次
式で表わされる。
T-Ta=(To-T, )exp(-t/r)
-(1) where t is time, T is the temperature of the sensor chip, T
o is the initial temperature of the sensor chip, T is the equilibrium temperature of the sensor chip after the change, and τ is a thermal time constant, which is expressed by the following equation.

τ・H/に一■c/K  ・・・(2)但し、mはセン
サチップ質量、Cは比熱。
τ・H/に■c/K...(2) However, m is the mass of the sensor chip, and C is the specific heat.

本願の第1発明では熱伝導率が高く、比熱が小さい(熱
伝導率p=20Wlcs ’に、比熱c−0,5J/g
・K)高抵抗のダイヤモンド基板又はダイヤモンドに次
〜1で熱伝導率が高い炭化硅素基板の対向する2面に設
けた電極からリード線を介して熱放散が行なわれるので
、従来の上記ブレーナ型サーミスタのように基板の一面
に形成された電極及びリード線を介して熱放散されるも
のに比して熱放散が優れ、上記(2)式から明らかなよ
うに熱時定数が小さい。したがって熱応答特性は(1)
式から明らかなように優れたものとなる。
The first invention of the present application has high thermal conductivity and small specific heat (thermal conductivity p = 20 Wlcs', specific heat c-0.5 J/g
・K) Heat is dissipated via lead wires from electrodes provided on two opposing sides of a high-resistance diamond substrate or a silicon carbide substrate with high thermal conductivity next to diamond. Compared to a thermistor, which dissipates heat through electrodes and lead wires formed on one surface of a substrate, the heat dissipation is superior, and as is clear from the above equation (2), the thermal time constant is small. Therefore, the thermal response characteristic is (1)
As is clear from the formula, this is an excellent result.

また本願の112発明では、アルミニウム等の金属に比
べて熱伝導率が高く、比熱が小さいP1形低抵抗ダイヤ
モンド基板に形成された該基板より高抵抗のP形ダイヤ
モンド半導体薄膜と該基板にそれぞれ対向するように電
極を形成したから、従来の上記ダイオード型サーミスタ
に比べて熱時定数を小さくでき、熱応答特性を改善する
ことができる。
In addition, in the 112th invention of the present application, a P-type diamond semiconductor thin film having a higher resistance than the substrate is formed on a P1-type low-resistance diamond substrate, which has higher thermal conductivity and lower specific heat than metals such as aluminum. Since the electrodes are formed in such a manner, the thermal time constant can be made smaller than that of the conventional diode type thermistor, and the thermal response characteristics can be improved.

(実施例) 以下本発明の実施例を図面につき説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の断面図を示す。FIG. 1 shows a cross-sectional view of one embodiment of the invention.

同図において、1は直方体に成形された高抵抗のダイヤ
モンド基板、2は該基板1の上下面並びに左右及び前後
側面に被着形成されたP形またはN形ダイヤモンド半導
体薄膜、3.4は基板1の上下面の該薄膜2上に形成さ
れたオーミック接触する金属から成る電極で、該電極3
.4には各々リード線がボンディングされる(図示しな
い。) その製造工程を説明すると、先ず、原料ガスとして水素
希釈のメタンガス、ドーピングガスとしてジボランをそ
れぞれ用い、これらのガスが充満する領域に基台に載置
した高抵抗ダイヤモンド基板1を配置する。そして所定
の抵抗値が実現するように前記ドーピングガスの流量を
調節し、該基板1の5面にプラズマ支援によるエピタキ
シャル気相成長によりP型ダイヤモンド半導体薄膜2を
形成する。次いで前記基板1を裏返して未成膜の一面に
同様に前記薄膜2を形成する。前記基板1の全面に薄膜
2を形成した後、基板1の上下面の対向する薄膜2上に
各々オーミック接触をする金属から成る電極3.4を形
成する。N形ダイヤモンド半導体薄膜を形成するときは
、ドーピングガスとしてホスフィン等を用い、その他の
製造工程はP形のときと同様である。
In the figure, 1 is a high-resistance diamond substrate formed into a rectangular parallelepiped, 2 is a P-type or N-type diamond semiconductor thin film deposited on the upper and lower surfaces, right and left sides, and front and back sides of the substrate 1, and 3.4 is a substrate. An electrode made of metal that makes ohmic contact and is formed on the thin film 2 on the upper and lower surfaces of the electrode 3.
.. 4 are bonded with lead wires (not shown). To explain the manufacturing process, first, methane gas diluted with hydrogen is used as the source gas, and diborane is used as the doping gas, and a base is placed in the area filled with these gases. A high-resistance diamond substrate 1 placed on the substrate is placed. Then, the flow rate of the doping gas is adjusted so that a predetermined resistance value is achieved, and a P-type diamond semiconductor thin film 2 is formed on five surfaces of the substrate 1 by plasma-assisted epitaxial vapor deposition. Next, the substrate 1 is turned over, and the thin film 2 is similarly formed on the unformed surface. After forming the thin film 2 on the entire surface of the substrate 1, electrodes 3 and 4 made of metal are formed on the opposing thin films 2 on the upper and lower surfaces of the substrate 1 to make ohmic contact with each other. When forming an N-type diamond semiconductor thin film, phosphine or the like is used as a doping gas, and the other manufacturing steps are the same as for the P-type.

第2図は本発明の他の実施例の断面図を示す。FIG. 2 shows a cross-sectional view of another embodiment of the invention.

この実施例の温度センサは、直方体に形成された高抵抗
のダイヤモンド基板1aの右側面を除く5面にP型単結
晶ダイヤモンド半導体薄膜2aが前述のようにして形成
され、対向する上下の薄膜2a上にオーミック接触をす
る電極3as 4aが形成されたものである。
In the temperature sensor of this embodiment, P-type single-crystal diamond semiconductor thin films 2a are formed as described above on five sides of a high-resistance diamond substrate 1a formed in the shape of a rectangular parallelepiped, excluding the right side. Electrodes 3as and 4a are formed thereon to make ohmic contact.

第1図及び第2図に示す高抵抗のダイヤモンド基板1、
laの代りにダイヤモンドに次いで熱伝導率のよい高抵
抗炭化硅素基板を用いてもよい。特に多結晶のこの基板
によれば、表面を研摩しなくてもその表面にダイヤモン
ドの結晶を形成することができるから、ダイヤモンド基
板を用いたときより熱応答が遅くなるが安価な温度セン
サが得られる。
A high-resistance diamond substrate 1 shown in FIGS. 1 and 2,
Instead of la, a high-resistance silicon carbide substrate, which has the second highest thermal conductivity after diamond, may be used. In particular, with this polycrystalline substrate, diamond crystals can be formed on the surface without polishing the surface, making it possible to obtain a temperature sensor that is less expensive but has a slower thermal response than when using a diamond substrate. It will be done.

第3図は本発明の更に他の実施例を示す。FIG. 3 shows yet another embodiment of the invention.

同図においてlbは低抵抗のP+形ダイヤモンド基板で
、この基板ibの上面にはP形ダイヤモンド半導体薄膜
2bが形成され、該薄膜2b上及びこれに対向する前記
基板tb上に各々オーミック接触をする電極3b、 4
bが形成されている。
In the figure, lb is a P+ type diamond substrate with low resistance, and a P type diamond semiconductor thin film 2b is formed on the upper surface of this substrate ib, and is in ohmic contact with the thin film 2b and the opposing substrate tb, respectively. Electrodes 3b, 4
b is formed.

第1図及び第2図に示す実施例では、基板を非常に大き
い反応ガス領域に配置して基台に接する面を除く5面に
同時に薄膜2.2aを形成したが、この実施例では比較
的小さい反応ガス領域に前記基板1bを配置し、前記実
施例と同様の反応ガスを用いて、エピタキシャル気相成
長により前記基板1bの上面にのみP型ダイヤモンド半
導体薄膜2bを形成した。
In the example shown in FIGS. 1 and 2, the substrate was placed in a very large reactive gas area and the thin film 2.2a was simultaneously formed on five sides excluding the surface in contact with the base. The substrate 1b was placed in a small reactive gas region, and a P-type diamond semiconductor thin film 2b was formed only on the upper surface of the substrate 1b by epitaxial vapor phase growth using the same reactive gas as in the example.

この実施例では、前記基板1bの上面にのみ薄膜2bを
形成したが、第2図示の実施例と同様にして、前記基板
の下面を除く上面及び4側面に同時に前記薄膜2bを形
成してもよい。
In this embodiment, the thin film 2b was formed only on the upper surface of the substrate 1b, but it is also possible to form the thin film 2b on the upper surface and four side surfaces of the substrate at the same time, excluding the lower surface, in the same manner as in the embodiment shown in the second figure. good.

第3図示の実施例及び前記したその変形例の温度センサ
によれば、下記の条件のように設定すると、薄膜の温度
係数及びセンサの合成抵抗値のばらつきを小さくするこ
とができる。すなわち、P+形低抵抗ダイヤモンド基板
抵抗値をR1、P型のダイヤモンド半導体薄膜の抵抗値
をR2としたとき、この温度センサは抵抗IR+の抵抗
と抵抗値R2の抵抗の直列回路と等価であり、その抵抗
値R,,R2は次式で示すように温度tで変化する。
According to the temperature sensor of the embodiment shown in the third figure and the above-mentioned modification thereof, by setting the following conditions, it is possible to reduce variations in the temperature coefficient of the thin film and the combined resistance value of the sensor. That is, when the resistance value of the P+ type low resistance diamond substrate is R1, and the resistance value of the P type diamond semiconductor thin film is R2, this temperature sensor is equivalent to a series circuit of a resistor IR+ and a resistor with a resistance value R2, The resistance values R, , R2 change with temperature t as shown by the following equation.

ここで、R10%  R20は前記R1、R2の基準温
度における抵抗値、C1、C2はそれぞれ前記R,、R
2の温度係数である。
Here, R10% R20 is the resistance value of the above-mentioned R1 and R2 at the reference temperature, C1 and C2 are the above-mentioned R, , R
It has a temperature coefficient of 2.

したがって、この抵抗値R3とR2の合成抵抗値は次式
で表わされる。
Therefore, the combined resistance value of the resistance values R3 and R2 is expressed by the following equation.

R”B+ +R2−R2O+(14RIG/R20)”
C12t(1+ Rloff l /R20(Z 2 
))  =14)−例として、常温において基板の抵抗
R,のばらつきが1〜100Ωの範囲にあり、側温部と
なる抵抗R2の目標値(設定値)をIOKΩとするとき
、合成抵抗値のばらつき RIG/R20(前記(4)
式参照)は0.01〜1%以下にすることができる。
R"B+ +R2-R2O+(14RIG/R20)"
C12t(1+ Rloff l /R20(Z 2
)) = 14) - As an example, if the variation in the resistance R of the board is in the range of 1 to 100Ω at room temperature, and the target value (set value) of the resistance R2, which is the side temperature part, is IOKΩ, the combined resistance value is Variation in RIG/R20 ((4) above)
(see formula) can be set to 0.01 to 1% or less.

また、基板及びダイヤモンド半導体薄膜のB定数をそれ
ぞれB、、B2とするとき、α、lα2−B+ / B
2と表わされ、B+ / B2は一般に、R1がR2よ
り低抵抗ならば1より小さい。したがってα11α2は
1より小さく、C2のばらつきB+o(Z l /R2
0(Z 2はRIG/R2oより小さくなる。
Moreover, when the B constants of the substrate and the diamond semiconductor thin film are respectively B, , B2, α, lα2−B+ / B
2, and B+/B2 is generally less than 1 if R1 has a lower resistance than R2. Therefore, α11α2 is smaller than 1, and the variation of C2 B+o(Z l /R2
0 (Z 2 becomes smaller than RIG/R2o.

この−例によれば温度係数のばらつきは0.01〜1%
以下にすることができる。
According to this example, the variation in temperature coefficient is 0.01 to 1%.
It can be:

第4図は、本願の温度センサの熱応答特性の一例を示す
FIG. 4 shows an example of the thermal response characteristics of the temperature sensor of the present application.

この図から明らかなように、初期平衡温度TOから最終
の平衝温度T、まで変化させたとき、時定数は0.2秒
であって、同じ大きさの例えばMn−Ni−Co酸化物
セラミックスを用いた温度センサの時定数が1.6秒で
あるのに比べて数倍速い熱応答性が得られた。
As is clear from this figure, when changing from the initial equilibrium temperature TO to the final equilibrium temperature T, the time constant is 0.2 seconds, and for example, the Mn-Ni-Co oxide ceramic of the same size Thermal responsiveness was several times faster than that of a temperature sensor using 1.6 seconds, which has a time constant of 1.6 seconds.

第1図乃至第3図示の温度センサチップは、例えば第5
図に示すように、対向する電極3.3a、 3b及び4
.4a、 4bにリード線5及び6を圧接しながら不活
性ガス1中で封止ガラス8で被覆して使用することがで
き、このように構成すると、リード線を簡便に且つ高い
信頼度で引出すことができ、また信頼度の高いパッケー
ジングが容易にできる。
For example, the temperature sensor chip shown in FIGS.
As shown, opposing electrodes 3.3a, 3b and 4
.. It can be used by covering the lead wires 5 and 6 with the sealing glass 8 in an inert gas 1 while pressing the lead wires 5 and 6 onto the lead wires 4a and 4b. With this configuration, the lead wires can be drawn out easily and with high reliability. In addition, highly reliable packaging can be easily achieved.

(発明の効果) 本発明は、上記の通りの構成を有するから、前記従来の
ものに比べて熱応答を早くすることができる効果を有し
、請求項2の発明は請求項1の発明に比べてP形ダイヤ
モンド半導体薄膜の形成作業が簡便になるという効果を
有する。
(Effects of the Invention) Since the present invention has the configuration as described above, it has the effect of making the thermal response faster than the conventional one, and the invention of claim 2 is the same as the invention of claim 1. In comparison, this method has the effect of simplifying the process of forming a P-type diamond semiconductor thin film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明の実施例の断面図、
第3図は本発明の他の実施例の正面図、第4図はその熱
応答特性図、第5図は、本発明の一実施例の構造を示す
模式図である。 1、la・・・高抵抗のダイヤモンド基板又は炭化硅素
基板 lb・・・低抵抗P1形ダイヤモンド基板2.2a・・
・P形またはN形ダイヤモンド半導体薄膜 2b・・・P形ダイヤモンド半導体薄膜3.3a、 3
b=・電 極 4.4a、 4b・・・電 極 5.6・・・リード線 7・・・不活性ガス 8・・・封止ガラス 出
1 and 2 are sectional views of embodiments of the present invention, respectively;
FIG. 3 is a front view of another embodiment of the present invention, FIG. 4 is a thermal response characteristic diagram thereof, and FIG. 5 is a schematic diagram showing the structure of one embodiment of the present invention. 1, la...High resistance diamond substrate or silicon carbide substrate lb...Low resistance P1 type diamond substrate 2.2a...
・P-type or N-type diamond semiconductor thin film 2b...P-type diamond semiconductor thin film 3.3a, 3
b = Electrode 4.4a, 4b... Electrode 5.6... Lead wire 7... Inert gas 8... Sealing glass exit

Claims (2)

【特許請求の範囲】[Claims] 1.直方体に成形された高抵抗のダイヤモンド基板また
は炭化硅素基板の上下面及び少なくとも3側面に気相成
長によりP形またはN形ダイヤモンド半導体薄膜を連続
して形成し、前記上下面の薄膜上にオーミック接触する
金属から成る電極を各々設けて成り、前記P形またはN
形ダイヤモンド半導体薄膜を抵抗体として用い温度の変
化を該抵抗体の抵抗値の変化として検知することを特徴
とするダイヤモンド薄膜温度センサ。
1. P-type or N-type diamond semiconductor thin films are continuously formed by vapor phase growth on the upper and lower surfaces and at least three side surfaces of a high-resistance diamond substrate or silicon carbide substrate shaped into a rectangular parallelepiped, and ohmic contact is made on the thin films on the upper and lower surfaces. The electrodes are each made of a metal of P type or N type.
A diamond thin film temperature sensor characterized in that a diamond shaped semiconductor thin film is used as a resistor and a change in temperature is detected as a change in the resistance value of the resistor.
2.直方体に成形されたP^+形低抵抗ダイヤモンド基
板上に該基板より高抵抗のP形ダイヤモンド半導体薄膜
を気相成長により形成し、前記基板上及び該P形ダイヤ
モンド半導体薄膜上にオーミック接触する金属から成る
電極を各々対向するように設けて成り、該半導体薄膜を
抵抗体として用い、温度の変化を該抵抗体の抵抗値の変
化として検知することを特徴とするダイヤモンド薄膜温
度センサ。
2. A P-type diamond semiconductor thin film having a higher resistance than the substrate is formed by vapor phase growth on a P^+-type low-resistance diamond substrate formed into a rectangular parallelepiped, and a metal is brought into ohmic contact with the substrate and the P-type diamond semiconductor thin film. 1. A diamond thin film temperature sensor comprising: electrodes arranged to face each other, the semiconductor thin film being used as a resistor, and a change in temperature being detected as a change in the resistance value of the resistor.
JP8451790A 1990-03-30 1990-03-30 Thin diamond film temperature sensor Pending JPH03283601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8451790A JPH03283601A (en) 1990-03-30 1990-03-30 Thin diamond film temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8451790A JPH03283601A (en) 1990-03-30 1990-03-30 Thin diamond film temperature sensor

Publications (1)

Publication Number Publication Date
JPH03283601A true JPH03283601A (en) 1991-12-13

Family

ID=13832827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8451790A Pending JPH03283601A (en) 1990-03-30 1990-03-30 Thin diamond film temperature sensor

Country Status (1)

Country Link
JP (1) JPH03283601A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6550325B1 (en) 1992-10-27 2003-04-22 Semiconductor Energy Laboratory Co., Ltd. Electric device and method of driving the same
CN110233016A (en) * 2019-05-29 2019-09-13 北京科技大学 A kind of manufacturing method of diamond base film resistor element
CN114038640A (en) * 2021-09-18 2022-02-11 盛雷城精密电阻(江西)有限公司 Ultrahigh frequency radio frequency resistor and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6550325B1 (en) 1992-10-27 2003-04-22 Semiconductor Energy Laboratory Co., Ltd. Electric device and method of driving the same
CN110233016A (en) * 2019-05-29 2019-09-13 北京科技大学 A kind of manufacturing method of diamond base film resistor element
CN114038640A (en) * 2021-09-18 2022-02-11 盛雷城精密电阻(江西)有限公司 Ultrahigh frequency radio frequency resistor and production method thereof

Similar Documents

Publication Publication Date Title
US5066938A (en) Diamond film thermistor
JP3399392B2 (en) Semiconductor light emitting device and method of manufacturing the same
US4849371A (en) Monocrystalline semiconductor buried layers for electrical contacts to semiconductor devices
US3025439A (en) Mounting for silicon semiconductor device
JP3502724B2 (en) Thermoelectric material
US5512873A (en) Highly-oriented diamond film thermistor
US3568125A (en) Thermistor
US6819217B2 (en) Temperature sensor
US5886292A (en) Thermoelectric material
JPH0590011A (en) Thermosensitive resistor and its manufacture
US4528582A (en) Interconnection structure for polycrystalline silicon resistor and methods of making same
JPH03283601A (en) Thin diamond film temperature sensor
US5886390A (en) Thermoelectric material with diffusion-preventive layer
GB908605A (en) Improvements in or relating to methods of fabricating semi-conductor devices
JPH084095B2 (en) Method for manufacturing semiconductor device
US3338760A (en) Method of making a heterojunction semiconductor device
JPH08125127A (en) Resistance element and temperature sensor
JP2889718B2 (en) Method for manufacturing photovoltaic device
JP2771450B2 (en) Temperature measuring element and temperature measuring method
JPH07146187A (en) Thermal element and its manufacturing method
JPS63160375A (en) Semiconductor device and manufacture of the same
JPS5832481B2 (en) Manufacturing method of semiconductor thermistor
JPH0728024B2 (en) Semiconductor device using silicon carbide
JPH04307977A (en) Manufacture of thermal type infrared sensor
JPS6476756A (en) Semiconductor integrated circuit device and manufacture thereof