JP2771450B2 - Temperature measuring element and temperature measuring method - Google Patents

Temperature measuring element and temperature measuring method

Info

Publication number
JP2771450B2
JP2771450B2 JP6081584A JP8158494A JP2771450B2 JP 2771450 B2 JP2771450 B2 JP 2771450B2 JP 6081584 A JP6081584 A JP 6081584A JP 8158494 A JP8158494 A JP 8158494A JP 2771450 B2 JP2771450 B2 JP 2771450B2
Authority
JP
Japan
Prior art keywords
temperature
temperature measuring
thin film
sample
measuring element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6081584A
Other languages
Japanese (ja)
Other versions
JPH07286908A (en
Inventor
育之 吉田
静一 田沼
純三 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP6081584A priority Critical patent/JP2771450B2/en
Publication of JPH07286908A publication Critical patent/JPH07286908A/en
Application granted granted Critical
Publication of JP2771450B2 publication Critical patent/JP2771450B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は熱電変換性能の高い新規
な材料を用いた温度測定素子及び温度測定方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring element and a temperature measuring method using a novel material having high thermoelectric conversion performance.

【0002】[0002]

【従来の技術】熱電効果の研究の歴史は非常に長く、ま
た、熱電効果を応用した発電、冷却は、大きな経済的・
社会的効果が期待されたにもかかわらず、1950年代
のBi 2 Te3 系半導体熱電材料の開発以来、著しい発
展をみせていない。これは熱電変換性能指数の向上が頭
打ちになっていることに起因しており、熱電変換性能が
高い新たな材料の出現が望まれていた。また、熱電効果
を利用した温度測定素子の場合も同様であって、熱電変
換性能が高く、温度測定精度が優れた新たな熱電材料の
出現が望まれていた。
2. Description of the Related Art The history of research on thermoelectric effects is very long.
Power generation and cooling using the thermoelectric effect are very economical.
Despite expected social benefits, 1950s
Bi of TwoTeThreeSince the development of thermoelectric materials
I don't show the exhibition. This is due to the improvement of the thermoelectric conversion figure of merit.
The thermoelectric conversion performance
The emergence of high new materials has been desired. Also the thermoelectric effect
The same applies to the case of a temperature measuring element using
New thermoelectric material with high exchangeability and excellent temperature measurement accuracy
Appearance was desired.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、熱電
変換性能の高い新規な材料を用いた温度測定素子及び温
度測定方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a temperature measuring element and a temperature measuring method using a novel material having high thermoelectric conversion performance.

【0004】[0004]

【課題を解決するための手段】上記目的は、シリコン基
板と、前記シリコン基板上に形成されたアンチモン層と
を有し、前記アンチモン層上の異なる部位間に発生する
熱起電力に基づいて温度を測定することを特徴とする温
度測定素子によって達成される。また、上記温度測定素
子は、約200Kから約435Kの範囲の温度を測定す
ることが望ましい。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device having a silicon substrate and an antimony layer formed on the silicon substrate, wherein a temperature is determined based on a thermoelectromotive force generated between different portions on the antimony layer. This is achieved by a temperature measuring element characterized in that Further, it is desirable that the temperature measuring element measures a temperature in a range of about 200K to about 435K.

【0005】また、上記目的は、シリコン基板と、前記
シリコン基板上に形成されたアンチモン層とを有する温
度測定素子を用い、前記アンチモン層の第1の部位を基
準温度とし、前記第1の部位と異なる第2の部位を測定
部位とし、前記第1の部位と前記第2の部位の間の熱起
電力を測定することにより、約200Kから約435K
の範囲の温度を測定することを特徴とする温度測定方法
によって達成される。
[0005] Another object of the present invention is to provide a temperature measuring device having a silicon substrate and an antimony layer formed on the silicon substrate, wherein a first portion of the antimony layer is set as a reference temperature, and And a second portion different from the first portion and the second portion is measured to measure the thermoelectromotive force between the first portion and the second portion.
Is achieved by measuring the temperature in the range of

【0006】[0006]

【作用】本発明によれば、シリコン基板上にアンチモン
薄膜を形成した熱電変換性能の高い新規な熱電材料を用
い、アンチモン薄膜の異なる部位間に発生する熱起電力
に基づいて温度を測定するようにしたので、温度測定精
度に優れた温度測定を実現することができる。
According to the present invention, a temperature is measured based on a thermoelectromotive force generated between different portions of an antimony thin film using a novel thermoelectric material having a high thermoelectric conversion performance in which an antimony thin film is formed on a silicon substrate. As a result, temperature measurement with excellent temperature measurement accuracy can be realized.

【0007】[0007]

【実施例】本願発明者等は、従来の熱電材料の熱電変換
性能指数が頭打ちになっている現状を打開するものとし
て、従来のバルク材料の代わりに、薄膜材料について着
目した。単結晶基板上に、バルク材料として用いられて
いる熱電材料の構成元素の薄膜を堆積し、その薄膜につ
いて熱電変換性能を測定した。その結果、バルク材料の
場合に比べて異常に大きい熱電変換性能を有する単結晶
基板と薄膜材料の組み合わせを見出だし、それを温度測
定に用いることに思い至った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors have focused on a thin film material instead of a conventional bulk material in order to overcome the current situation where the thermoelectric conversion performance index of the conventional thermoelectric material has reached a plateau. A thin film of a constituent element of a thermoelectric material used as a bulk material was deposited on a single crystal substrate, and the thermoelectric conversion performance of the thin film was measured. As a result, they found a combination of a single-crystal substrate and a thin-film material having an unusually large thermoelectric conversion performance as compared with the bulk material, and came to the idea of using it for temperature measurement.

【0008】本願発明者等は、単結晶基板としてシリコ
ン(Si)基板を用い、熱電材料としてアンチモン(S
b)、またはビスマス(Bi)とアンチモン(Sb)を
用い、分子線セルMBE法により試料を製造した。表面
が(111)面のSi基板に、Sb薄膜、またはBi薄
膜とSb薄膜を交互に積層したBi/Sb超格子層を形
成し、それぞれの試料に対して熱電能の温度依存性を測
定した。なお、Sb薄膜はガラス基板上にも形成した。
The present inventors used a silicon (Si) substrate as a single crystal substrate and used antimony (S) as a thermoelectric material.
b) or a sample was produced by molecular beam cell MBE using bismuth (Bi) and antimony (Sb). An Sb thin film or a Bi / Sb superlattice layer in which a Bi thin film and an Sb thin film were alternately laminated was formed on a Si substrate having a (111) surface, and the temperature dependence of thermoelectric power was measured for each sample. . The Sb thin film was also formed on a glass substrate.

【0009】製造した試料の詳細は次の通りである。 [実施例] Si基板上に、290nm厚のSb薄膜を
形成した。 [比較例1] ガラス基板上に、335nm厚のSb薄
膜を形成した。 [比較例2] Si基板上に、5.2nm厚のBi薄膜
と0.4nm厚のSb薄膜とを交互に合計20層積層
し、112nm厚のBi/Sb超格子層を形成した。
The details of the manufactured samples are as follows. Example A 290 nm thick Sb thin film was formed on a Si substrate. Comparative Example 1 An Sb thin film having a thickness of 335 nm was formed on a glass substrate. Comparative Example 2 A total of 20 Bi thin films having a thickness of 5.2 nm and an Sb thin film having a thickness of 0.4 nm were alternately laminated on a Si substrate to form a Bi / Sb superlattice layer having a thickness of 112 nm.

【0010】本願発明者等は、これら試料に対して熱電
変換性能を測定した。本願発明者等が行った測定方法に
ついて図1を用いて説明する。試料14を保持するため
の真鍮製の2つの試料台10a及び10bが、所定の間
隔をあけて設置されている。一方の試料台10bには、
試料台10bを加熱できるように側面に小さな孔が設け
られ、その内部にヒーター12が挿入されている。ま
た、もう一方の試料台10aには、放熱用ワイヤー(図
示せず)が接続されている。試料台10a及び10b上
には試料14が載置される。ヒーター12を加熱するこ
とにより試料14の試料台10a側と試料台10b側に
は数度程度の温度差が発生する。
The present inventors measured thermoelectric conversion performance of these samples. The measurement method performed by the inventors of the present application will be described with reference to FIG. Two brass sample stages 10a and 10b for holding the sample 14 are provided at a predetermined interval. On one sample stage 10b,
A small hole is provided on the side surface so that the sample stage 10b can be heated, and the heater 12 is inserted therein. A heat-dissipating wire (not shown) is connected to the other sample stage 10a. The sample 14 is placed on the sample tables 10a and 10b. By heating the heater 12, a temperature difference of about several degrees occurs between the sample stage 10a side and the sample stage 10b side of the sample 14.

【0011】試料14の上面には、試料台10a側の試
料14の温度と、試料台10b側の試料14の温度を測
定するために、銅−コンスタンタン熱電対16、18が
試料14の両端に設けられている。また、試料14の試
料台10a側と試料台10b側の温度差により発生する
熱起電力を測定するために、試料14の両端に熱起電力
測定用リード線20、22が設けられている。
To measure the temperature of the sample 14 on the sample stage 10a and the temperature of the sample 14 on the sample stage 10b, copper-constantan thermocouples 16 and 18 are placed on both ends of the sample 14 on the upper surface of the sample 14. Is provided. Further, in order to measure the thermoelectromotive force generated due to the temperature difference between the sample table 10a side and the sample table 10b side of the sample 14, the thermoelectric power measurement lead wires 20 and 22 are provided at both ends of the sample 14.

【0012】試料14を試料台10a及び10b上に載
置する。試料の両端に熱電対16、18をセットすると
共に、熱起電力測定リード線20、22をセットする。
その後、上述した測定装置を金属製の容器内部に設置し
(図示せず)、容器内部の温度を変化しながら、そのと
きの熱起電力を測定する。なお、測定温度範囲は約10
0[K]から400[K]付近として、100[K]か
ら約1℃/minの速度で昇温した。
The sample 14 is placed on the sample tables 10a and 10b. The thermocouples 16 and 18 are set at both ends of the sample, and the thermoelectric power measurement leads 20 and 22 are set.
Thereafter, the above-described measuring device is installed inside a metal container (not shown), and the thermoelectromotive force at that time is measured while changing the temperature inside the container. The measurement temperature range is about 10
The temperature was raised from 100 [K] at a rate of about 1 ° C./min from 0 [K] to around 400 [K].

【0013】試料台10a側の試料14の温度をT1
[K]、試料台10b側の試料14の温度をT2[K]
とし、試料14に温度差ΔT[K]=T2−T1が与え
られたとして、そのときの熱起電力をΔV[μV]とす
ると、ゼーベック(Seebeck)係数αは次式 α=ΔV/ΔT[μV/K] のようになる。
The temperature of the sample 14 on the sample stage 10a side is set to T1.
[K], the temperature of the sample 14 on the sample stage 10b side is set to T2 [K].
Assuming that the temperature difference ΔT [K] = T2−T1 is given to the sample 14 and the thermoelectromotive force at that time is ΔV [μV], the Seebeck coefficient α is expressed by the following equation α = ΔV / ΔT [ μV / K].

【0014】実施例及び比較例1及び2のそれぞれに対
して、試料14の周辺温度を変化して熱起電力を測定し
た。図2乃至図4にその測定結果を示す。図2乃至図4
の横軸は、試料台10a側の温度T1[K]と試料台1
0b側の温度T2[K]の算術平均の温度((T1+T
2)/2[K])であり、縦軸は、ゼーベック(See
beck)係数α[μV/K]である。
For each of the example and comparative examples 1 and 2, the thermoelectromotive force was measured by changing the temperature around the sample 14. 2 to 4 show the measurement results. 2 to 4
The horizontal axis indicates the temperature T1 [K] on the sample stage 10a side and the sample stage 1
0b side temperature T2 [K] arithmetic mean temperature ((T1 + T
2) / 2 [K]), and the vertical axis represents Seebeck (See).
beck) coefficient α [μV / K].

【0015】図2に実施例の測定結果を示し、図3に比
較例1の測定結果を示し、図4に比較例2の測定結果を
示す。図2に示すように、シリコン基板上にSb薄膜を
形成した実施例のゼーベック係数は、温度が200
[K]以下では10[μV/K]以下のプラスの値を示
す。しかし、温度が200[K]以上になるとゼーベッ
ク係数はマイナス側に転じて急激に増加し、約400
[K]では−300[μV/K]にまで達することがわ
かった。
FIG. 2 shows the measurement results of the embodiment, FIG. 3 shows the measurement results of Comparative Example 1, and FIG. 4 shows the measurement results of Comparative Example 2. As shown in FIG. 2, the Seebeck coefficient of the embodiment in which the Sb thin film is formed on the silicon substrate has a temperature of 200.
Below [K], a positive value of 10 [V / K] or less is shown. However, when the temperature becomes 200 [K] or more, the Seebeck coefficient turns to the negative side and sharply increases to about 400 K.
[K] was found to reach -300 [μV / K].

【0016】また、400[K]付近の温度まで、3回
の繰り返し測定を行ったが、測定回数の増加にともなう
ゼーベック係数の低下は観察されず、熱電変換性能の再
現性も認められた。図3に示すように、ガラス基板上に
Sb薄膜を形成した比較例1のゼーベック係数は、温度
の上昇と共に増加するが、300[K]でもその値は約
34[μV/K]と小さく、温度測定素子としては十分
でない。また、図中にはバルクのSbにおける特性も示
したが、バルクのSbと比較しても同程度の特性しか得
ることができなかった。
Further, the measurement was repeated three times up to a temperature around 400 [K]. No decrease in the Seebeck coefficient was observed with an increase in the number of measurements, and reproducibility of the thermoelectric conversion performance was also recognized. As shown in FIG. 3, the Seebeck coefficient of Comparative Example 1 in which an Sb thin film was formed on a glass substrate increased with increasing temperature, but even at 300 [K], the value was as small as about 34 [μV / K]. It is not enough as a temperature measuring element. In addition, although the characteristics of bulk Sb are also shown in the figure, only characteristics comparable to those of bulk Sb could be obtained.

【0017】図4に示すように、シリコン基板上にBi
/Sb超格子層を形成した比較例2のゼーベック係数
は、測定温度の上昇にともなってマイナス側に増加し、
400[K]で約−250[μV/K]と高い値を得る
ことができた。しかし、繰り返し測定を行うに従ってそ
の値は減少し、2回目以降には400[K]で−140
[μV/K]近くまで劣化した。
As shown in FIG. 4, Bi on a silicon substrate
The Seebeck coefficient of Comparative Example 2 in which the / Sb superlattice layer was formed increased to the minus side as the measurement temperature increased,
At 400 [K], a high value of about -250 [V / K] could be obtained. However, the value decreases as the measurement is repeated, and becomes -140 at 400 [K] after the second measurement.
It deteriorated to near [μV / K].

【0018】このように本実施例によれば、シリコン基
板上にSbの薄膜を形成した試料では、温度の上昇にと
もなってゼーベック係数はマイナス側に増加し、約40
0[K]で−300[μV/K]と非常に大きい熱電変
換性能を得ることができた。また、400[K]以下の
温度にて繰り返し測定を行ってもその値は劣化しなかっ
た。
As described above, according to the present embodiment, in the sample in which the Sb thin film is formed on the silicon substrate, the Seebeck coefficient increases to the minus side as the temperature rises, and about 40
At 0 [K], a very large thermoelectric conversion performance of -300 [μV / K] was obtained. Further, even when the measurement was repeatedly performed at a temperature of 400 [K] or less, the value did not deteriorate.

【0019】なお、このような効果はガラス基板上にS
b薄膜を形成した比較例1や、Bi/Sb超格子膜の場
合には得られなかった。本願発明者等は、上述した測定
結果から次のように考察した。シリコン基板上にSb薄
膜を形成した試料について、ゼーベック係数の温度測定
の他に電気抵抗の温度依存性も測定したが、その結果1
00[K]から400[K]の間では、単調に抵抗値が
増加する金属的な振る舞いを示した。このことは、温度
の上昇にともないSbがp型からn型に変化したが、電
気伝導度には急激な影響を与えていないことを意味して
いる。半金属では、電子とホールのキャリア濃度が等し
いが、移動度が異なることが熱電気学により明らかにさ
れているので、シリコン基板上に堆積したSb薄膜で
は、キャリア濃度の関係が不平衡になるメカニズムが生
じ、上述した結果を導いたものと考えられる。
Note that such an effect can be obtained by forming S on a glass substrate.
No results were obtained in Comparative Example 1 in which the b thin film was formed, or in the case of the Bi / Sb superlattice film. The inventors of the present application considered as follows from the above measurement results. For the sample in which the Sb thin film was formed on the silicon substrate, the temperature dependence of the electric resistance was measured in addition to the temperature measurement of the Seebeck coefficient.
Between 00 [K] and 400 [K], a metallic behavior in which the resistance value monotonously increased was shown. This means that although Sb changed from p-type to n-type with the rise in temperature, it did not suddenly affect the electrical conductivity. In a semimetal, the carrier concentration of electrons and holes is equal, but the mobility is different. Thermoelectric studies have revealed that the relationship between the carrier concentrations becomes unbalanced in an Sb thin film deposited on a silicon substrate. It is thought that a mechanism occurred and led to the above-described results.

【0020】次に、上述した実施例の試料を実際に温度
測定素子として応用することを考え、本発明の温度測定
素子の温度測定範囲について考察する。温度測定範囲の
下限の温度は、ゼーベック係数がプラス側からマイナス
側へ転じ、0点を切る温度である。図2のグラフから、
本発明の温度測定素子の温度測定範囲の下限温度は約2
00K程度となる。
Next, considering the practical application of the sample of the above-described embodiment as a temperature measuring element, the temperature measuring range of the temperature measuring element of the present invention will be considered. The lower limit temperature of the temperature measurement range is a temperature at which the Seebeck coefficient changes from the positive side to the negative side and falls below zero. From the graph in FIG.
The lower limit temperature of the temperature measuring range of the temperature measuring element of the present invention is about 2
It is about 00K.

【0021】温度測定範囲の上限の温度は、反復昇温し
てもゼーベック係数が低下して劣化することがない最も
高い温度である。図2のグラフから、本発明の温度測定
素子の温度測定範囲の上限温度は約435K程度とな
る。したがって、本発明の温度測定素子の測定範囲は約
200Kから約435Kの範囲の温度となる。
The upper limit temperature of the temperature measurement range is the highest temperature at which the Seebeck coefficient does not decrease and deteriorate even when the temperature is repeatedly increased. From the graph of FIG. 2, the upper limit temperature of the temperature measurement range of the temperature measurement element of the present invention is about 435K. Therefore, the measurement range of the temperature measuring element of the present invention is in the range of about 200K to about 435K.

【0022】次に、本発明の温度測定素子で温度測定す
るためには、シリコン基板上に形成されたSb薄膜の異
なる部位に温度差が生ずるような構成にする必要があ
る。本発明の温度測定素子の具体例を図5及び図6に示
す。第1の具体例は、図5に示すように、Si基板30
上にSb薄膜32が形成された温度測定素子チップ34
が外囲器36内に載置されている。外囲器36下部には
熱起電力を測定するための外部端子38、40が設けら
れている。これら外部端子38、40と、温度測定素子
チップ34の左右の部位とは、ボンディングワイヤ4
2、44によりワイヤボンディングされている。外囲器
36の上面には熱線を遮蔽する遮蔽板46が設けられて
いる。この遮蔽板46には、温度測定素子チップ34の
右半部が露出するような窓48が形成されている。
Next, in order to measure the temperature with the temperature measuring element of the present invention, it is necessary to adopt a configuration in which a temperature difference occurs between different portions of the Sb thin film formed on the silicon substrate. 5 and 6 show specific examples of the temperature measuring element of the present invention. In a first specific example, as shown in FIG.
Temperature measuring element chip 34 on which Sb thin film 32 is formed
Are placed in the envelope 36. External terminals 38 and 40 for measuring the thermoelectromotive force are provided below the envelope 36. These external terminals 38 and 40 and the left and right portions of the temperature measuring element chip 34
2 and 44 are wire-bonded. On the upper surface of the envelope 36, a shielding plate 46 for shielding heat rays is provided. A window 48 is formed in the shielding plate 46 so that the right half of the temperature measuring element chip 34 is exposed.

【0023】外部からの熱線は遮蔽板46により遮蔽さ
れるので、遮蔽板46の窓48下の温度測定素子チップ
34の右半部だけが加熱され、温度測定素子チップ34
の左右部位間に温度差を生じさせることができる。第2
の具体例は、図6に示すように、図5に示す第1の具体
例と基本的な構成は同じであるが、遮蔽板46を設ける
代わりに、温度測定素子チップ34の左半部に反射膜5
0を設けている点が第1の具体例と異なる。外部からの
熱線は反射膜50により反射されるので、反射膜50に
覆われていない温度測定素子チップ34の右半部だけが
加熱され、温度測定素子チップ34の左右部位間に温度
差を生じさせることができる。
Since heat rays from the outside are shielded by the shielding plate 46, only the right half of the temperature measuring element chip 34 below the window 48 of the shielding plate 46 is heated, and the temperature measuring element chip 34 is heated.
A temperature difference between the left and right portions of the device. Second
6, the basic configuration is the same as that of the first specific example shown in FIG. 5, but instead of providing the shielding plate 46, the left half of the temperature measuring element chip 34 is provided. Reflective film 5
The difference from the first specific example is that 0 is provided. Since heat rays from the outside are reflected by the reflection film 50, only the right half of the temperature measurement element chip 34 that is not covered with the reflection film 50 is heated, and a temperature difference occurs between the left and right portions of the temperature measurement element chip 34. Can be done.

【0024】[0024]

【発明の効果】以上の通り、本発明によれば、シリコン
基板上にSb薄膜を形成した熱電変換性能の高い新規な
熱電材料を用い、Sb薄膜の異なる部位間に発生する熱
起電力に基づいて温度を測定するようにしたので、温度
測定精度に優れた温度測定を実現することができる。
As described above, according to the present invention, a novel thermoelectric material having a high thermoelectric conversion performance in which an Sb thin film is formed on a silicon substrate is used, based on the thermoelectromotive force generated between different portions of the Sb thin film. Since the temperature is measured by the temperature measurement, it is possible to realize temperature measurement excellent in temperature measurement accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例と比較例の試料に対する熱電変換性能の
測定方法の説明図である。
FIG. 1 is an explanatory diagram of a method for measuring thermoelectric conversion performance for samples of an example and a comparative example.

【図2】シリコン基板上にSb薄膜を形成した実施例の
ゼーベック係数の温度依存性を示すグラフである。
FIG. 2 is a graph showing the temperature dependence of the Seebeck coefficient of an example in which an Sb thin film is formed on a silicon substrate.

【図3】ガラス基板上にSb薄膜を形成した比較例1の
ゼーベック係数の温度依存性を示すグラフである。
FIG. 3 is a graph showing the temperature dependence of the Seebeck coefficient of Comparative Example 1 in which an Sb thin film was formed on a glass substrate.

【図4】シリコン基板上にBi/Sbの超格子層を形成
した比較例2のゼーベック係数の温度依存性を示すグラ
フである。
FIG. 4 is a graph showing the temperature dependence of the Seebeck coefficient of Comparative Example 2 in which a Bi / Sb superlattice layer was formed on a silicon substrate.

【図5】本発明の温度測定素子の第1の具体例を示す図
である。
FIG. 5 is a diagram showing a first specific example of the temperature measuring element of the present invention.

【図6】本発明の温度測定素子の第2の具体例を示す図
である。
FIG. 6 is a view showing a second specific example of the temperature measuring element of the present invention.

【符号の説明】[Explanation of symbols]

10a、10b…試料台 12…ヒーター 14…試料 16、18…熱電対 20、22…熱起電力測定リード線 30…Si基板 32…Bi/Sb超格子層 34…温度測定素子チップ 36…外囲器 38、40…外部端子 42、44…ボンディングワイヤ 46…遮蔽板 48…窓 50…反射膜 10a, 10b: sample table 12: heater 14, sample 16, 18: thermocouple 20, 22, thermoelectric power measurement lead wire 30: Si substrate 32: Bi / Sb superlattice layer 34: temperature measurement element chip 36: surrounding Containers 38, 40: External terminals 42, 44: Bonding wires 46: Shielding plate 48: Windows 50: Reflective film

フロントページの続き (56)参考文献 特開 平3−233980(JP,A) 特開 昭63−43381(JP,A) 特開 平4−360588(JP,A) 特表 平6−501550(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01K 7/02 H01L 35/18Continuation of the front page (56) References JP-A-3-233980 (JP, A) JP-A-63-43381 (JP, A) JP-A-4-360588 (JP, A) Table 6-501550 (JP) , A) (58) Field surveyed (Int. Cl. 6 , DB name) G01K 7/02 H01L 35/18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリコン基板と、前記シリコン基板上に
形成されたアンチモン薄膜とを有し、前記アンチモン薄
膜上の異なる部位間に発生する熱起電力に基づいて温度
を測定することを特徴とする温度測定素子。
1. A semiconductor device comprising: a silicon substrate; and an antimony thin film formed on the silicon substrate, wherein a temperature is measured based on a thermoelectromotive force generated between different portions on the antimony thin film. Temperature measuring element.
【請求項2】 請求項1記載の温度測定素子において、
約200Kから約435Kの範囲の温度を測定すること
を特徴とする温度測定素子。
2. The temperature measuring device according to claim 1, wherein
A temperature measuring element for measuring a temperature in a range from about 200K to about 435K.
【請求項3】 シリコン基板と、前記シリコン基板上に
形成されたアンチモン薄膜とを有する温度測定素子を用
い、前記アンチモン薄膜の第1の部位を基準温度とし、
前記第1の部位と異なる第2の部位を測定部位とし、前
記第1の部位と前記第2の部位の間の熱起電力を測定す
ることにより、約200Kから約435Kの範囲の温度
を測定することを特徴とする温度測定方法。
3. A temperature measuring element having a silicon substrate and an antimony thin film formed on the silicon substrate, wherein a first portion of the antimony thin film is used as a reference temperature,
A temperature in a range from about 200K to about 435K is measured by measuring a thermoelectromotive force between the first part and the second part with a second part different from the first part as a measurement part. A temperature measuring method.
JP6081584A 1994-04-20 1994-04-20 Temperature measuring element and temperature measuring method Expired - Lifetime JP2771450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6081584A JP2771450B2 (en) 1994-04-20 1994-04-20 Temperature measuring element and temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6081584A JP2771450B2 (en) 1994-04-20 1994-04-20 Temperature measuring element and temperature measuring method

Publications (2)

Publication Number Publication Date
JPH07286908A JPH07286908A (en) 1995-10-31
JP2771450B2 true JP2771450B2 (en) 1998-07-02

Family

ID=13750380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6081584A Expired - Lifetime JP2771450B2 (en) 1994-04-20 1994-04-20 Temperature measuring element and temperature measuring method

Country Status (1)

Country Link
JP (1) JP2771450B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165233A (en) * 2002-11-11 2004-06-10 National Institute Of Advanced Industrial & Technology Seebeck coefficient measuring device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343381A (en) * 1986-08-08 1988-02-24 Sanyo Electric Co Ltd Photovoltaic cell
JPH03233980A (en) * 1990-02-09 1991-10-17 Idemitsu Petrochem Co Ltd Thermoelectric element and manufacture thereof
US5087312A (en) * 1990-07-11 1992-02-11 Boehringer Mannheim Gmbh Thermopile having reduced thermal noise

Also Published As

Publication number Publication date
JPH07286908A (en) 1995-10-31

Similar Documents

Publication Publication Date Title
Van Herwaarden et al. Thermal sensors based on the Seebeck effect
US4456919A (en) Thermopile type detector with temperature sensor for cold junction
EP0030499B1 (en) Device sensitive to a thermal flow or a temperature gradient and assembly of such devices
US4665276A (en) Thermoelectric sensor
Boltovets et al. Ge-film resistance and Si-based diode temperature microsensors for cryogenic applications
JP2526247B2 (en) Thermopile
JP2771450B2 (en) Temperature measuring element and temperature measuring method
JP3497328B2 (en) Thermoelectric material
US3785875A (en) Zinc-cadmium antimonide single crystal anisotropic thermoelement
JP2730662B2 (en) Temperature measuring element and temperature measuring method
Zhang et al. Measurement of Seebeck coefficient perpendicular to SiGe superlattice
JPS5852528A (en) Sensitizing method of thermopile
JP2811709B2 (en) Infrared sensor
US3306784A (en) Epitaxially bonded thermoelectric device and method of forming same
JPH023311B2 (en)
JPH06258149A (en) Thin-film thermocouple element
JP2645552B2 (en) Silicon / germanium / gold mixed crystal thin film conductor
KR20100030762A (en) Thermoelectric sensor using ge material
US3138495A (en) Semiconductor device and method of manufacture
US3110629A (en) Thermoelements and devices embodying them
US12002894B2 (en) Photosensor
JP2952379B2 (en) Temperature sensing device
Yamashita et al. Effect of metal electrode on thermoelectric power in bismuth telluride compounds
EP1161660A1 (en) Bolometer with a zinc oxide bolometer element
Ruoho Nanostructured Thermoelectric Materials

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term