JPH04318497A - Synthesis method for in-target 13n-ammonia - Google Patents

Synthesis method for in-target 13n-ammonia

Info

Publication number
JPH04318497A
JPH04318497A JP3085366A JP8536691A JPH04318497A JP H04318497 A JPH04318497 A JP H04318497A JP 3085366 A JP3085366 A JP 3085366A JP 8536691 A JP8536691 A JP 8536691A JP H04318497 A JPH04318497 A JP H04318497A
Authority
JP
Japan
Prior art keywords
ammonia
target water
target
cock
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3085366A
Other languages
Japanese (ja)
Other versions
JPH07119835B2 (en
Inventor
Shigeki Yamazaki
茂樹 山崎
Hideyuki Nakagawa
英之 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP8536691A priority Critical patent/JPH07119835B2/en
Priority to CA002085590A priority patent/CA2085590A1/en
Priority to DE69212629T priority patent/DE69212629D1/en
Priority to EP92901940A priority patent/EP0535235B1/en
Priority to PCT/JP1992/000003 priority patent/WO1992018986A1/en
Publication of JPH04318497A publication Critical patent/JPH04318497A/en
Priority to KR1019920703258A priority patent/KR0132906B1/en
Priority to US08/378,949 priority patent/US5598449A/en
Publication of JPH07119835B2 publication Critical patent/JPH07119835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To synthesize <13>N-ammonia in a short time with a simple operation by feeding a target water and hydrogen within a synthesis apparatus, and while circulating those under the specified pressure, emitting a proton beam. CONSTITUTION:Target water is fed into an intermediate vessel 3, sent under pressure with hydrogen gas pressurized at 0.1 to 5kg/cm<2>, and while the total amount is put in the intermediate vessel, gas within the vessel 3 is purged. A cock 4 is closed, the inner part of a target box is pressurized to a required pressure with hydrogen gas while being measured with a manometer 5, a cock 1 and a cock 2 are closed, and the target water within the vessel 3 is circulated into a cock 7, irradiation cell 8, cock 9, and the vessel 3 by a solution sending pump 6. When a proton beam 10 is irradiated in this state, oxygen atoms in the target water cause a nuclear reaction to form <13>N, and react with hydrogen to make <13>N-ammonia. After the end of irradiation <13>N-ammonia water is taken out through a pipe 11 from the target box.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、例えばPETシステ
ムに使用される標識化合物である13N−アンモニアの
合成方法に関するものである。
FIELD OF THE INVENTION This invention relates to a method for synthesizing 13N-ammonia, which is a labeling compound used, for example, in a PET system.

【0002】0002

【従来の技術】同位元素で標識された化合物の製造方法
としては、例えばヨウ素化芳香族化合物と放射性ヨウ化
アルカル金属を硫酸アンモニウム及び硫酸銅の存在下に
酸性条件下で反応させる放射性ヨウ素化芳香族化合物の
製造法が知られている(特開平1−16092号公報)
。これは、予め同位体化合物を含む原料を液中で反応さ
せて、同位体化合物を生成させる方法である。
[Prior Art] As a method for producing an isotope-labeled compound, for example, a radioiodinated aromatic compound is produced by reacting an iodinated aromatic compound with a radioactive alkali metal iodide in the presence of ammonium sulfate and copper sulfate under acidic conditions. A method for producing the compound is known (Japanese Patent Application Laid-open No. 1-16092)
. This is a method in which raw materials containing isotopic compounds are reacted in a liquid in advance to produce isotopic compounds.

【0003】PET(Positron Emissi
on Tomography)システムは、患者の体内
に陽電子放射性同位元素を投入し、この同位元素から放
出される陽電子が発生するγ線を測定して各断層におけ
る放射性同位元素の分布を求め、これによって患部を診
断する方法として利用されている。この放射性同位元素
の合成方法としては、例えばピルビン酸−1−11Cの
合成方法が特開平1−294639号公報に開示されて
いる。この方法は、サイクロトロンによって11CO2
を生成し、これを非放射性ピルビン酸と11CO2との
交換反応させる方法である。
[0003] PET (Positron Emissi)
The on tomography system injects a positron radioisotope into the patient's body and measures the gamma rays generated by the positrons emitted from the isotope to determine the distribution of the radioisotope in each slice. It is used as a diagnostic method. As a method for synthesizing this radioisotope, for example, a method for synthesizing pyruvic acid-1-11C is disclosed in JP-A-1-294639. This method uses a cyclotron to generate 11CO2
This is a method in which this is exchange-reacted with non-radioactive pyruvic acid and 11CO2.

【0004】13N−アンモニアの製造技術としては、
従来図2に示す装置を用いるものが知られている(RA
DIOISOTOPES, vol. 30, pp1
〜6, 1981)。この装置を用いて13N−アンモ
ニアを製造する方法としては、一定量のターゲット水を
三方コック12、二方コック13を通って照射セル8に
送入する。次に、コック12を切り換え、ヘリウムガス
又は窒素ガスを圧送用ガスとして送液配管15内に残っ
ているターゲット水を全量照射セル8に入れる。この際
、コック16を開けておいて圧送用ガスは配管17から
排出させる。それからコック12、コック13、コック
16を閉じ、プロトンビーム10を照射するとターゲッ
ト水の酸素原子が核反応を起こして13Nを生成する。 この窒素原子が周囲の酸素原子と反応して13N−硝酸
イオン(13N−NO3−)を生成する。次にコック1
9を開け、さらにコック12、コック13を開けて照射
が終了したターゲット水を反応容器20に入れる。そこ
でコック21、コック22を開け、バイアル23に入っ
ている試薬TiCl3を反応容器20に入れる。さらに
コック24、コック25を開けてバイアル26に入って
いる試薬NaOHを反応容器20に入れる。次いで、ヒ
ーター27で反応容器を加熱して反応させ、13N−硝
酸イオンを13N−アンモニアに変える。これを配管2
8を経てバイアル30に蒸留回収する。従来、13N−
アンモニアは上記のようにして製造していた。
[0004] The production technology for 13N-ammonia is as follows:
A device using the device shown in FIG. 2 is conventionally known (RA
DIOISOTOPES, vol. 30, pp1
~6, 1981). As a method for producing 13N-ammonia using this device, a certain amount of target water is fed into the irradiation cell 8 through the three-way cock 12 and the two-way cock 13. Next, the cock 12 is switched, and the target water remaining in the liquid feeding pipe 15 is fully charged into the irradiation cell 8 using helium gas or nitrogen gas as a pressure feeding gas. At this time, the cock 16 is left open and the pressurized gas is discharged from the pipe 17. Then, the cocks 12, 13, and 16 are closed, and when the proton beam 10 is irradiated, the oxygen atoms in the target water undergo a nuclear reaction to generate 13N. This nitrogen atom reacts with surrounding oxygen atoms to generate 13N-nitrate ions (13N-NO3-). Next, cook 1
9 is opened, and the cocks 12 and 13 are opened to pour the irradiated target water into the reaction vessel 20. Then, the cocks 21 and 22 are opened, and the reagent TiCl3 contained in the vial 23 is poured into the reaction container 20. Further, the cocks 24 and 25 are opened and the reagent NaOH contained in the vial 26 is poured into the reaction container 20. Next, the reaction vessel is heated with the heater 27 to cause a reaction, and the 13N-nitric acid ions are converted to 13N-ammonia. Piping this 2
8 and then distilled and collected into a vial 30. Conventionally, 13N-
Ammonia was produced as described above.

【0005】[0005]

【発明が解決しようとする課題】上記の13N−アンモ
ニアの合成方法では、照射終了後反応させて生成した1
3N−アンモニアをバイアル30に取り出すまでに10
分以上の時間がかかっていた。13N−は半減期が9.
96分と短いため、その間に13Nの約半分が崩壊によ
り失われていた。 また、操作が複雑で煩瑣であり、装置も複雑になること
も問題であった。
[Problems to be Solved by the Invention] In the above method for synthesizing 13N-ammonia, 1
10 by taking out 3N-ammonia into vial 30
It took more than a minute. 13N- has a half-life of 9.
Because it was only 96 minutes, about half of the 13N was lost due to collapse. Another problem is that the operation is complicated and cumbersome, and the device is also complicated.

【0006】この発明は、上記のような問題点を解決す
るためなされたものであり、簡単な操作で短時間に13
N−アンモニアを合成できる方法を提供することを目的
としている。
[0006] This invention was made in order to solve the above-mentioned problems, and it is possible to perform 13
The object is to provide a method by which N-ammonia can be synthesized.

【0007】[0007]

【課題を解決するための手段】上記課題は、合成装置内
にターゲット水と水素を送入して0.1〜5kg/cm
2の加圧状態とし、該ターゲット水を循環させながらそ
れにプロトンビームを照射して13N−アンモニアを生
成させることを特徴とするインターゲットでの13N−
アンモニア合成方法によって解決される。
[Means for solving the problem] The above problem is achieved by feeding target water and hydrogen into a synthesis apparatus at a rate of 0.1 to 5 kg/cm.
In-target 13N- ammonia is produced by irradiating the target water with a proton beam while circulating the target water in the pressurized state of 2.
Solved by ammonia synthesis method.

【0008】本発明の合成方法で使用される合成装置は
、ターゲット水にプロトンビームを照射する照射セルと
、ターゲット水を受容する中間容器と、両者間をターゲ
ット水を循環させる循環ラインと、該循環ラインの途中
に設けられた送液ポンプとを有し、さらに水素ガス供給
管が接続されたものを用いる。さらに、ターゲット水供
給管及び反応生成物である13N−アンモニア水の抜出
管の接続されているものが好ましい。このような装置内
にターゲット水と水素を送入する。
The synthesis apparatus used in the synthesis method of the present invention includes an irradiation cell that irradiates target water with a proton beam, an intermediate container that receives target water, a circulation line that circulates target water between the two, and a circulation line that circulates target water between the two. It has a liquid feeding pump installed in the middle of the circulation line, and is further connected to a hydrogen gas supply pipe. Furthermore, it is preferable that the target water supply pipe and the extraction pipe of 13N-ammonia water, which is a reaction product, are connected. Target water and hydrogen are introduced into such a device.

【0009】ターゲット水は、プロトンビームを照射し
て13N−アンモニア水を生成させるものであり、通常
は純水、蒸留水などの精製水を用いる。13N−アンモ
ニアを注射薬として用いる場合には、無菌水を用いるこ
とが好ましい。ターゲット水の使用量は、合成装置の容
積等に応じて定まる。すなわち、水素ガスが循環ライン
に流入しない程度が少なくとも必要であり、上限は水素
ガスがターゲット水を還元雰囲気に維持できる程度の水
素ガス空間を残すように定められる。
[0009] The target water is one in which 13N-ammonia water is generated by irradiation with a proton beam, and purified water such as pure water or distilled water is usually used. When using 13N-ammonia as an injection drug, it is preferable to use sterile water. The amount of target water to be used is determined depending on the volume of the synthesis apparatus, etc. That is, it is necessary at least to a degree that hydrogen gas does not flow into the circulation line, and the upper limit is determined so as to leave enough hydrogen gas space to maintain the target water in a reducing atmosphere.

【0010】水素はターゲット水を還元雰囲気に保って
アンモニアを生成させるものであり、ターゲット水と水
素ガスの容積比では広範囲にわたり適用可能であるが、
例えば1:10〜10:1程度が適当である。
[0010] Hydrogen keeps target water in a reducing atmosphere to generate ammonia, and can be applied over a wide range of volume ratios of target water and hydrogen gas.
For example, about 1:10 to 10:1 is appropriate.

【0011】ターゲット水と水素は0.1〜5kg/c
m2程度、好ましくは0.5〜5kg/cm2程度、特
に好ましくは0.5〜2kg/cm2程度に加圧する。 0.1kg/cm2未満ではアンモニアの生成量が少な
いため実用的でなく、一方5kg/cm2を越えると高
い耐圧性を有する合成装置を使用しなければならなくな
る。
[0011] Target water and hydrogen are 0.1 to 5 kg/c
Pressure is applied to about m2, preferably about 0.5 to 5 kg/cm2, particularly preferably about 0.5 to 2 kg/cm2. If it is less than 0.1 kg/cm2, the amount of ammonia produced is so small that it is not practical, while if it exceeds 5 kg/cm2, a synthesizer with high pressure resistance must be used.

【0012】ターゲット水を循環する速度は、要はプロ
トンビームの照射によって照射セル内のターゲット水が
酸化雰囲気にならず、かつ照射セル内に生じた気泡を反
応を阻害しない程度に除去できる速度であればよく、そ
れ程大きな速度にする必要はない。
The speed at which the target water is circulated must be such that the target water in the irradiation cell does not become an oxidizing atmosphere due to proton beam irradiation, and the bubbles generated in the irradiation cell can be removed to the extent that the reaction is not inhibited. It's fine, and it doesn't need to be that fast.

【0013】プロトンビーム源及びビーム量は、標識化
合物の合成装置に使用される通常のものでよく、13N
−アンモニアの生成効率等を考慮して最も好ましいビー
ム量になるように条件が設定される。プロトンビームの
照射時間も通常は13N−アンモニアの濃度が最大濃度
に達する付近まで行なうことが好ましいが、13N−ア
ンモニアは寿命が短いところから生成物の純度の関係も
考慮して適宜設定される。プロトンビームの照射とター
ゲット水の循環はいずれを先に行なってもよいが、特段
の目的がなければターゲット水の循環開始が先に行なわ
れる。
[0013] The proton beam source and beam amount may be those commonly used in labeled compound synthesis equipment, and may be 13N
-Conditions are set to obtain the most preferable beam amount in consideration of ammonia production efficiency, etc. The irradiation time of the proton beam is usually preferably carried out until the concentration of 13N-ammonia reaches its maximum concentration, but since 13N-ammonia has a short lifetime, it is appropriately set in consideration of the purity of the product. Either proton beam irradiation or target water circulation may be performed first, but unless there is a particular purpose, target water circulation is performed first.

【0014】照射終了後は、使用目的に応じそのまま使
用することもでき、必要により苛性アルカリを加えて揮
散させてこれを回収する等の精製を行なうこともできる
After the irradiation, it can be used as it is depending on the purpose of use, or if necessary, it can be purified by adding caustic alkali and volatilizing it to recover it.

【0015】[0015]

【作用】水の酸素原子がプロトンと核反応して13Nを
生成し、これが周囲の水素原子と結合して13N−アン
モニアを生成している。
[Operation] Oxygen atoms in water react nuclearly with protons to produce 13N, which combines with surrounding hydrogen atoms to produce 13N-ammonia.

【0016】本発明の方法においては、ターゲット水に
水素を加圧状態で共存させることによってターゲット水
内を還元雰囲気に保ち、プロトンビームの照射によって
酸素原子が分解して生成した13Nから直接13N−ア
ンモニアを生成させている。また、ターゲット水を循環
させることによって、照射部で水が分解して生成する酸
素原子が溶存して酸化雰囲気になるのを防止し、また照
射部の気泡を除去して照射効率の低下を防止している。
In the method of the present invention, the target water is maintained in a reducing atmosphere by allowing hydrogen to coexist in the target water under pressure, and 13N- produced by the decomposition of oxygen atoms by irradiation with a proton beam is directly converted into 13N- It produces ammonia. In addition, by circulating the target water, it prevents oxygen atoms generated by water decomposition in the irradiation area from dissolving and creating an oxidizing atmosphere, and also prevents a decrease in irradiation efficiency by removing air bubbles in the irradiation area. are doing.

【0017】[0017]

【実施例】図1は、本発明の実施例で使用されたターゲ
ットボックスの概要を示すフローシートである。この装
置を用いて窒素13のアンモニア水を製造する方法とし
ては、まずターゲット材料である一定量の水(ターゲッ
ト水)を三方コック1、二方コック2を通って中間容器
3に送入する。これにより、循環ライン側は水に満たさ
れた状態になり、系内の気体は中間容器に集まる。次に
、コック1を切り換えて送液配管内に残っているターゲ
ット水を水素ガスにより圧送して全量を中間容器内に入
れるとともに、中間容器3内に残っている気体を水素ガ
スでパージする。パージされた気体は、コック4を通っ
て系外に排出される。続いてコック4を閉じ、圧力計5
で圧力を測定しながらターゲットボックス内を水素ガス
で必要圧力に加圧し、コック1及びコック2を閉じる。 次に、送液ポンプ6を作動させて中間容器3内のターゲ
ット水をコック7、照射セル8、コック9を通って中間
容器3に戻る循環ラインを循環させる。この状態でプロ
トンビーム10を照射すると、ターゲット水の酸素原子
が核反応を起こして13Nを生成する。この窒素原子が
水素と反応してターゲット水中に13N−アンモニアを
生成する。照射終了後、コック7及びコック9を切り換
え、コック1及びコック2を開けてターゲットボックス
から13N−アンモニア水を配管11を通って取り出す
EXAMPLE FIG. 1 is a flow sheet showing an outline of a target box used in an example of the present invention. As a method for producing aqueous ammonia containing nitrogen 13 using this apparatus, first, a certain amount of water (target water) which is a target material is fed into an intermediate container 3 through a three-way cock 1 and a two-way cock 2. As a result, the circulation line side becomes filled with water, and the gas in the system collects in the intermediate container. Next, the cock 1 is switched to force-feed the target water remaining in the liquid feeding pipe with hydrogen gas and put the entire amount into the intermediate container, and the gas remaining in the intermediate container 3 is purged with hydrogen gas. The purged gas is discharged to the outside of the system through the cock 4. Next, close the cock 4 and check the pressure gauge 5.
While measuring the pressure, pressurize the inside of the target box with hydrogen gas to the required pressure, and close cocks 1 and 2. Next, the liquid feed pump 6 is operated to circulate the target water in the intermediate container 3 through the circulation line that returns to the intermediate container 3 through the cock 7, the irradiation cell 8, and the cock 9. When the proton beam 10 is irradiated in this state, the oxygen atoms in the target water undergo a nuclear reaction to generate 13N. This nitrogen atom reacts with hydrogen to produce 13N-ammonia in the target water. After the irradiation is completed, cocks 7 and 9 are switched, cocks 1 and 2 are opened, and 13N-ammonia water is taken out from the target box through piping 11.

【0018】上記の方法により、水素圧力を変えて13
N−アンモニア水を製造した。製造条件を下記に示す。
By the above method, by changing the hydrogen pressure, 13
N-ammonia water was produced. The manufacturing conditions are shown below.

【0019】ターゲットボックス内容積:7mlターゲ
ット水量:3〜5ml 循環速度:100ml/min 照射時間:10分 照射粒子:プロトン 12MeV 照射電流:約15μA
Target box internal volume: 7 ml Target water amount: 3 to 5 ml Circulation speed: 100 ml/min Irradiation time: 10 minutes Irradiation particles: Proton 12 MeV Irradiation current: Approximately 15 μA

【0020】得られた結果を図3及び図4に示す。図3
は添加水素圧力と13N−アンモニア生成量の関係を示
すグラフであり、図4は添加水素圧力と生成13N−ア
ンモニアの放射化学的純度の関係を示すグラフである。 両図において、○印は循環ポンプを作動させて循環型で
行なった場合であり、□印は作動させないで非循環型で
行なった場合である。これらの図に示すように、循環型
の場合には水素圧力が0.1kg/cm2付近でアンモ
ニア生成量及び放射化学的純度も充分な結果が得られ、
0.5kg/cm2付近でほぼ飽和状態に達することが
わかる。一方、非循環型で行なった場合には、飽和状態
に達するには水素圧力を2kg/cm2を越える圧力に
する必要があり、なおかつ生成量も放射化学的純度も循
環型に比べて低い。
The results obtained are shown in FIGS. 3 and 4. Figure 3
is a graph showing the relationship between the added hydrogen pressure and the amount of 13N-ammonia produced, and FIG. 4 is a graph showing the relationship between the added hydrogen pressure and the radiochemical purity of the produced 13N-ammonia. In both figures, the ◯ mark indicates the case where the circulation pump was activated and the process was carried out in a circulation type, and the □ mark indicates the case where the process was carried out in the non-circulation type without the circulation pump being activated. As shown in these figures, in the case of the circulation type, sufficient ammonia production amount and radiochemical purity were obtained when the hydrogen pressure was around 0.1 kg/cm2.
It can be seen that the saturation state is almost reached at around 0.5 kg/cm2. On the other hand, when the non-circulating method is used, the hydrogen pressure needs to exceed 2 kg/cm2 to reach the saturated state, and the production amount and radiochemical purity are lower than that of the circulating method.

【0021】アンモニア生成量は、13Nの放射能を放
射能測定器を用いて測定した。また、放射化学的純度は
照射終了後のターゲット水を高速液体クロマトグラフに
て分析した。
The amount of ammonia produced was determined by measuring 13N radioactivity using a radioactivity meter. Furthermore, radiochemical purity was determined by analyzing the target water after irradiation using a high performance liquid chromatograph.

【0022】次に、循環型は水素圧力を0.7kg/c
m2とし、非循環型は2.2kg/cm2として同様に
アンモニア合成を行ない、生成物の13Nの分布を測定
した結果を図5に示す。同図に示すように、循環型の場
合は生成した放射能のほぼ95%が13N−NH4+の
化学形で取り出された。 それに対し、非循環型では約73%であり、13N−N
O3−や水中にある未確定物、13N−N2といった副
生成物が生成されていることがわかった。
Next, for the circulation type, the hydrogen pressure is set to 0.7 kg/c.
m2 and 2.2 kg/cm2 for the non-circulating type, ammonia synthesis was carried out in the same manner, and the distribution of 13N in the product was measured. The results are shown in FIG. As shown in the figure, in the case of the circulating type, approximately 95% of the generated radioactivity was extracted in the chemical form of 13N-NH4+. In contrast, it is about 73% for the non-circulating type, which is 13N-N
It was found that by-products such as O3-, undefined substances in water, and 13N-N2 were produced.

【0023】上記成分の分析方法としては、照射終了後
のターゲット水を回収する時にガスを同時に風船に回収
して、それぞれの放射能を測定し、水については高速液
体クロマトグラフで成分を分析した。
[0023] As a method for analyzing the above components, when the target water was collected after irradiation, the gas was collected into a balloon at the same time, and the radioactivity of each was measured, and the components of water were analyzed using a high performance liquid chromatograph. .

【0024】[0024]

【発明の効果】以上のように、この発明によればターゲ
ット水を水素で0.1〜5kg/cm2に加圧し、かつ
ポンプによって循環しながら照射することによってター
ゲットボックス内で直接13N−アンモニアを製造する
ことができ、安定して13N−アンモニアを得ることが
できる。しかも副産物が少なく、13N−アンモニアを
高純度でしかも短時間に簡単な操作で得ることができる
As described above, according to the present invention, 13N-ammonia can be directly produced in the target box by pressurizing target water with hydrogen to 0.1 to 5 kg/cm2 and irradiating it while circulating it with a pump. 13N-ammonia can be produced stably. Furthermore, there are few by-products, and 13N-ammonia can be obtained with high purity in a short time and with simple operations.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例で使用されたターゲットボック
スの概要を示すフローシートである。
FIG. 1 is a flow sheet showing an overview of a target box used in an example of the present invention.

【図2】従来の合成方法で使用されていた装置の概要を
示すフローシートである。
FIG. 2 is a flow sheet showing an overview of an apparatus used in a conventional synthesis method.

【図3】本発明の実施例で得られた13N−アンモニア
生成量と添加水素圧力の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of 13N-ammonia produced and the added hydrogen pressure obtained in an example of the present invention.

【図4】上記、実施例で得られた13N−アンモニアの
放射化学的純度と添加水素圧力の関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between the radiochemical purity of 13N-ammonia obtained in the above example and the added hydrogen pressure.

【図5】本発明の別の実施例で得られた生成物の13N
の分布を循環を行なわないで得られた生成物の13Nの
分布と比較して示した棒グラフである。
FIG. 5: 13N of the product obtained in another example of the invention.
13 is a bar graph showing the distribution of 13N in comparison with the distribution of 13N in the product obtained without cycling.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  合成装置内にターゲット水と水素を送
入して0.1〜5kg/cm2の加圧状態とし、該ター
ゲット水を循環させながらそれにプロトンビームを照射
して13N−アンモニアを生成させることを特徴とする
インターゲットでの13N−アンモニア合成方法
[Claim 1] Target water and hydrogen are introduced into a synthesis apparatus to create a pressurized state of 0.1 to 5 kg/cm2, and while the target water is circulated, it is irradiated with a proton beam to generate 13N-ammonia. An in-target 13N-ammonia synthesis method characterized by
JP8536691A 1991-04-17 1991-04-17 In-target 13N-ammonia synthesis method Expired - Fee Related JPH07119835B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP8536691A JPH07119835B2 (en) 1991-04-17 1991-04-17 In-target 13N-ammonia synthesis method
CA002085590A CA2085590A1 (en) 1991-04-17 1992-01-07 Synthesis of labeled compound
DE69212629T DE69212629D1 (en) 1991-04-17 1992-01-07 Process for the production of 13N ammonia
EP92901940A EP0535235B1 (en) 1991-04-17 1992-01-07 Method of synthesizing 13N-ammonia
PCT/JP1992/000003 WO1992018986A1 (en) 1991-04-17 1992-01-07 Method of synthesizing tag compound
KR1019920703258A KR0132906B1 (en) 1991-04-17 1992-12-17 Method of synthesizing tag compound
US08/378,949 US5598449A (en) 1991-04-17 1995-01-26 Synthesis of labeled compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8536691A JPH07119835B2 (en) 1991-04-17 1991-04-17 In-target 13N-ammonia synthesis method

Publications (2)

Publication Number Publication Date
JPH04318497A true JPH04318497A (en) 1992-11-10
JPH07119835B2 JPH07119835B2 (en) 1995-12-20

Family

ID=13856722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8536691A Expired - Fee Related JPH07119835B2 (en) 1991-04-17 1991-04-17 In-target 13N-ammonia synthesis method

Country Status (1)

Country Link
JP (1) JPH07119835B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100684554B1 (en) * 2001-04-03 2007-02-20 서울대학교병원 Apparatus and process for manufacturing of O-15-water, which is characterized by reusing N of the mass number 15
JP2007095553A (en) * 2005-09-29 2007-04-12 Hitachi Ltd System using accelerator
JP2015175777A (en) * 2014-03-17 2015-10-05 住友重機械工業株式会社 Refiner of radioisotope, and refining method of radioisotope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100684554B1 (en) * 2001-04-03 2007-02-20 서울대학교병원 Apparatus and process for manufacturing of O-15-water, which is characterized by reusing N of the mass number 15
JP2007095553A (en) * 2005-09-29 2007-04-12 Hitachi Ltd System using accelerator
JP4537924B2 (en) * 2005-09-29 2010-09-08 株式会社日立製作所 Accelerator system
JP2015175777A (en) * 2014-03-17 2015-10-05 住友重機械工業株式会社 Refiner of radioisotope, and refining method of radioisotope

Also Published As

Publication number Publication date
JPH07119835B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
Guillaume et al. Recommendations for fluorine-18 production
EP1397812B1 (en) Process and apparatus for production of f-18 fluoride
EP2569779B1 (en) Tc-99m produced by proton irradiation of a fluid target system
Tilbury et al. 13 N species formed by proton irradiation of water
TWI397421B (en) Gallium-68 radioisotope generator and generating method thereof
US20060285623A1 (en) Methods and apparatus for producing 15O-carbon monoxide and 15O-carbon dioxide
JP6274689B1 (en) RI-labeled compound manufacturing apparatus and RI-labeled compound manufacturing method
WO1992018986A1 (en) Method of synthesizing tag compound
JPH04318497A (en) Synthesis method for in-target 13n-ammonia
US6773686B1 (en) Process for the purification and concentration of radiodide isotopes
JPH09113693A (en) Method for producing gas containing 15o as radioactive species
EP1146953B1 (en) Process for the purification and concentration of radioiodide isotopes
JP6873381B1 (en) 18F-labeled compound manufacturing apparatus and 18F-labeled compound manufacturing method
US20160035448A1 (en) Production of carbon-11 using a liquid target
JP4898152B2 (en) High yield production of 18F [F2] fluorine from 18O [O2] oxygen
JP4238353B2 (en) [11C] Method for producing CH3X
CN112898107A (en) Method and apparatus for producing RI-labeled compound
JP2828853B2 (en) Acetic acid synthesis method
JPH09113694A (en) Method for producing gas containing 15o as radioactive species
Mausner et al. The production of spallation radionuclides for medical applications at BLIP
Szűcs et al. Production and chemical separation of 48 V
JPH07119836B2 (en) Method for purifying 13N-ammonia produced by in-target method
JP4613307B2 (en) Tritium removal method for manufacturing positron emission tomography medicines
JP2001074891A (en) Device and method for manufacturing radioactive isotope
Vandecasteele Production of medical radionuclides with a 24 MeV proton cyclotron

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees