JP4238353B2 - [11C] Method for producing CH3X - Google Patents

[11C] Method for producing CH3X Download PDF

Info

Publication number
JP4238353B2
JP4238353B2 JP2003206542A JP2003206542A JP4238353B2 JP 4238353 B2 JP4238353 B2 JP 4238353B2 JP 2003206542 A JP2003206542 A JP 2003206542A JP 2003206542 A JP2003206542 A JP 2003206542A JP 4238353 B2 JP4238353 B2 JP 4238353B2
Authority
JP
Japan
Prior art keywords
reaction tube
irradiation
gas
halogen
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003206542A
Other languages
Japanese (ja)
Other versions
JP2005053804A (en
Inventor
和年 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Radiological Sciences
Original Assignee
National Institute of Radiological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Radiological Sciences filed Critical National Institute of Radiological Sciences
Priority to JP2003206542A priority Critical patent/JP4238353B2/en
Publication of JP2005053804A publication Critical patent/JP2005053804A/en
Application granted granted Critical
Publication of JP4238353B2 publication Critical patent/JP4238353B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は[11C]CH3Xおよび[11C]標識薬剤の製造方法に関する。
【0002】
【従来の技術】
医学、薬学、生化学等の分野において、PET(ポジトロン断層撮影診断法)は、生体機能の定量的な生理学的画像を得るための手段として有用である。11C、13N,15O等のポジトロン放出核種は、生物学的に活性なトレーサー中にその化学的挙動に影響を与えないで導入できるからである。PETにおいて用いられるポジトロン放出核種のうち、11Cによる被標識化合物の標識化は、通常11C ヨウ化メチルを標識化剤として用いるが、11Cの半減期が20.4分と短いため、必要に応じて使用現場で迅速に合成することが必要である。
【0003】
従来、[11C]標識薬剤、たとえば[11C]CH3I合成には[11C]CO2 を出発物質として、LiAlH4/THFおよびHIとの反応により生成した[11C]CH3Iを反応中間体として利用することにより得るのが最も一般的である(たとえば、非特許文献1)。この方法においては高収率で、しかも安定的に[11C]CH3Iが得られるが、難点は準備作業が大変であること、高い比放射能が得られにくいこと、繰り返し製造にも不向きなことである。これに対し、[11C]CH4 を出発物質とし、I2 との反応により直接[11C]CH3Iを製造する方法は、収量は半分程度に低下するが、繰り返し製造に適していること、準備作業が簡単なこと、高比放射能化に適していること、等の利点を有する(たとえば、非特許文献2)。しかし、この方法は一般的に、第1段階で[11C]CO2を製造し、その後で触媒により、[11C]CH4 に変換し、これをI2 蒸気と一緒に石英製反応管内を循環させることにより[11C]CH3Iを生成させ、それを捕集して利用する方法である。この方法の難点は、[11C]CO2 による汚染が避けられず、また、比較的高温でI2 蒸気を循環させるため、7〜8回の製造でI2 を交換する必要があり、さらに経路内でI2 が詰まり易いことである。さらに循環などの作業のために時間がかかり、[11C]CH4が減衰して消失し易い。
【0004】
一方、循環させないシングルパス法も提案されており、この方法は循環に伴う上記の難点は自動的に解消されるが、当然に収率は低下することになる(非特許文献3)。
【0005】
さらに、ターゲットガスに水素を混合し、ターゲット内で直接に11CH4を製造する方法も知られており、この方法とシングルパスI2 法を組合わせた11CH3Iの製造方法も検討されているが、高比放射能化を達成するための具体的方法などについては知られていなかった(非特許文献4)。
【0006】
【非特許文献1】
Suzuki K. et al.、Computer Controlled Large Scale Production of High Specific activity [11C]Ro15-1788 for PET Studies of Be nzodiazepine Receptors. Int. J. Appl. Radiat. Isot. 36, 971 - 976, 1985
【非特許文献2】
Larsen P., et al.、 Synthesis of [11C]Iodomethan by Iodination of [11C]Methan. Appl. Radiat. Isot. 48, 153 - 157, 1997.
【非特許文献3】
Link M. J. et al.、 Production of [11C]CH3I by single Pass Re action of [11C]CH4 with I2. Nucl. Med. & Biol. 24, 93 - 97, 1 997.
【非特許文献4】
Noguchi J., Mutoh M., Suzuki K. Optimization of the single Pa ss I2 Method for [11C]CH3I Synthesis and its application to [11C]Ro15-4513 Synthesis. J. Labelled Cpd. Radiopharm. 44 (sup pl.1), S995 - S996, 2001.
【0007】
【発明が解決しようとする課題】
本発明は、上記の従来法の難点を克服し、高比放射能化が期待でき、しかも高収率を維持しうる11CH3Iの製造方法を提供する。
【0008】
【課題を解決するための手段】
本発明は、水素ガスを含む窒素ガスにプロトンを照射することにより生成した11Cを照射容器内で直接に[11C]CH4に変換し、ついでこれをハロゲンガスと反応管内で反応させて[11C]CH3X(Xはハロゲン原子を示す)を生成させる方法において、該照射容器内を予めプロトンにより予備照射して、混入している非放射性炭素を除去した後に本照射すること、ならびに該[11C]CH3Xおよび該ハロゲンガスを、該反応管内を循環させないシングルパス法により、該反応管内を通過させること、およびその最適条件を提供すること、を特徴とする[11C]CH3Xの製造方法、を要旨とする。
【0009】
【発明の実施の形態】
本発明の[11C]CH3Xの製造方法においては、水素ガスを含む窒素ガスにプロトンを照射することにより生成した11Cを照射容器内で直接に[11C]CH4に変換し、ついでこれをハロゲンガス と反応管内で反応させて[11C]CH3X(Xはハロゲン原子を示す)を生成させる方法において、該照射容器内を予めプロトンにより予備照射して、混入している非放射性炭素を除去した後に、本照射すること、ならびに該[11C]CH3Xおよび該ハロゲンガスを該反応管内を循環させないシングルパス法により、該反応管内を通過させる。上記の予備照射は、本照射と同程度もしくはそれより大きい電流値で比較的短時間行われるのが好適である。上記の水素ガスを含む不活性ガスにおける水素ガス濃度は、通常2〜20%、好適には3〜10%程度である。上記のハロゲンとしては通常ヨウ素もしくは臭素である。上記の照射容器はアルミニウム製もしくはアルミニウム合金製であるのが好ましく、さらには切削油等の炭素を含有する流体を用いないで旋盤加工されたものが好ましい。さらに、上記反応管はハロゲン反応管部および主反応管部よりなり、主反応管部は好ましくは石英製である。そして、ハロゲン反応管部内の温度は通常室温〜90℃、好ましくは40〜70℃である。一方、主反応管部内の温度は通常500〜850℃、好ましくは580〜700℃である。また、反応系におけるガス流量は通常10〜300mL/分、好適には30〜150mL/分である。
【0010】
本発明の好適な実施態様についてさらに説明する。
1)照射容器内における[11C]CH4の直接製造:
たとえば5%程度のH2を含むN2ガスに、たとえば14MeV程度のエネルギーを有するプロトンを照射すると、生成した11Cの90%程度は照射容器内で直接[11C]CH4として生成する。この[11C]CH4を標識反応の出発物質として利用することにより、大気中および試薬中に吸蔵されているCO2によるその後の汚染が回避できる。また、[11C]CO2を捕集し、還元剤で[11C]CH4に変換する必要がないため、合成経路が簡略化され、汚染のリスクが回避できるとともに、そのための時間も不要となるため、11Cの時間減衰による損失も防ぐことができ、高比放射能化に有利である。
2)シングルパスヨウ素法の採用:
これにより、循環用のポンプ、生成した[11C]CH3I捕集用のトラップ、[11C]CH3I離脱用のヒータ、これらに関連するバルブ類等も不要となり、装置が極めて簡素化されうる。さらに、合成時間も短縮しうる。この結果、1)と同様に、非放射性炭素による同位体希釈が低減され、時間減衰による11Cの損失も低下する。また、これらの簡素化により装置の小型化が可能になり、狭いホットセル内に設置するのに有利である。
3)反応条件の最適化:
シングルパス法を採用した場合、収率の低下が予想される。これを防ぐために、ヨウ素カラム温度、反応温度、ガス流量の最適化を図り、循環法に近い反応収率を達成し得る。これにより、合成経路の大幅な簡素化、合成時間の短縮、同位体希釈の回避が可能となる。
4)予備照射の採用:
本照射の前に照射容器を実際の条件で短時間照射し、照射容器内もしくは表面に混入している非放射性炭素を焼出し、生成物を廃棄して再度ガスを充填した。この操作を数回繰り返して残留非放射性炭素の除去を行なった。この際、11C、13N等の短寿命核種が高濃度に生成するため、そのままガスを外部に排出できない。したがって、たとえばモレキュラーシーブを充填した捕集管、および内部に邪魔板のある100L程度の排気タンクを通して生成ガスを廃棄することにより、放射能を減衰させうる。このようにして、本来混入するであろう照射容器内の非放射性炭素の混入を防止しうる。
5)照射容器のクリーン加工:
照射容器材料としては、たとえばアルミニウムまたはアルミニウム合金、好適にはA5056等が用いられる。通常、これらの材料は切削油を用いて旋盤加工されるが、本発明においては切削油を使用しないのが好適である。これは、微量に残存した油が照射により分解され非放射性炭素として系内に混入することを防ぐためである。さらに、組み立てに際しては、ゴム製のオーリング等を使用しないですべて金属製のシールを使用するのが好適である。
【0011】
本発明の合成系統図の一例を図1に示す。
【0012】
この図1は[11C]CH3I合成とそれを利用して[11C]標識化合物を製造するまでの系統図の1例を示す。
【0013】
V1〜V12;電磁弁(特にV1,V2は高圧用)、PG−1〜PG−2;圧力センサー、RG;圧力レギュレーター、RI−1〜RI−2;放射能センサー、FM/FC;マスフローメーター/コントローラー、1;アルミニウムまたはアルミニウム合金製照射容器、2;ヨウ素反応部で、ヨウ素結晶数グラムを石英管内に充填し前後を石英ウールで挟み込んだ構造になっている。周りは電気炉1で囲まれ温度調節ができる。3;石英製主反応管部;石英製空カラムを電気炉2で囲み、800℃まで温度調節できるようにしたもの;である。
【0014】
水素を5%含む高純度窒素ガスをV1を開いてPG−1が15気圧になるまで照射容器中に充填し、V1を閉じる。18MeVプロトン20μAで30分程度照射し、V2,V3,V5,V6,V7経由で照射ガスを流す。このとき照射容器中で、14N(p,α)11C反応で生成した[11C]CH4は液体Ar温度下、Porapak Q(商標)トラップに捕集される。捕集終了後、液体Arを除き、トラップを加熱しながら所定の温度に保った反応管に、V4,V5,V6、反応管、V8,V9,V10,V11経由でHeガスを所定の流速で流し、[11C]CH4を[11C]CH3Iに変換し、反応容器中に捕集する。この際、不純物は反応管出口のアスカライト(商標)および途中に挿入したアスカライトで除去される。反応容器は事前に反応基質を含んだ溶媒を入れ、冷風で冷却しておくと[11C]CH3Iの捕集効率も向上し、時間も短縮されるため収率の向上にも効果的である。反応終了後反応混合物はHPLC(高速液体クロマトグラフ)に送られ、精製され、調剤処理を施された後、薬剤となる。
【0015】
図1に示すように、事前に照射容器(1)に5%水素ガスを含む窒素ガスを15気圧程度充填し、サイクロトロンで加速した18MeVのプロトンを20μA程度で数分間照射し、排気する。この処置を2〜3回繰り返す。その後、同一条件で本照射を30分程度行う。これにより照射容器(1)内で14N(p,α)11C反応で11Cを製造すると同時に[11C]CH4に変換した。照射終了後、直ちに[11C]CH4を ターゲットガスとともに液体アルゴンで冷却したPorapak‐Q(商標)トラップに通すことにより[11C]CH4を捕集した。照射容器(1)内に生成した[11C]CH4を液体アルゴンで冷却したPorapak Q(商標)に捕集し、その他のガスは廃棄ライン経由で排気される。捕集終了を放射能モニターRI-1で確認し、液体アルゴンを取り除く。Heガスをマスフローコントローラ・モニタ(図中FM/FC)で好ましくは50mL/分に制御しつつPorapak Qカラムに流し、[11C]CH4を反応管(ヨウ素反応管部(2)、石英製主反応カラム(3))に輸送する。ヨウ素を充填したヨウ素反応管部(2)(50℃)、何も充填していない石英製主反応管部(3)(630℃)を通過する際に[11C]CH4は[11C]CH3Iに変換され、固体二酸化炭素(「ドライアイス」)または液体窒素の吹き付け等で冷却した容器中に捕集する。この際、反応管出口付近および途中に挿入した精製管で導入されたヨウ素は除去される。このとき、好ましくはアスカライト(商標)(水酸化ナトリウム系の二酸化炭素吸収剤)を充填しておくとさらに効率が良くなるので好適である。さらに、上記ヨウ素を除去した後、[11C]CH3Iを反応容器中に前もって入れておいた溶媒中に捕集し、このとき、溶媒中に反応基質を予め入れておき、所定の反応をさせた後、高速液体クロマトグラフ(HPLC)等を用いて分離精製し、調剤処理を施すことにより様々な11C標識薬剤を得ることができる。
【0016】
本発明方法によれば、照射容器内における[11C]CH4の直接生成は、数μA程度の弱い電流値では98%程度と極めて高い収率が得られるが、電流値を増大させるとその収率は次第に低下し、20μA(程度)では90%程度にまで低下したが、実用的には十分な収率である。
【0017】
一方、[11C]CH4から[11C]CH3Iへの変換に対し、ヨウ素反応管部温度、石英製主反応管部温度、Heガス流速をパラメータとしてその最適化を図った。 [11C]CH4から[11C]CH3Iへ変換する際の最適条件を求めるため、ヨウ素反応管温度、主反応管温度、Heガス流速をパラメーターとして実験を行った。
【0018】
(a)ヨウ素反応管温度の影響;主反応管温度を660℃、Heガス流速を50mL/分と固定し、ヨウ素反応管温度を40℃〜70℃まで変化させその収率変化を測定した。その結果、50℃で最大の収率が得られた。また、ヨウ素反応管温度が今回の測定範囲温度外であっても収量は低下するが[11C]CH3Iは生成するであろうことが推測された。
【0019】
(b)主反応管温度の影響;ヨウ素反応管温度を50℃、Heガス流速を50mL/分と固定し、主反応管温度を580℃〜700℃まで変化させ、[11C]CH3Iの収率に対する影響を調べた。その結果、630℃で最大の収率が得られた。また、主反応管温度が今回の測定範囲温度外であっても収量は低下するが[11C]CH3Iは生成するであろうことが推測された。
【0020】
(c)Heガス流速の影響;ヨウ素反応管温度を50℃、主反応管温度を630℃と固定し、Heガス流速を30〜100mL/分まで変化させ、[11C]CH3Iの収率に対する影響を調べた。その結果、50mL/分で最大の収率が得られた。また、Heガス流速が今回の測定範囲流量外であっても収量は低下するが[11C]CH3Iは生成するであろうことが推測された。
【0021】
その結果を図2に示す。図2において、すなわち、ヨウ素反応管部温度50℃、石英製主反応管部温度630℃、Heガス流速50mL/分のとき、[11C]CH4についての[11C]CH3Iへの変換収率は最高の43%に達した。
【0022】
このようにして合成した[11C]CH3Iを用いて、ベンゾジアゼピン受容体の部分インバースアンタゴニストである、臨床利用可能な[11C]Ro15−4513を比放射能127+/-69 Ci/μmol、合成終了時における収量41+/-13mCiを得ることができた。この水準は、比放射能で従来の最高水準の10倍程度、収量は1/2〜1/3程度であった。収量は少ないとはいえ、2例のPET検査を行うのに十分な量であった。
【0023】
【発明の効果】
本発明によれば、高比放射能[11C]CH3I等を比較的高収率で安定的に、しかも、同じセットでたとえば30回以上、繰り返し製造しうる製造方法を提供しうる。従って、極微量で強い生理活性を発現する超高生理活性物質の生体内挙動、脳内において極微量しか存在しない神経受容体の定量化等、従来未開拓の分野であった極低濃度領域の研究の発展に寄与することが期待される。これは、医学、生理学分野だけでなく、超高感度計測を必要とし、また非侵襲的外部計測を必要とするような一般的な領域にも応用が期待される。
【図面の簡単な説明】
【図1】本発明の合成系統図の一例を示す。
【図2】反応条件の最適化を図るため種々の条件で反応を行った結果を示す。
【符号の説明】
1…照射容器
2…ヨウ素反応管部
3…石英製主反応管部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing [ 11 C] CH 3 X and [ 11 C] -labeled drugs.
[0002]
[Prior art]
In the fields of medicine, pharmacy, biochemistry, etc., PET (positron tomography diagnostic method) is useful as a means for obtaining quantitative physiological images of biological functions. This is because positron emitting nuclides such as 11 C, 13 N, and 15 O can be introduced into biologically active tracers without affecting their chemical behavior. Of positron emitting nuclides used in PET, the labeling of the labeled compounds by 11 C is usually used 11 C methyl iodide as a labeling agent, 11 since the half-life of C is a short 20.4 minutes, necessary Therefore, it is necessary to synthesize quickly at the site of use.
[0003]
Conventional, [11 C] labeled agents, for example, [11 C] CH 3 as the starting material [11 C] CO 2 in I synthesis was produced by the reaction of LiAlH 4 / THF and HI [11 C] CH 3 I Is most commonly obtained as a reaction intermediate (for example, Non-Patent Document 1). In this method, [ 11 C] CH 3 I can be stably obtained with high yield, but the difficulty is that preparation work is difficult, high specific activity is difficult to obtain, and it is not suitable for repeated production. It is a thing. On the other hand, the method of producing [ 11 C] CH 3 I directly from the reaction with I 2 using [ 11 C] CH 4 as a starting material reduces the yield by about half, but is suitable for repeated production. In addition, there are advantages such as being easy to prepare and being suitable for high specific activity (for example, Non-Patent Document 2). However, this process generally produces [ 11 C] CO 2 in the first stage, which is then converted to [ 11 C] CH 4 by a catalyst, which is combined with I 2 vapor in a quartz reaction tube. In which [ 11 C] CH 3 I is produced, collected and used. The difficulty of this method is that contamination with [ 11 C] CO 2 is unavoidable, and I 2 vapor is circulated at a relatively high temperature, so that it is necessary to exchange I 2 in 7 to 8 times. This is because I 2 is easily clogged in the path. Furthermore, it takes time for operations such as circulation, and [ 11 C] CH 4 is easily attenuated and lost.
[0004]
On the other hand, a single-pass method that does not circulate has also been proposed, and this method automatically eliminates the above-mentioned difficulties associated with circulation, but naturally the yield decreases (Non-patent Document 3).
[0005]
Furthermore, a method for producing 11 CH 4 directly in the target by mixing hydrogen with the target gas is also known, and a method for producing 11 CH 3 I by combining this method with the single pass I 2 method has also been studied. However, a specific method for achieving high specific activity has not been known (Non-patent Document 4).
[0006]
[Non-Patent Document 1]
Suzuki K. et al., Computer Controlled Large Scale Production of High Specific activity [ 11 C] Ro15-1788 for PET Studies of Benzodiazepine Receptors. Int. J. Appl. Radiat. Isot. 36, 971-976, 1985
[Non-Patent Document 2]
Larsen P., et al., Synthesis of [ 11 C] Iodomethan by Iodination of [ 11 C] Methan. Appl. Radiat. Isot. 48, 153-157, 1997.
[Non-Patent Document 3]
Link MJ et al., Production of [ 11 C] CH 3 I by single Pass Re action of [ 11 C] CH 4 with I2. Nucl. Med. & Biol. 24, 93-97, 1 997.
[Non-Patent Document 4]
Noguchi J., Mutoh M., Suzuki K. Optimization of the single Pass I2 Method for [ 11 C] CH 3 I Synthesis and its application to [ 11 C] Ro15-4513 Synthesis. J. Labelled Cpd. Radiopharm. 44 ( sup pl.1), S995-S996, 2001.
[0007]
[Problems to be solved by the invention]
The present invention provides a method for producing 11 CH 3 I that overcomes the difficulties of the conventional methods described above, can be expected to achieve high specific activity, and can maintain a high yield.
[0008]
[Means for Solving the Problems]
In the present invention, 11 C generated by irradiating protons to nitrogen gas containing hydrogen gas is directly converted into [ 11 C] CH 4 in an irradiation container, and then reacted with halogen gas in a reaction tube. In the method of generating [ 11 C] CH 3 X (X represents a halogen atom), the irradiation container is preliminarily irradiated with protons in advance to remove mixed non-radioactive carbon, and then the main irradiation is performed. and the [11 C] CH 3 X and the halogen gas, the single-pass method which does not circulate the reaction tube, passing the reaction tube, and to provide the optimum conditions, and wherein the [11 C The production method of CH 3 X is summarized.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the production method of [11 C] CH 3 X of the present invention, directly into a [11 C] CH 4 to 11 C generated by irradiating the protons nitrogen gas containing hydrogen gas in the irradiation chamber, Next, in the method of reacting this with a halogen gas in a reaction tube to generate [ 11 C] CH 3 X (X represents a halogen atom), the irradiation container is preliminarily irradiated with protons and mixed. After removing the non-radioactive carbon, the main irradiation is performed, and the [ 11 C] CH 3 X and the halogen gas are allowed to pass through the reaction tube by a single pass method that does not circulate in the reaction tube. It is preferable that the preliminary irradiation is performed for a relatively short time at a current value that is equal to or higher than that of the main irradiation. The hydrogen gas concentration in the inert gas containing hydrogen gas is usually about 2 to 20%, preferably about 3 to 10%. The halogen is usually iodine or bromine. The irradiation container is preferably made of aluminum or an aluminum alloy, and more preferably a lathe machined without using a fluid containing carbon such as cutting oil. Further, the reaction tube comprises a halogen reaction tube portion and a main reaction tube portion, and the main reaction tube portion is preferably made of quartz. And the temperature in a halogen reaction tube part is room temperature-90 degreeC normally, Preferably it is 40-70 degreeC. On the other hand, the temperature in the main reaction tube is usually 500 to 850 ° C, preferably 580 to 700 ° C. The gas flow rate in the reaction system is usually 10 to 300 mL / min, preferably 30 to 150 mL / min.
[0010]
Preferred embodiments of the present invention will be further described.
1) Direct production of [ 11 C] CH 4 in an irradiation container:
For example, N 2 gas containing about 5% H 2, for example, when irradiated with protons having an energy of about 14 MeV, 90% approximately of the resulting 11 C is produced as a direct [11 C] CH 4 at irradiation vessel. By using this [ 11 C] CH 4 as a starting material for the labeling reaction, subsequent contamination with CO 2 occluded in the atmosphere and in the reagent can be avoided. In addition, since it is not necessary to collect [ 11 C] CO 2 and convert it to [ 11 C] CH 4 with a reducing agent, the synthesis route is simplified, the risk of contamination can be avoided, and no time is required. Therefore, loss due to time decay of 11 C can be prevented, which is advantageous for high specific activity.
2) Adoption of single-pass iodine method:
Thus, a pump for circulating the generated [11 C] CH 3 I for collecting trap, [11 C] CH 3 I detaching the heater, also valves, etc. associated with these unnecessary and apparatus is extremely simple Can be realized. Furthermore, the synthesis time can be shortened. As a result, as in 1), isotope dilution with non-radioactive carbon is reduced, and loss of 11 C due to time decay is also reduced. Further, these simplifications enable the apparatus to be miniaturized, which is advantageous for installation in a narrow hot cell.
3) Optimization of reaction conditions:
When the single pass method is adopted, a decrease in yield is expected. In order to prevent this, the iodine column temperature, reaction temperature, and gas flow rate can be optimized to achieve a reaction yield close to that of a circulation method. This makes it possible to greatly simplify the synthesis route, shorten the synthesis time, and avoid isotope dilution.
4) Adoption of preliminary irradiation:
Before the main irradiation, the irradiation container was irradiated for a short time under actual conditions, non-radioactive carbon mixed in the irradiation container or on the surface was baked out, the product was discarded, and the gas was filled again. This operation was repeated several times to remove residual non-radioactive carbon. At this time, since short-lived nuclides such as 11 C and 13 N are generated at a high concentration, the gas cannot be discharged to the outside as it is. Therefore, the radioactivity can be attenuated by discarding the generated gas through, for example, a collection tube filled with molecular sieves and an exhaust tank of about 100 L with a baffle plate inside. In this way, contamination of non-radioactive carbon in the irradiation container that would normally be mixed can be prevented.
5) Clean processing of irradiation container:
As the irradiation container material, for example, aluminum or an aluminum alloy, preferably A5056 is used. Usually, these materials are turned using cutting oil, but it is preferable not to use cutting oil in the present invention. This is to prevent a minute amount of remaining oil from being decomposed by irradiation and mixed into the system as non-radioactive carbon. Furthermore, it is preferable to use a metal seal without using a rubber O-ring or the like during assembly.
[0011]
An example of the synthetic system diagram of the present invention is shown in FIG.
[0012]
This FIG. 1 shows one example of a systematic diagram of the synthesis of [ 11 C] CH 3 I and the production of a [ 11 C] -labeled compound.
[0013]
V1 to V12; solenoid valves (in particular, V1 and V2 are for high pressure), PG-1 to PG-2; pressure sensors, RG; pressure regulators, RI-1 to RI-2; radioactivity sensors, FM / FC; / Controller, 1; Irradiation vessel made of aluminum or aluminum alloy, 2; Iodine reaction part, filled with several grams of iodine crystals in a quartz tube and sandwiched between front and back by quartz wool. The surroundings are surrounded by an electric furnace 1 and the temperature can be adjusted. 3. Quartz main reaction tube section; a quartz empty column surrounded by an electric furnace 2 so that the temperature can be adjusted to 800 ° C .;
[0014]
High purity nitrogen gas containing 5% hydrogen is filled in the irradiation container until V1 is opened and PG-1 reaches 15 atm, and V1 is closed. Irradiate with 18 MeV proton 20 μA for about 30 minutes, and let the irradiation gas flow through V2, V3, V5, V6 and V7. At this time, [ 11 C] CH 4 produced by the 14 N (p, α) 11 C reaction is collected in a Porapak Q ™ trap at the liquid Ar temperature in the irradiation container. After the completion of collection, He gas is supplied at a predetermined flow rate via V4, V5, V6, reaction tubes, V8, V9, V10, and V11 to a reaction tube that is maintained at a predetermined temperature while heating the trap except for the liquid Ar. Then, [ 11 C] CH 4 is converted to [ 11 C] CH 3 I and collected in a reaction vessel. At this time, impurities are removed by Ascarite (trademark) at the outlet of the reaction tube and Ascarite inserted in the middle. If the reaction vessel is pre-filled with a solvent containing the reaction substrate and cooled with cold air, the collection efficiency of [ 11 C] CH 3 I will be improved and the time will be shortened, which is effective in improving the yield. It is. After completion of the reaction, the reaction mixture is sent to HPLC (High Performance Liquid Chromatograph), purified, and subjected to a dispensing treatment, and then becomes a drug.
[0015]
As shown in FIG. 1, the irradiation container (1) is preliminarily filled with nitrogen gas containing 5% hydrogen gas at about 15 atm, irradiated with 18 MeV protons accelerated by a cyclotron at about 20 μA for several minutes, and then exhausted. This procedure is repeated 2-3 times. Thereafter, the main irradiation is performed for about 30 minutes under the same conditions. As a result, 11 C was produced by the 14 N (p, α) 11 C reaction in the irradiation container (1) and simultaneously converted to [ 11 C] CH 4 . After irradiation completion, was collected [11 C] CH 4 by passing immediately [11 C] Porapak-Q (TM) trap cooled to CH 4 in liquid argon with the target gas. [ 11 C] CH 4 produced in the irradiation container (1) is collected in Porapak Q (trademark) cooled with liquid argon, and other gases are exhausted via a waste line. Confirm the end of collection with RI-1 and remove liquid argon. He gas is flowed through the Porapak Q column while controlling it preferably at 50 mL / min with a mass flow controller / monitor (FM / FC in the figure), and [ 11 C] CH 4 is supplied to the reaction tube (iodine reaction tube part (2), quartz) Transport to main reaction column (3)). When passing through the iodine reaction tube part (2) filled with iodine (2) (50 ° C) and the main reaction tube part made of quartz (3) (630 ° C) not filled with anything, [ 11 C] CH 4 becomes [ 11 C ] Converted to CH 3 I and collected in a cooled container such as by spraying solid carbon dioxide (“dry ice”) or liquid nitrogen. At this time, iodine introduced in the vicinity of the reaction tube outlet and in the purification tube inserted in the middle is removed. At this time, it is preferable to fill Ascalite (trademark) (sodium hydroxide-based carbon dioxide absorbent), since the efficiency is further improved. Further, after removing the iodine, [ 11 C] CH 3 I is collected in a solvent previously placed in the reaction vessel. At this time, a reaction substrate is put in the solvent in advance, and a predetermined reaction is performed. Then, various 11 C-labeled drugs can be obtained by separation and purification using a high performance liquid chromatograph (HPLC) or the like, and by applying a dispensing treatment.
[0016]
According to the method of the present invention, the direct production of [ 11 C] CH 4 in the irradiation container can provide a very high yield of about 98% at a weak current value of about several μA. The yield gradually decreased and decreased to about 90% at 20 μA (about), but the yield is practically sufficient.
[0017]
On the other hand, with respect to the conversion from [ 11 C] CH 4 to [ 11 C] CH 3 I, the iodine reaction tube temperature, the quartz main reaction tube temperature, and the He gas flow rate were optimized. In order to obtain the optimum conditions for conversion from [ 11 C] CH 4 to [ 11 C] CH 3 I, an experiment was conducted using iodine reaction tube temperature, main reaction tube temperature, and He gas flow rate as parameters.
[0018]
(A) Influence of iodine reaction tube temperature: The main reaction tube temperature was fixed at 660 ° C., the He gas flow rate was fixed at 50 mL / min, the iodine reaction tube temperature was changed from 40 ° C. to 70 ° C., and the change in yield was measured. As a result, the maximum yield was obtained at 50 ° C. Further, it was speculated that [ 11 C] CH 3 I would be produced even though the yield decreased even if the iodine reaction tube temperature was outside the measurement range temperature of this time.
[0019]
(B) Effect of main reaction tube temperature: The iodine reaction tube temperature was fixed at 50 ° C., the He gas flow rate was fixed at 50 mL / min, the main reaction tube temperature was changed from 580 ° C. to 700 ° C., and [ 11 C] CH 3 I The effect on the yield was investigated. As a result, the maximum yield was obtained at 630 ° C. It was also speculated that [ 11 C] CH 3 I would be produced even though the yield decreased even when the main reaction tube temperature was outside the current measurement range temperature.
[0020]
(C) Effect of He gas flow rate: The iodine reaction tube temperature was fixed at 50 ° C., the main reaction tube temperature was fixed at 630 ° C., the He gas flow rate was changed from 30 to 100 mL / min, and the yield of [ 11 C] CH 3 I The effect on rate was investigated. As a result, the maximum yield was obtained at 50 mL / min. Further, it was speculated that [ 11 C] CH 3 I would be produced even though the yield decreased even when the He gas flow rate was outside the current measurement range flow rate.
[0021]
The result is shown in FIG. In FIG. 2, that is, when the iodine reaction tube temperature is 50 ° C., the quartz main reaction tube temperature is 630 ° C., and the He gas flow rate is 50 mL / min, [ 11 C] CH 4 is converted to [ 11 C] CH 3 I. The conversion yield reached the highest 43%.
[0022]
Using [ 11 C] CH 3 I synthesized in this way, [ 11 C] Ro15-4513, which is a partial inverse antagonist of benzodiazepine receptor, is used as a specific activity 127 +/− 69 Ci / μmol, A yield of 41 +/- 13 mCi at the end of the synthesis could be obtained. This level was about 10 times higher than the conventional highest level in specific activity, and the yield was about 1/2 to 1/3. Although the yield was small, it was sufficient for two PET examinations.
[0023]
【The invention's effect】
According to the present invention, it is possible to provide a production method capable of stably producing high specific activity [ 11 C] CH 3 I and the like stably at a relatively high yield and, for example, 30 times or more in the same set. Therefore, in vivo behavior of ultra-high physiologically active substances that express a strong physiological activity in a very small amount, such as quantification of neuroreceptors that are present in a very small amount in the brain, such as extremely low concentration regions that have been unexplored in the past It is expected to contribute to the development of research. This is expected to be applied not only to the fields of medicine and physiology, but also to general areas that require ultrasensitive measurement and require noninvasive external measurement.
[Brief description of the drawings]
FIG. 1 shows an example of a synthetic system diagram of the present invention.
FIG. 2 shows the results of reactions performed under various conditions in order to optimize the reaction conditions.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Irradiation container 2 ... Iodine reaction tube part 3 ... Quartz main reaction tube part

Claims (12)

水素ガスを含む窒素ガスにプロトンを照射することにより生成した11Cを照射容器内で直接に[11C]CH4に変換し、ついでこれをハロゲンガスと反応管内で反応させて[11C]CH3X(Xはハロゲン原子を示す)を生成させる方法において、該照射容器内を予めプロトンにより予備照射して、混入している非放射性炭素を除去した後に本照射すること、ならびに該[11C]CH3Xおよび該ハロゲンガスを、該反応管内を循環させないシングルパス法により、該反応管内を通過させること、を特徴とする[11C]CH3Xの製造方法。 11 C produced by irradiating protons to nitrogen gas containing hydrogen gas is directly converted into [ 11 C] CH 4 in the irradiation container, and then reacted with halogen gas in a reaction tube to produce [ 11 C]. a method of CH 3 X (X is a halogen atom) to produce, and pre-irradiation in advance by protons the irradiation vessel, that the main irradiation after removing the non-radioactive carbon are mixed, and the [11 A method for producing [ 11 C] CH 3 X, wherein C] CH 3 X and the halogen gas are allowed to pass through the reaction tube by a single pass method in which the gas is not circulated in the reaction tube. 予備照射が、本照射と同程度もしくはそれより大きい電流値で行われる請求項1記載の製造方法。2. The production method according to claim 1, wherein the preliminary irradiation is performed at a current value that is equal to or greater than that of the main irradiation. 水素ガスを含む窒素ガスにおける水素ガス濃度が2〜20%である請求項1もしくは記載の製造方法。The method according to claim 1 or 2, wherein the hydrogen gas concentration in the nitrogen gas containing hydrogen gas is 2 to 20%. ハロゲンがヨウ素もしくは臭素である請求項1〜3のいずれか記載の製造方法。The production method according to claim 1, wherein the halogen is iodine or bromine. 照射容器がアルミニウム製またはアルミニウム合金製である請求項1〜4のいずれか記載の製造方法。The manufacturing method according to claim 1, wherein the irradiation container is made of aluminum or an aluminum alloy. 照射容器が、切削油を用いないで旋盤加工された請求項1〜5のいずれか記載の製造方法。The manufacturing method according to claim 1, wherein the irradiation container is turned without using cutting oil. 反応管がハロゲン反応管部および主反応管部よりなる請求項1〜6のいずれか記載の製造方法。The production method according to any one of claims 1 to 6, wherein the reaction tube comprises a halogen reaction tube portion and a main reaction tube portion. 主反応管部が石英製である請求項7記載の製造方法。The production method according to claim 7, wherein the main reaction tube portion is made of quartz. ハロゲン反応管部の温度が室温〜90℃である請求項7記載の製造方法。The process according to claim 7, wherein the temperature of the halogen reaction tube part is from room temperature to 90 ° C. 主反応管部の温度が500〜850℃である請求項7記載の製造方法。The production method according to claim 7, wherein the temperature of the main reaction tube portion is 500 to 850 ° C. 反応系におけるガス流量が10〜300mL/分である請求項1〜10のいずれか記載の製造方法The gas flow rate in a reaction system is 10-300 mL / min, The manufacturing method in any one of Claims 1-10 請求項1〜11のいずれか記載の製造方法により得られた[11C]CH3Xを用いて[11C]標識薬剤を製造することを特徴とする[11C]標識薬剤の製造方法。Manufacturing method of [11 C] labeled agents, characterized in that the production of [11 C] labeled agents using [11 C] CH 3 X obtained by the production method according to any one of claims 1 to 11.
JP2003206542A 2003-08-07 2003-08-07 [11C] Method for producing CH3X Expired - Lifetime JP4238353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206542A JP4238353B2 (en) 2003-08-07 2003-08-07 [11C] Method for producing CH3X

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206542A JP4238353B2 (en) 2003-08-07 2003-08-07 [11C] Method for producing CH3X

Publications (2)

Publication Number Publication Date
JP2005053804A JP2005053804A (en) 2005-03-03
JP4238353B2 true JP4238353B2 (en) 2009-03-18

Family

ID=34363373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206542A Expired - Lifetime JP4238353B2 (en) 2003-08-07 2003-08-07 [11C] Method for producing CH3X

Country Status (1)

Country Link
JP (1) JP4238353B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278865B2 (en) * 2004-05-27 2013-09-04 住友重機械工業株式会社 Methyl iodide production apparatus, methyl iodide production method, and methyl triflate production apparatus
JP6758065B2 (en) * 2016-03-30 2020-09-23 日本メジフィジックス株式会社 Equipment and method for producing radioactively labeled compounds

Also Published As

Publication number Publication date
JP2005053804A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
Machulla et al. Simplified labeling approach for synthesizing 3′-deoxy-3′-[18F] fluorothymidine ([18F] FLT)
US11851383B2 (en) Automatic process platform for the production of astatine-211 [At-211]-radiopharmaceuticals
Lewis et al. Production and purification of gallium-66 for preparation of tumor-targeting radiopharmaceuticals
US5759513A (en) Apparatus and process for preparing radioisotope-labeled reagent
JP2013505294A (en) Chemical production module for PET biomarker production system and administration liquid synthesis card
JPWO2007063940A1 (en) Method for producing radioactive fluorine-labeled compound
Fawdry Radiolysis of 2-[18F] fluoro-2-deoxy-D-glucose (FDG) and the role of reductant stabilisers
JPH06157350A (en) Specific therapy and means for part
Fusco et al. Production of Carrier-free 123I using the 127I (p, 5n) 123Xe Reaction
US20060285623A1 (en) Methods and apparatus for producing 15O-carbon monoxide and 15O-carbon dioxide
JP4238353B2 (en) [11C] Method for producing CH3X
US6008421A (en) Production of 11 C-methyl iodide
Dannals et al. Synthesis of a selective serotonin uptake inhibitor:[11C] citalopram
JP2003536055A (en) Method for generating [18F] fluoride ion
JP4238352B2 (en) [11C] Method for synthesizing methyl halide
JP7339692B2 (en) Manufacturing method and manufacturing apparatus for radiolabeled compound
JP6873381B1 (en) 18F-labeled compound manufacturing apparatus and 18F-labeled compound manufacturing method
Kumar et al. Production of nitrogen-13-labeled ammonia by using 11MeV medical cyclotron: our experience
US8137656B2 (en) Method and apparatus for synthesis of [11C]phosgene using concentrated [11C] carbon monoxide with UV light
WO2006114474A2 (en) Saline solution comprising [13n] nh4+ and a device
JPH07119835B2 (en) In-target 13N-ammonia synthesis method
JP2007501764A (en) Method
RU2301080C1 (en) Method for preparing 11c -butyrate sodium
JPH09318799A (en) Production method and device for 13n ammonia
JP2018002606A (en) Method for producing radioactive fluorine-labeled organic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4238353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term