JPH04317565A - Dc high-voltage stabilizing power source - Google Patents

Dc high-voltage stabilizing power source

Info

Publication number
JPH04317565A
JPH04317565A JP3171610A JP17161091A JPH04317565A JP H04317565 A JPH04317565 A JP H04317565A JP 3171610 A JP3171610 A JP 3171610A JP 17161091 A JP17161091 A JP 17161091A JP H04317565 A JPH04317565 A JP H04317565A
Authority
JP
Japan
Prior art keywords
voltage
circuit
output
inverter
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3171610A
Other languages
Japanese (ja)
Inventor
Hiroshi Iwai
岩井 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PULSE DENSHI GIJUTSU KK
Original Assignee
PULSE DENSHI GIJUTSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PULSE DENSHI GIJUTSU KK filed Critical PULSE DENSHI GIJUTSU KK
Priority to JP3171610A priority Critical patent/JPH04317565A/en
Publication of JPH04317565A publication Critical patent/JPH04317565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

PURPOSE:To stabilize output voltage by bringing the current phase angle phiat turn off close to the half cycle of a resonation circuit regardless of the magnitude of output power. CONSTITUTION:The output current of a high-voltage rectifying circuit 8 is detected as a voltage value with a current detecting resistor 11, and the output voltage is converted into voltage through the multiplication circuit with reference voltage 13, and the voltage is transmitted as reference voltage to a differential amplifier 17. On the other hand, the input voltage of an inverter circuit 5 is detected with a potential dividing resistor 3 and a detecting resistor 4, and the voltage is transmitted likewise to one end of a differential amplifier 17, and by the comparison with the reference voltage being converted into power and the amplification, the output signal of the differential voltage is transmitted to a phase control circuit 18. This phase adjusting signal is transmitted to a thyristor control rectifying circuit 2, and by the control of the phase angle of a power source, the input voltage of an inverter is changed according to the final output voltage. As a result, this makes it control the stabilization of the voltage at all times in the vicinity of the half cycle pi of the current waveform at turn off.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野】本発明は、共振形インバータのパ
ルス幅制御(PWM)による直流安定化電源のスイッチ
ング素子の保護に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to protection of switching elements of a stabilized DC power supply by pulse width control (PWM) of a resonant inverter.

【従来の技術】図3に従来の共振形インバータ方式によ
る直流安定化の回路構成図,図4はインバータ回路のス
イッチング素子の電圧,電流波形を示す。図3において
、交流電源1を整流回路19と通じて直流電圧に変換し
、その直流電圧をインバータ回路5に接続し、スイッチ
ング動作による共振用コンデンサ6と高周波変圧器7の
洩れリアクタンスの直列共振回路を形成し、その電流の
通電幅の電圧を高周波変圧器7により昇圧し、高圧整流
回路8で直流高電圧を分圧抵抗9および負荷12に印加
させる、電圧の制御および安定化は、電圧検出抵抗10
よりその発生した電圧の一部を検出し、差動アンプ14
,基準電圧13による誤差増幅器に伝達し、その差電圧
の出力をパルス幅制御回路15に伝え、その出力信号を
上記インバータ回路5のそれぞれのスイッチング素子の
ゲートに伝え、その電流の通電幅の制御により出力電圧
の制御および安定化を図っています。その結果、基準電
圧13に相当した出力電圧を負荷に供給することができ
る。このようにスイッチング素子の通電幅を制御するた
め、ターンオフ時の位相角は常に出力電圧,電流の値、
すなわち出力電力により変化することになり、その値に
よっては電流のLC共振波形のピーク値でターンオフす
る場合も考えられ、この時の逆電圧の防止,オフ時の損
失を小さくするためにスナバ回路を設け、スイッチング
素子の保護を図っています。ところが、図4にその一例
のターンオフ時の電圧e,電流i波形を示すように、今
その位相角φがスイッチング電流のピーク付近でターン
オフした場合、そのオフ時間toffは最大となり、そ
の期間中の損失も最大となり、熱破壊する場合もありま
す。
2. Description of the Related Art FIG. 3 is a circuit diagram of a conventional DC stabilization system using a resonant inverter, and FIG. 4 shows voltage and current waveforms of switching elements in the inverter circuit. In FIG. 3, an AC power supply 1 is converted into a DC voltage through a rectifier circuit 19, and the DC voltage is connected to an inverter circuit 5, and a series resonance circuit is created by connecting a resonance capacitor 6 and the leakage reactance of a high-frequency transformer 7 through a switching operation. The high frequency transformer 7 steps up the voltage corresponding to the current carrying width, and the high voltage rectifier circuit 8 applies the DC high voltage to the voltage dividing resistor 9 and the load 12. Voltage control and stabilization are performed by voltage detection. resistance 10
A part of the generated voltage is detected and the differential amplifier 14
, reference voltage 13 to the error amplifier, the output of the difference voltage is transmitted to the pulse width control circuit 15, and the output signal is transmitted to the gate of each switching element of the inverter circuit 5 to control the conduction width of the current. This controls and stabilizes the output voltage. As a result, an output voltage corresponding to the reference voltage 13 can be supplied to the load. In order to control the energization width of the switching element in this way, the phase angle at turn-off is always determined by the output voltage, current value,
In other words, it will change depending on the output power, and depending on the value, it may turn off at the peak value of the LC resonance waveform of the current.In order to prevent reverse voltage at this time and reduce loss when turned off, a snubber circuit is required. is installed to protect the switching elements. However, as shown in FIG. 4, which shows an example of the voltage e and current i waveforms at turn-off, if the phase angle φ turns off near the peak of the switching current, the off-time toff becomes maximum, and during that period The loss is also maximum, and thermal damage may occur.

【発明が解決しようとする課題】前記の如く、出力電力
の値によってそのターンオフ時間は大きくなる場合もあ
り、下記のような問題点を発生する。 (1)スイッチング電流がピーク値付近でターンオフし
た場合、その逆電圧,損失共大きな値となる。 (2)そのため素子の温度上昇が過大となり、破壊を生
ずる場合もある。 (3)上記防止のための適切な保護回路を設けなくては
ならない。
As mentioned above, the turn-off time may increase depending on the value of the output power, which causes the following problems. (1) When the switching current turns off near its peak value, both the reverse voltage and the loss become large. (2) As a result, the temperature of the element may rise excessively, resulting in destruction. (3) Appropriate protection circuits must be provided to prevent the above.

【課題を解決するための手段】本発明は、上記の如くタ
ーンオフ時の損失等の問題点を解決する手段として、出
力電力の大小にかかわらず、常にターンオフの電流位相
角φが共振回路の半周期πに近い付近になるように、出
力電力をフィードバックし、インバータの入力電圧を制
御し、出力電圧の安定化を図ろうとするものである。
[Means for Solving the Problems] The present invention, as a means to solve the problems such as loss during turn-off as described above, is designed so that the turn-off current phase angle φ is always half of the resonant circuit, regardless of the magnitude of the output power. This attempts to stabilize the output voltage by feeding back the output power and controlling the input voltage of the inverter so that the period is close to π.

【作用】ターンオフ位相角を共振回路の半周期付近にす
ることにより、図2の波形のようにその時のスイッチン
グ電流値は小さく、かつ、ターンオフ時間も小さく、そ
の期間中に素子に生ずる損失も小さくなります。このこ
とは、素子の冷却にも関係し、電源の小形にもなり、経
済的にも得策となります。
[Operation] By setting the turn-off phase angle to around half the period of the resonant circuit, the switching current value at that time is small as shown in the waveform in Figure 2, and the turn-off time is also short, and the loss generated in the element during that period is also small. Become. This is also related to element cooling, allows for a smaller power supply, and is economically advantageous.

【実施例】以下本発明による実施例を図1,図2に基づ
き説明する。図1において、交流電源1よりサイリスタ
制御整流回路2を介して、インバータ回路5の入力直流
電圧を発生させ、インバータ回路5と共振用コンデンサ
6および高周波変圧器7の洩れリアクタンスの共振回路
を形成し、その共振電圧を高周波変圧器7により昇圧し
、高圧整流回路8で直流高電圧を分圧抵抗9および負荷
12に印加させる。出力電圧の安定化は分圧抵抗9と電
圧検出抵抗10により、出力電圧の一部を検出し、基準
電圧13を差動アンプ14に伝達し、その差電圧の出力
信号をパルス幅制御回路15に伝え、その差電圧に応じ
たパルス幅信号をインバータ回路5に伝達し、その位相
角を制御して電圧の安定化を図るものである。上述は基
本的には従来のものと変りませんが、従来形の欠点であ
る位相角の制御のみで安定化を図るのでなく、インバー
タ回路5の入力電圧を変化させ、共振電流値を制御する
ことにより、その位相角をほぼ一定にし、出力電圧をフ
イードバックし、その安定化を常にほぼ共振電流の半周
期付近で制御するものである。すなわち、出力電流は電
流検出抵抗11により電圧値として検出し、基準電圧1
3との乗算回路を介し、その出力電力を電圧換算し、そ
の電圧を基準電圧とし、差動アンプ17に伝え、他方イ
ンバータ回路の入力電圧検出を分圧抵抗3,検出抵抗4
より電圧検出し、その電圧を同じく差動アンプ17の一
端に伝え、上記電力換算された基準電圧との比較増幅に
より、その差電圧の出力信号を位相制御回路18に伝え
、その出力の位相調整信号をサイリスタ制御整流回路2
に伝達し、交流電源の位相角の制御により、インバータ
入力電圧を最終の出力電力に応じて変化させ、図2に示
したターンオフ時の電流波形の半周期π付近で常に電圧
の安定化を制御させるものである。その結果、各スイッ
チング素子のターンオフ時間も短く、かつ、逆電圧,損
失共も小さくなる。
Embodiments An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In FIG. 1, an input DC voltage for an inverter circuit 5 is generated from an AC power supply 1 via a thyristor-controlled rectifier circuit 2, and a resonance circuit of the inverter circuit 5, a resonance capacitor 6, and a leakage reactance of a high-frequency transformer 7 is formed. , the resonance voltage is stepped up by a high frequency transformer 7, and a high voltage rectifier circuit 8 applies a DC high voltage to a voltage dividing resistor 9 and a load 12. To stabilize the output voltage, a part of the output voltage is detected by a voltage dividing resistor 9 and a voltage detection resistor 10, a reference voltage 13 is transmitted to a differential amplifier 14, and an output signal of the difference voltage is sent to a pulse width control circuit 15. A pulse width signal corresponding to the voltage difference is transmitted to the inverter circuit 5, and its phase angle is controlled to stabilize the voltage. The above is basically the same as the conventional type, but instead of stabilizing only by controlling the phase angle, which is a drawback of the conventional type, the input voltage of the inverter circuit 5 is changed to control the resonant current value. By doing so, the phase angle is kept almost constant, the output voltage is fed back, and its stabilization is always controlled around half the cycle of the resonant current. That is, the output current is detected as a voltage value by the current detection resistor 11, and the output current is detected as a voltage value by the current detection resistor 11.
The output power is converted into a voltage through a multiplier circuit with 3 and the voltage is used as a reference voltage and transmitted to the differential amplifier 17. On the other hand, the input voltage of the inverter circuit is detected by the voltage dividing resistor 3 and the detection resistor 4.
A voltage is detected from the voltage, the voltage is also transmitted to one end of the differential amplifier 17, and the output signal of the difference voltage is transmitted to the phase control circuit 18 through comparison and amplification with the power-converted reference voltage, which adjusts the phase of the output. Thyristor control rectifier circuit 2
By controlling the phase angle of the AC power supply, the inverter input voltage is changed according to the final output power, and the voltage is always stabilized around the half period π of the current waveform at turn-off shown in Figure 2. It is something that makes you As a result, the turn-off time of each switching element is shortened, and both reverse voltage and loss are reduced.

【発明の効果】以上の如く、その出力電力もインバータ
の入力電圧にフイードバックさせることにより、従来形
の共振形インバータ方式に比べて、 (1)スイッチング素子のターンオフ時の損失が小さく
なる。 (2)スイッチング素子のターンオフ時の電流値が小さ
く、従来形方式のに生じたピーク値付近で電流オフする
ことはなく、その逆電圧の値も小さい。 (3)インバータ入力電圧が出力に応じて制御されるの
で、その効率が全体的に高くなる。 (4)スイッチング電流は、正弦波に近いためリップル
もよくなる。 (5)高周波変圧器の入力は常にほぼ正弦波に近くなる
ので電力効率はよい。 等の効果が生じ、工業的ならびに実用的価値は高い。
[Effects of the Invention] As described above, by feeding back the output power to the input voltage of the inverter, compared to the conventional resonant inverter system, (1) the loss when the switching elements are turned off is reduced. (2) The current value when the switching element turns off is small, the current does not turn off near the peak value that occurs in the conventional system, and the value of the reverse voltage is also small. (3) Since the inverter input voltage is controlled according to the output, its efficiency is increased overall. (4) Since the switching current is close to a sine wave, the ripple is also improved. (5) Power efficiency is good because the input to the high frequency transformer is always close to a sine wave. These effects are of high industrial and practical value.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】は、本発明による共振形インバータのパルス幅
制御(PWM)による直流高圧安定化電源の回路構成図
FIG. 1 is a circuit configuration diagram of a DC high voltage stabilized power supply using pulse width control (PWM) of a resonant inverter according to the present invention.

【図2】は、上記インバータのターンオフ時のスイッチ
ング素子の電圧,電流波形を示す。
FIG. 2 shows voltage and current waveforms of the switching elements when the inverter is turned off.

【図3】は、従来の共振形フルブリッジインバータのP
WM機能による直流高圧安定化電源の回路構成図。
[Figure 3] shows the P of a conventional resonant full-bridge inverter.
A circuit configuration diagram of a DC high-voltage stabilized power supply using a WM function.

【図4】は、上記インバータのターンオフ時の1個のス
イッチング素子の電圧,電流波形を示す。
FIG. 4 shows voltage and current waveforms of one switching element when the inverter is turned off.

【符号の説明】[Explanation of symbols]

1………………交流電源 2………………サイリスタ制御整流回路3,4…………
インバータ入力電圧分圧検出抵抗5………………インバ
ータ回路 6………………共振用コンデンサ 7………………高周波変圧器 8………………高圧整流回路 9………………分圧抵抗 10……………電圧検出抵抗 11……………電流検出抵抗 12……………負荷 13……………基準電圧 14,17……差動アンプ 15……………パルス幅制御回路 16……………乗算回路 18……………位相制御回路 19……………整流回路 i………………スイッチング素子の電流波形e…………
……スイッチング素子の電圧波形φ,π………………位
相角 toff…ターンオフ時間
1………………AC power supply 2………………Thyristor control rectifier circuit 3, 4……
Inverter input voltage division detection resistor 5...Inverter circuit 6...Resonance capacitor 7...High frequency transformer 8...High voltage rectifier circuit 9... ......Voltage dividing resistor 10......Voltage detection resistor 11......Current detection resistor 12...Load 13...Reference voltage 14, 17...Differential amplifier 15... ...Pulse width control circuit 16...Multiplication circuit 18...Phase control circuit 19...Rectifier circuit i...Current waveform of switching element e...
... Voltage waveform of switching element φ, π ...... Phase angle toff ... Turn-off time

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】共振形インバータのパルス幅制御による直
流高圧安定化回路において、その出力電圧,電流を検出
し、検出電圧と基準電圧との差動アンプによる、その差
電圧をインバータ回路にパルス幅制御回路を介してフィ
ードバックし、出力電圧の安定化を図ると同時に、検出
電流と基準電圧との乗算回路を介した電力換算電圧を基
準電圧とした電圧と、インバータの入力電圧の検出電圧
との差動アンプによる、その差電圧をインバータ入力電
圧発生用サイリスタ等の整流回路にフィードバックして
出力電力に応じて、インバータ入力電圧を自動調整し、
インバータ回路のパルス幅を常に最適位相角でスイッチ
ング動作させた直流高圧安定化電源。
Claim 1: In a DC high voltage stabilization circuit using pulse width control of a resonant inverter, its output voltage and current are detected, and a differential amplifier between the detected voltage and a reference voltage applies the difference voltage to the inverter circuit with a pulse width. Feedback is provided through the control circuit to stabilize the output voltage, and at the same time, the voltage with the power equivalent voltage as the reference voltage via the detection current and reference voltage multiplier circuit and the detection voltage of the inverter input voltage are The difference voltage is fed back by the differential amplifier to a rectifier circuit such as a thyristor for generating the inverter input voltage, and the inverter input voltage is automatically adjusted according to the output power.
A DC high-voltage stabilized power supply that always switches the pulse width of the inverter circuit at the optimal phase angle.
JP3171610A 1991-04-12 1991-04-12 Dc high-voltage stabilizing power source Pending JPH04317565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3171610A JPH04317565A (en) 1991-04-12 1991-04-12 Dc high-voltage stabilizing power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3171610A JPH04317565A (en) 1991-04-12 1991-04-12 Dc high-voltage stabilizing power source

Publications (1)

Publication Number Publication Date
JPH04317565A true JPH04317565A (en) 1992-11-09

Family

ID=15926365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3171610A Pending JPH04317565A (en) 1991-04-12 1991-04-12 Dc high-voltage stabilizing power source

Country Status (1)

Country Link
JP (1) JPH04317565A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796598A (en) * 1996-01-26 1998-08-18 W. Schlafhorst Ag & Co. Voltage-converting circuit for the power supply of an electrical consumer of high output, particularly a bobbin winding machine
WO2011151940A1 (en) * 2010-05-31 2011-12-08 三菱電機株式会社 Power conversion device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796598A (en) * 1996-01-26 1998-08-18 W. Schlafhorst Ag & Co. Voltage-converting circuit for the power supply of an electrical consumer of high output, particularly a bobbin winding machine
WO2011151940A1 (en) * 2010-05-31 2011-12-08 三菱電機株式会社 Power conversion device
CN102918757A (en) * 2010-05-31 2013-02-06 三菱电机株式会社 Power conversion device
JP5575235B2 (en) * 2010-05-31 2014-08-20 三菱電機株式会社 Power converter
CN102918757B (en) * 2010-05-31 2015-06-17 三菱电机株式会社 Power conversion device
CN104883082A (en) * 2010-05-31 2015-09-02 三菱电机株式会社 Power Conversion Apparatus
US9160249B2 (en) 2010-05-31 2015-10-13 Mitsubishi Electric Corporation Power conversion apparatus having an AC/DC converter which outputs to a DC/DC converter which is controlled by a controller

Similar Documents

Publication Publication Date Title
JP2003257607A (en) Induction heating apparatus
JPH0371589A (en) Microwave range
KR20020010195A (en) Microwave Oven and Control Method Thereof
JP2676790B2 (en) High frequency power supply
KR100399134B1 (en) Microwave Oven
EP0602495B1 (en) Resonant-load power supply for arc welding
JP2001128462A (en) Inverter device control method
JPH04317565A (en) Dc high-voltage stabilizing power source
KR0179096B1 (en) Resonance type hige frequency and voltage generator consisting of dropping type chopper and inverter
JP2000331798A (en) Control method for high frequency power supply
JP4210840B2 (en) Inverter device
JP2982364B2 (en) Inverter for induction heating
JP2000032751A (en) Converter
US7277305B2 (en) Power converter
JP2771936B2 (en) DC power supply circuit
KR100397822B1 (en) Active-Clamped Class-E Inverter System for controlling High Power
JPH033670A (en) Method of controlling induction heating inverter
JP2666408B2 (en) Induction heating device
JP3708469B2 (en) Magnetron drive power supply
JP3334274B2 (en) Inverter device
JP2527563B2 (en) High frequency heating equipment
JPH0746831A (en) Dc power supply
JP2844873B2 (en) High frequency heating equipment
JPS609380A (en) Controlling method of transistor high frequency inverter
JPH0652998B2 (en) Method and device for controlling control voltage of three-phase inverter for AC motor power supply